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Abstract
In the task of the unsupervised query by example spoken term
detection (QbE-STD), we concatenate the features extracted by
a Self-Organizing Map (SOM) and features learned by an unsu-
pervised GMM based model at the feature level to enhance the
performance. More specifically, The SOM features are repre-
sented by the distances between the current feature vector and
the weight vectors of SOM neurons learned in an unsupervised
manner. After fetching these features, we apply sub-sequence
Dynamic Time Warping (S-DTW) to detect the occurrences of
keywords in the test data. We evaluate the performance of these
features on the TIMIT English database. After concatenating
the SOM features and the GMM based features together, we
achieve an improvement of 7.77% and 7.74% on Mean Average
Precision (MAP) and P@10 on average.
Index Terms: unsupervised learning, query by example, self-
organizing map

1. Introduction
Query by example spoken term detection (QbE-STD) [1, 2] is a
task that searching queries from a set of audio archives. Query
examples and test utterances are matched based on their acous-
tic features. Nowadays while the supervised QbE-STD methods
have already achieved very promising results, the performances
of unsupervised QbE-STD methods still need to be improved.
Compared to other spoken term detection tasks, unsupervised
QbE-STD focuses on the searching task without the require-
ment of any knowledge or transcripts about the target language
which is very suitable for applications on low resource lan-
guages. In recent years, this area attracts more and more at-
tention. There are various types of acoustic features being used
in this task, for example, spectral features [3], frame clustering
features [4], GMM posteriorgrams [4], features extracted by a
deep neural network (DNN) [5, 6, 7] and so on. Basically, these
features try to capture information on the phonetic-like units [8]
so that keyword examples and test utterances can be represented
in a more informative way. The method to extract features has
a great impact on the final searching results. So, in order to fur-
ther improve the performance of unsupervised QbE-STD, in this
paper, we strengthen the commonly used GMM based features
by concatenating the features extracted by Self-Organizing Map
(SOM) [9] at the feature level.

The Self-Organizing Map [9, 10] (SOM) is an unsupervised
data-analysis method introduced by T. Kohonen. The idea was
first inspired by neuron-biological learning paradigms. And
now this method is widely used in many areas [11, 12, 13] such
as data clustering and visual representation. In many data ex-

ploration tasks related to linguistics and natural science, SOM
is widely employed and in specific areas such as bioinformatics
and massive textual database, it achieves very promising results.
In addition, Self-Organizing Map could be easily trained using
a small amount of data.

Explorations have been done by many researchers on Self-
Organizing Map in speech areas such as speech recognition
[14], speaker verification [15], phoneme recognition [16] and
gender classification [17]. In these research, SOM is thought to
be able to represent some attributes of speech signals.

SOM is relevant to the basic idea of classic vector quanti-
zation (VQ) [18], which represents data using a set of models.
The SOM is a two-layer network constructed by an input layer
and an output layer. The output layer is a grid having many out-
put nodes. Each node of the output layer has a weight vector
and can be viewed as a cluster. In the process of training, each
input feature vector is automatically classified to a specific out-
put node, called the best match unit. All the weight vectors are
updated depending on their distances between the best match
unit. The topology structure is flexible and well expresses the
differences and relationships between nodes. Those nodes of
the output layer in SOM could be considered as the phoneme-
like units learned in an unsupervised manner [16]. It is in this
context that we explore the feasibility of using SOM features
for unsupervised QbE-STD.

GMM based features are commonly used to represent spo-
ken units. In this paper, we totally extract three types of GMM
based features.

The first type of feature is extracted by an unsupervised di-
agonal GMM model which is efficient and robust on small-scale
data.

As is mentioned in [19, 20], Dirichlet Process Gaussian
Mixture Model (DPGMM) is thought to be a better way to rep-
resent phonetic units, so we use DPGMM to extract our second
basic features.

Besides the features extracted by diagonal GMM and
DPGMM, we also investigate features extracted by an unsu-
pervised DNN model. We first cluster all our MFCC feature
vectors in training set by DPGMM and then use both the cluster
labels and features to train a neural network. For the reason that
we do not use any transcripts of data, it is still unsupervised.
Some research [6] recently revealed that this method is helpful
for the final performance.

In this work, we try to concatenate SOM features and each
of the three types of features mentioned above. After combina-
tion, we use sub-sequence DTW(S-DTW) [21] which is widely
used in pattern matching to align our example sequences and
sequences in the test collection. Experimental results show that



the concatenation of SOM features and GMM based features
could effectively improve the results.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed methods in detail. Experimental results are
presented in Section 3 while conclusion are provided in Section
4.

2. Methods
2.1. SOM feature extraction

In this section, we will introduce the extraction of Self-
Organizing Map [9] (SOM) features. Firstly, we should specify
a group of units which are used to represent the phonetic-like
units. In our case, we set the shape of the output layer as a
square (N × N units). One of the advantages of SOM is that
its topology structure has the ability [10] to well express the
relevance or differences between clusters or phonetic-like units.
Then on this set of units, we need a neighborhood function [11]
to decide the scale of weight updating. Usually, the neighbor-
hood function should be symmetrical and for every neuron, the
value to update depends on its distance between the winner neu-
ron. In every training iteration, one of the output layer neurons
will be selected as the winner neuron [9]. When a neuron wins
in a step, its output of neighborhood function will be set to 1,
and the result should decrease as the distance between the cur-
rent neuron and the winner neuron increases. A widely used
neighborhood function here is the step function (1).

hkct(x)(t) = exp(−dist
2(k, ct(x))

2σ2(t)
) (1)

ct(x) is the winner neuron, x is the weight of winner neu-
ron and k is each of the other neurons in the output layer. From
the equation above, we can see the function meets the require-
ment, and σ(t) will decrease over time to reduce the intensity
[11]. Each neuron of the output layer is represented by a model
which is also called weight vector [11]. The weight vectors have
the same dimension as the feature vectors. The aim of SOM al-
gorithm is to update these weight vectors in a way that they can
both represent the input signals and preserve the information
between each neuron with its topological structure. The SOM
training algorithm [9] is introduced as follows.

1. Extract the MFCC vectors of each training utterances.

2. Find out the best match unit by the distances of weight
vectors and input vectors. K is the set of output neurons.
mk(t) is a weight vector. ct(x) is the best match unit.

ct(x) = argmin
K

||x−mk(t)||2 (2)

3. All the weight vectors are updated by the following equa-
tion. ε(t) is learning rate.

mk(t+ 1) = mk(t) + ε(t)hkct(x)(t)(x−mk(t)) (3)

We can see that, during the training process, we select the
unit that is closest to the current feature vector as the best match
unit [10]. And then we update every weight vector as equation
(3). After SOM model is trained, we get a list of weight vectors.
We can compute the distances between an input feature vector
and weight vectors, and group them as our new features. Figure
3 shows the network structure of SOM.

The algorithm above is easy to implement while the math-
ematical proof is much more complex and is provided in [11].

Figure 1: Self-Organizing Map network.

2.2. GMM based feature extraction

In this section, some unsupervised feature extraction methods
are introduced. These methods are all based on GMM. In-
stead of using classic GMM model to extract features, we use
diagonal GMM, DPGMM and unsupervised DNN labeled by
DPGMM. Diagonal GMM is a faster version of GMM which
needs less memory and less training data, it can be trained more
efficiently than GMM.

And for DPGMM, it is a more suitable and feasible choice
to represent speech data, especially for the scenarios of low re-
source language according to [19, 20].

In recent years, using trained GMM model to label data
features for the subsequent DNN modeling becomes a popu-
lar method [8, 9, 10]. We first train a DPGMM to cluster our
training set. For each vector, the component with the largest
DPGMM probability would be chosen as the label.

For diagonal GMM and DPGMM, we use the posterior-
grams as features. While for DNN, we fetch the output of final
softmax layer as features.

2.3. Acoustic features matching

Acoustic pattern matching can be computed in many variants of
dynamic time warping (DTW) algorithm. DTW is used to align
two sequences and evaluate the similarity by the cost. In this
paper, we employ sub-sequence DTW (S-DTW) [21] algorithm
for our unsupervised QbE task. S-DTW is first introduced as a
modification of the classic DTW algorithm to find the matching
sub-sequences of utterances in test collection between query ex-
amples. This method is widely used in sequences retrieval tasks.
We denote a query example sequence as X := (x1;x2 ::: xN)
and a test sequence as Y := (y1; y2 ::: yM). S-DTW is an
algorithm to find the begin and end of the sequence in Y that
optimally matches the keyword example sequence X as equa-
tion (4) shows.

(b∗, e∗) := argmin
(b,e):1≤b≤e≤M

(DTW (X,Y (b : e))) (4)

b is the begin of the sequence and e is the end. S-DTW al-
gorithm is implemented mainly in two steps [21]. First, the ac-
cumulated cost matrix is modified so that it allows the process
to consider all points as beginning in order to find the optimal
one. It is more flexible compared to the classic DTW whose
starting point is fixed. The second step also differs from the
classic DTW implementation. It allows the optimal matching
sub-sequence to finish in any ending time of the sequence fol-
lowing the equation (5).



e∗ := argmin
e∈[1:M ]

D(N, e) (5)

D returns cost value given a coordinate in cost matrix. Like
the classic DTW, after finishing finding the best matching point,
a traceback dynamic programming process is computed to find
the best path. It is also very important to decide the distance
function between vectors when calculating the cost of DTW al-
gorithm. Many distance can be used here, in our experiment,
we choose Euclidean distance (6) by default.

d = ||x− y|| =

√√√√ n∑
i=1

|xi − yi|2 (6)

3. Experiment
3.1. Dataset

We investigate the performance of our system on the TIMIT
English speech corpus. The dataset consists of a training set of
4620 utterances and a whole test set of 1680 utterances. We ex-
tract MFCC features of the training set to train the GMM based
models and Self-Organizing Map. As for keywords, we choose
50 keywords and our target is to find out the occurrences of
these keywords in the test set of 1680 utterances. There are to-
tally more than 300 queries to find. Each keyword we choose
consists of 3 to 5 syllables. For each query, a correct hit is ac-
cumulated if an utterance in the retrieval contains the query so
that we can evaluate the performance of our system.

All our MFCC features are extracted by the
python feature speech toolkit [22]. We set window size
as 25ms and shift length as 10ms. Two metrics are used
to evaluate our performance. The first one is mean average
precision (MAP), which shows the average precision for correct
hits in retrieval. The second metric is P@10, which counts the
correct hits of top 10 and calculates the precision.

3.2. Experimental Setup

3.2.1. Overview of the system

Our system is mainly constructed by two parts, including fea-
ture extraction and feature matching. Our features are extracted
from GMM based models and SOM. After we obtain these fea-
tures, we use S-DTW to find the keywords in test utterances.
We compare the performances of basic diagonal GMM features,
DPGMM features, unsupervised DNN features to our concate-
nated features. The whole system is illustrated in Figure 2.

Figure 2: Structure of our system.

3.2.2. GMM based feature extraction

We train two types of GMM model, the DPGMM and the di-
agonal GMM model using MFCC features. For MFCC, we use
MFCC results in 39-dimensional feature vectors. Number of
components for the diagonal GMM and number of max com-
ponents for the DPGMM are set to 144. The number of max
iteration is set to 100, it can stop at any time when it converges.

We use these two models to extract posteriorgrams for
query examples and the test data. Besides, we use trained
DPGMM model to label the training set and then use the la-
bels and features to train a DNN model. The structure of our
DNN is 1024×4–40-1024-144. Epoch is set to 20. We take the
output of the final softmax layer as features. Keras [23] is used
to train the unsupervised DNN model.

Diagonal GMM features, DPGMM features and unsuper-
vised DNN features are our basic GMM based features, they
are also used to build our baselines.

3.2.3. SOM feature extraction

Later, we trained SOM for extracting some new features to im-
prove our basic features. SOM has several options to set. After
some experiments, we find a relatively proper value to set.

1. Fixed 0.5 for learning rate.

2. 20000 iterations, which is sufficient for our system.

3. 202 to 232 output neurons.

4. Fixed 0.3 for σ.

We extract SOM features by calculating the distances be-
tween the input vector and weight vectors of the model. The
performance is influenced by the shape of the output layer. We
apply a range of units from 202 to 232 to find out the optimal
choice. σ is set to 0.3 by default. For the reason that it has
little impact on the our results, we do not further discuss it. Af-
ter training, we are able to extract the SOM features. Figure
3 illustrates the distance matrix for a single input vector. Each
neuron has its own color. Lighter color represents smaller dis-
tance, darker represents larger. We can find out that neurons
of light color are close to each other, which means phonemes-
like units represented by these neurons are relatively similar to
the senone structure of decision tree. The SOM learns both the
distribution and physical topology with the training algorithm
[15]. The numerical value of features extracted by SOM may be
relatively larger than posteriorgrams. For this reason, we apply
normalization on both features, which is also able to avoid some
extreme values of some dimension. And then, we combine both
features mentioned above in a proper proposition. After that, we
apply S-DTW algorithm to find examples in the test utterances.

Table 1: Experimental results on TIMIT database with diagonal
GMM features and SOM features

Features P@10 MAP

D-GMM 0.222 0.3216
D-GMM+SOM20 0.236 0.3367
D-GMM+SOM21 0.240 0.3607
D-GMM+SOM22 0.228 0.3210
D-GMM+SOM23 0.232 0.3206
D-GMM+SOM21×23 0.231 0.3201



Figure 3: Distance matrix of an input vector.

Table 2: Experimental results on TIMIT database with DPGMM
features and SOM features

Features P@10 MAP

DPGMM 0.282 0.4398
DPGMM+SOM20 0.304 0.4512
DPGMM+SOM21 0.308 0.4655
DPGMM+SOM22 0.298 0.4626
DPGMM+SOM23 0.296 0.4511
DPGMM+SOM21×23 0.296 0.4495

Table 3: Experimental results on TIMIT database with unsuper-
vised DNN features and SOM features

Features P@10 MAP

DNN 0.306 0.4511
DNN+SOM20 0.324 0.4711
DNN+SOM21 0.318 0.4751
DNN+SOM22 0.322 0.4691
DNN+SOM23 0.318 0.4652
DNN+SOM21×23 0.310 0.460

3.3. Results

From the experimental results, we can observe that by con-
catenating new SOM features to current basic features, both
P@10 and MAP are improved. We successfully improve
12.16%, 5.84%, 5.32% for diagonal GMM, DPGMM, unsu-
pervised DNN features on MAP and 8.11%, 9.22%, 5.89% on
P@10. SOM features are able to represent the speech signal
and strengthen the widely used features for QbE-STD task. We
have three types of baseline feature of our system. The perfor-
mance of diagonal GMM features is shown in Table 1, GMM
features in Table 2, and unsupervised DNN in Table 3. At the
very beginning, we tried out some rectangle-shape structures for
Self-Organizing Map. What we found is that the square-shaped
structures are able to achieve better results. We can have the re-
sult intuitively that square-shaped structures could better repre-
sent the phonetic-like units than other shapes. The symmetrical
topology of the square-shaped structures may be the reason.

Next, we further investigated the size of SOM to find out
the best configuration. Size of near 20 × 20 or 21 × 21 gets a
relatively better result than other sizes.

It is worth mentioning that training the Self-Organizing
Map takes little time. For SOM with the output shape of 20×20

units, it takes only several minutes for 20000 iterations on a
standard desktop PC which is more efficient than other feature
extraction methods.

4. Conclusion
Unsupervised QbE-STD is a task to search keywords in audio
utterances without any information about language and tran-
scripts. So, it is of great significance to find out proper features
to represent the speech signal. GMM based features are widely
used in this task. Based on these features, we consider con-
catenating some new unsupervised features extracted by Self-
Organizing Map to further enhance the performance. In the
results, without any help of other data or heavy computation,
results on both MAP and P@10 are improved. We can draw
a conclusion that SOM is able to extract effective and comple-
mentary features for the unsupervised QbE-STD task.
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