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Abstract
Recently, deep neural network based approaches have become
more and more popular among modules of speaker diarization
such as voice activity detection, speaker embedding extraction
and clustering. However, end-to-end speaker diarization train-
ing still remains as a challenging task, partly due to the diffi-
cult loss design for the speaker-label ambiguity problem. The
permutation-invariant training (PIT) loss could be a possible so-
lution, but its time complexity is O(T × N × N !), where T
and N denote the number of frames and speakers in each au-
dio file, respectively. In this paper, we investigate the improve-
ment on the PIT loss and further propose a novel optimal map-
ping loss, which directly computes the best matches between
the output speaker sequence and the ground-truth speaker se-
quence through the Hungarian algorithm. Our proposed loss
successfully reduces the time complexity to O(T × N2) +
O(N3), meanwhile keeping the same performance as the PIT
loss. The implement of three loss functions is available at
https://github.com/lawlict/EEND loss.
Index Terms: end-to-end speaker diarization, speaker-label
ambiguity, permutation-invariant training loss, optimal map-
ping loss, Hungarian algorithm

1. Introduction
Speaker diarization is the task of partitioning multi-speaker
audios into short segments and clustering them according to
the speaker identities. It solves the problem of “who spoke
when” [1, 2], which is essential in a variety of applications
like telephone calls, meeting recordings and child care. Diariza-
tion systems can also serve as the frontend of automatic speech
recognition (ASR) to enhance the transcription performance in
multi-speaker conversations.

A standard speaker diarization framework usually con-
sists of multiple modules, including voice activity detection
(VAD), segmentation, speaker embedding extraction and clus-
tering, as shown in Figure 1. First, VAD detects speech in
the audio and removes non-speech regions. Typical VAD sys-
tems include generative models like Gaussian Mixture Model
(GMM) [3] and Hidden Markov Model (HMM) [4], and dis-
criminative models like linear discriminant analysis (LDA) [5],
support vector machine (SVM) [6] and deep neural networks
(DNN) [7, 8, 9]. Second, speaker changepoint detection
(SCD) [10, 11] or uniform segmentation [12] splits speech into
speaker-homogeneous short segments. Third, the short seg-
ments are mapped into the speaker-wise subspace and gener-
ate fixed-dimensional speaker embeddings like i-vector [13],
x-vector [14] or other penultimate layer outputs from end-to-

end speaker verification systems [15, 16]. Finally in the clus-
tering stage, similarity measurement techniques such as cosine
distance, probabilistic linear discriminant analysis (PLDA) [17,
18] and long short-term memory models (LSTM) [19] measure
similarity scores between speaker embeddings, followed by
clustering algorithms like K-means [20], agglomerative hierar-
chical clustering (AHC) [12, 21] or spectral clustering [19, 20].

Although such a framework has been widely adopted and
achieved state-of-the-art performance, it cannot be optimized
as a whole to reduce the diarization error rate. Therefore, the
potential of deep neural networks has not been fully explored.
When researchers turn to end-to-end speaker diarization, there
arise a series of difficulties, one of which is speaker-label am-
biguity. Given an audio with ground-truth labels “AAABBC”
where A, B and C are speakers, we are required to encode the
speakers into integers in the data preparation process. However,
encoded labels like “111223” and “222113” are equally cor-
rect, making it hard to define unique training labels. To solve
the problem, [22] and [23] propose supervised online clustering
by defining speaker labels according to the first appearance (that
is, “111223” should be the correct labels other than “222113”),
and predict speakers of the current moment relying on the past
moments. Although it is possible to migrate the online clus-
tering idea to end-to-end speaker diarization, the limitation of
predicting one speaker at a time prevents it from detecting over-
lapped speakers, another difficulty in the diarization task.

In [24] and [25], the authors come up with another solution
by using the permutation-invariant training (PIT) loss function,
which was first proposed in the speech separation field [26].
Given frame-wise diarization outputs and ground-truth speaker
labels, PIT considers all permutations of labels, and computes
losses between outputs and each permutation. Then the mini-
mum loss is returned for network backpropagation. It is shown
to be effective in handling problems of speaker-label ambigu-
ity and overlapped speaker detection. However, as the number
of speakers increase, PIT begins to compute losses in factorial
time. The weakness was initially not considered by the PIT de-
signer because there are only two mixed speakers in most of
speech separation cases. As for our diarization task, it is com-
mon that conversations arise between three or more speakers,
demanding expensive computation costs.

In this paper, we are motivated to improve the PIT loss and
propose a novel optimal mapping (OPTM) loss for end-to-end
speaker diarization. Instead of permutating all kinds of possible
labels, we calculate the best matches between the sequences of
output speakers and label speakers using the Hungarian algo-
rithm. Our proposed OPTM loss function runs in polynomial
time, meanwhile keeping the same performance as the PIT loss.
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Figure 1: A standard speaker diarization pipeline.

The rest of this paper is organized as follows. Section 2
briefly presents the end-to-end diarization system in [25]. Sec-
tion 3 describes two kinds of improvement on PIT loss and an-
alyzes their time complexity mathematically. Experimental re-
sults and discussions are provided in Section 4, while conclu-
sions are drawn in Section 5.

2. End-to-end system with the PIT loss
This section describes the self-attentive end-to-end speaker di-
arization (SA-EEND) proposed in [25]. SA-EEND employs the
encoder of Speech Transformer [27] as the model, with posi-
tion decoding removed. Given frame-wise inputs like log-mel-
filterbank (fbank) features, it directly generates speaker posteri-
ors through the model. In addition, the PIT loss is used to cope
with the speaker-label ambiguity problem. Figure 2 shows an
overview of SA-EEND for the two-speaker case.

Transformer Encoder

BCE loss BCE loss

speaker 1

speaker 2speaker 1

speaker 2

minimum

PIT loss

Log-Mel inputs

output 1

output 2

Figure 2: The SA-EEND structure for the two-speaker case.

2.1. Label encoding

Given a sequence of features X = [x1,x2, ...,xT ]
> ∈

RT×D , SA-EEND encodes ground-truth labels as Y =
[y1,y2, ...,yT ]

> ∈ RT×N , where T and N denote the du-
ration and the number of speakers in the audio, respectively.

Speaker label yt = [yt,n ∈ {0, 1}|n = 1, 2, ..., N ]> indicates
a joint activity of speakers 1, 2, ...N at the t-th moment. yt
is zero-filled in non-speech regions, and yt,m = yt,n = 1 in-
dicates overlapped speech of speakers m and n at moment t.
Since labels are not encoded as one-hot vectors, SA-EEND is
categorized as multi-label classfication rather than multi-class
classficaton. The objective function is to estimate the most
probable label sequence Ŷ among all possible sequences Y:

Ŷ = argmax
Y ∈Y

P (Y |X). (1)

With the assumption that frame-wise posterior is conditional
independent on all inputs and speakers are presented indepen-
dently, P (Y |X) can be factorized as:

P (Y |X) = P (y1,y2, ...,yT |X)

≈
T∏

t=1

P (yt|X) ≈
T∏

t=1

N∏

n=1

P (yt,n|X).
(2)

2.2. Transformer encoder

The transformer structure with self-attention mechanism was
originally proposed in language translation [28]. Due to the
outstanding performance of capturing long-term sequence in-
formation, it is also widely applied in other fields. Here the
encoder part of Speech Transformer is employed, with the posi-
tion decoding part removed. The encoder is stacked with multi-
ple layers, and input features are handled as follows:

e
(0)
t = Linear(xt), (3)

e
(p)
t = EncLayer(p)t (e

(p−1)
1 , ..., e

(p−1)
T ), (1 ≤ p ≤ P ), (4)

zt = σ(Linear(LayerNorm(e
(P )
t ))), (5)

where Linear(·) indicates the linear layer and EncLayer(p)(·) is
the p-th encoder layer. After P encoder layers, features are nor-
malized using layer normalization [29] LayerNorm(·), followed
by the linear layer and the sigmoid function σ(·) sequentially.
Outputs zt are speech posteriors of N speakers at the t-th mo-
ment.

The structure of one encoder layer is shown in Figure 3(a).
Inputs first apply layer normalization and then go through the
multi-head self-attention module with residual connection. The
module consists of h-head parallelized self-attention blocks.
For each head, feature mappings are converted into query ma-
trix Q ∈ RT×dq , key matrix K ∈ RT×dk and value matrix
V ∈ RT×dv by different linear layers. Then Scaled Dot-
Production Attention copes with these three matrices as follows:

Attention(Q,K,V ) = softmax(
QK>√
dk

)V . (6)
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Figure 3: (a) The structure of one encoder layer. (b) The struc-
ture of multi-head self-attention module.

Usuallly we set dq = dk = dv and the softmax function is
performed row-wise. Results from each head are concatenated
together over the last dimension and fed into a linear layer, as
is shown in Figure 3(b). Outputs from the multi-head attention
module again perform layer normalization and pass through the
position-wise feed-forward layer [27] with residual connetction.

2.3. PIT loss

Viewing system outputs Z and ground-truth labels Y column-
wise, we get Z = [z̃1, z̃2, ..., z̃N ] and Y = [ỹ1, ỹ2, ..., ỹN ],
where z̃n ∈ RT×1 and ỹn ∈ RT×1 denote posteriors and la-
bels of speaker n across time, respectively. Speaker-label ambi-
guity arises that no matter how we shuffle Y by column, it can
still be effective label expression. To cope with the problem,
PIT considers all column-wise permutations of Y and computes
the binary cross entropy (BCE) loss between Z and each kind
of permutation Y φ = [ỹa1 , ỹa2 , ..., ỹaN ]. a1, a2, ..., aN is
the shuffled indices of 1, 2, ..., N . Then the minimum loss is
returned for network backpropagation. In brief, the PIT loss
function can be written as

JPIT =
1

TN
min

φ∈perm(N)
BCE(Z,Y φ), (7)

where perm(N ) denotes all possible permutations of (1,2,...,
N ).

3. Improvement on the PIT loss
Although the PIT loss has the potential to solve the speaker-
label ambiguity problem, it imposes expensive computation
costs when the number of speakers N is large. Since the BCE
loss processes Z and Y φ inO(T ×N) time and PIT generates
N ! permutations of labels for aN -speaker audio, the time com-
plexity of the PIT loss is O(T × N × N !) in total. Note that
the PIT loss was initially proposed in speech separation, where
audios are shorter with fewer speakers involved. In comparison,
duration of diarization audios ranges from minutes to hours and
more speakers are involved. Table 1 shows the duration and
the number of speakers in three common diarization datasets
including AMI [30], CallHome [31] and DIHARD2018 [32].

Table 1: Duration and speaker information about datasets.
N audios is the number of audios in datasets and n spks is the
number of speakers in audio files. Avg dur is the average du-
ration of the whole dataset. Note that CallHome refers NIST
2000 CallHome (Disk 8) dataset, and DIHARD2018 includes
both dev and eval sets.

Datasets n audios avg dur n spks

AMI 170 35.05 min 3 ∼ 5
CallHome 500 2.07 min 2 ∼ 7

DIHARD2018 336 7.03 min 1 ∼ 10

3.1. FastPIT loss

Redundant computation exists in the process of Eq .7. To point
it out, we push forward Eq. 7 as follows:

JPIT =
1

TN
min

φ∈perm(N)
BCE([z̃1, ..., z̃N ], [ỹa1 , ..., ỹaN ])

=
1

TN
min

φ∈perm(N)

N∑

n=1

BCE(z̃n, ỹan).
(8)

Since n ranges from 1 to N and an can be arbitrary integer in
1, 2, ..., N , only N2 pairs of (z̃n, ỹan) require actual compu-
tation of the BCE function. However, the function is called for
N × N ! times in Eq. 8, indicating that each (z̃n, ỹan) pair is
repeatedly computed for (N − 1)! times. The redundant com-
putation therefore appears when N ≥ 3.

Our proposed idea is to compute BCE losses of all possi-
ble pairs (z̃i, ỹj) (i, j ∈ 1, 2, ...N ) first and store them in the
loss matrix L ∈ RN×N . Then during the permutation process,
given (z̃n, ỹan) we just index and return the Ln,an element.
Here we name it as the FastPIT loss. The details are illustrated
in Algorithm 1:

Algorithm 1 FastPIT loss
Input: Z = [z̃1, z̃2, ..., z̃N ] and Y = [ỹ1, ỹ2, ..., ỹN ]
Output: minloss

1: L← zeros(N,N)
2: for i := 1 to N do
3: for j := 1 to N do
4: Li,j ← BCEloss(z̃i, ỹj)
5: end for
6: end for
7: minloss← INF
8: for a1, a2, ..., aN in permutation(1,2,...,N ) do
9: loss← 1

TN

∑N
n=1 Ln,an

10: minloss← min(loss, minloss)
11: end for

We construct the loss matrix L in O(T × N2) time, and
the permutation process costs O(N ×N !). Therefore, the time
complexity of our FastPIT loss is O(T × N2) + O(N × N !)
in total.

3.2. OPTM loss

Through the construction of loss matrix L, we have achieved
preliminary improvement on the PIT loss. However, the com-
putation costs still increase in factorial time when N is large.
To deal with the problem, we must remove the permutation pro-
cess. Recall that relationship between z̃n and ỹan is described
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Figure 4: Definition of Task-Assignment problem. z̃i and ỹj
belongs to diffrent groups and the BCE loss function describes
the cost of assigning ỹj to z̃i. The target is to find the best
assignment with the least costs.

by BCE(z̃n, ỹan), and each z̃n must be assigned to one and
only one optimal ỹan in the final outputs (as is shown in Fig-
ure 4). This is a typical Task-Assignment problem. We thus
propose the optimal mapping (OPTM) loss, which employs the
Hungarian algorithm to find out the best matches between z̃n
and ỹan .

Hungarian algorithm [33] is proposed as a combinatorial
optimization algorithm to solve the assignment problem in poly-
nomial time. For our case, the element in i-th row and j-th
column of loss matrix L is explained as the cost of assigning
ground-truth speaker j to output speaker i. Our target is to find
the optimal assigning indices (1, a1), (2, a2), ..., (N, aN ) so
that the overall cost

∑N
n=1 Ln,an is the lowest. The Hungarian

algorithm can be descsribed as follows:

a) Subtract row minima: For each row of L, find the lowest
element and subtract it from each element in that row.

b) Subtract column minima: For each column, find the lowest
element and subtract it from each element in that column.

c) Conver all zeros with a minimum number of lines: Cover
all zeros in the resulting matrix using a minimum number of
horizontal and vertical lines. If N lines are required, an op-
timal assignment exists among the zeros. Stop the algorithm
and return indices (1, a1), (2, a2), ..., (N, aN ) of the zeros.

d) Create additional zeros: Find the smallest element k that is
not covered by any line in Step c). Substract k from all un-
covered elements, and add k to all elements that are covered
twice. Return to Step c).

Then our OPTM loss sums up elements L1,a1 , L2,a2 , ..., Ln,an
as the minimum loss. An brief view of the whole process is
shown in Algorithm 2. The Hungarian algorithm copes with
the assignment problem in O(N3) time, and the overall time
complexity of our OPTM loss is O(T ×N2) +O(N3).

3.3. The number of speakers mismatch

Usually, the number of ground-truth speakers Nref for the
diarization task is unknown. Given the outputs Z =
[z̃1, ..., z̃Nsys ] and the ground truth Y = [ỹ1, ..., ỹNref

], the
number of output speakers Nsys may be larger or smaller than
Nref due to false alarm or miss detection of diarization sys-
tems. In this subsection we discuss how to deal with the speaker
number mismatched cases.

Algorithm 2 OPTM loss
Input: Z = [z̃1, z̃2, ..., z̃N ] and Y = [ỹ1, ỹ2, ..., ỹN ]
Output: minloss

1: L← zeros(N,N)
2: for i := 1 to N do
3: for j := 1 to N do
4: Li,j ← BCEloss(z̃i, ỹj)
5: end for
6: end for
7: (1, a1), (2, a2), ..., (N, aN )← Hungarian(L)
8: minloss← 1

TN

∑N
n=1 Ln,an

3.3.1. Nsys > Nref

WhenNsys is larger thanNref , we make assumptions that there
are actually Nsys ground-truth speakers, but Nsys − Nref of
them keep silent over the whole audio, namely “silent speak-
ers”. We correspondingly pad Y with zero vectors so that
Y ′ = [ỹ1, ..., ỹNref

,0, ...,0] ∈ RT×Nsys . 0 ∈ RT×1 is
labels of the “silent speaker”. Now the OPTM loss function
computes loss between Z and Y ′ as usual. When 0 is assigned
to z̃i by the Hungarian algorithm, it indicates that the diariza-
tion system makes a false alarm error.

3.3.2. Nsys < Nref

Similarly, when Nsys is smaller than Nref , we assume there
are actually Nref output speakers, but Nref − Nsys of them
are “silent speakers”. We correspondingly pad Z to Z′ =
[z̃1, ..., z̃Nsys ,0, ...,0] ∈ RT×Nref and compute loss between
Z′ and Y . When ỹi is assigned to 0, it indicates the system
fails to detect speaker i in the audio.

3.3.3. Comparison of the two cases

Although the aforementioned two cases seem similar, we prefer
the Nsys > Nref case rather than the other one. For the former
case where Y is zero-padded to Y ′ = [ỹ1, ..., ỹNref

,0, ...,0],
a well-trained end-to-end diarization system is able to make
the perfect prediction Z and reduce loss to zero in condition
that Z equals any column-wise permutation of Y ′. How-
ever, for the latter case where Z is zero-padded to Z′ =
[z̃1, ..., z̃Nsys ,0, ...,0], mistatch always exists between Z′ and
permutations of Y because the 0 vectors in Z′ cannot find per-
fect assignment from ỹ1, ỹ2, ..., ỹNref

. Assigning ỹi to 0 in-
dicates system miss detection, and there is no remedial action to
recall the missed speakers. Basically, it is because Nsys defines
the maximum number of speakers that the diarization system is
able to detect.

This is an important support for our OPTM loss function.
Since Nsys is the output size of the end-to-end diarization net-
work, it should be determined in the early stage. Conversations
in real life often involve multiple speakers. To avoid miss detec-
tion and enhance the robustness for different scenarios, we tend
to set Nsys as a large number. The application of our OPTM
loss will efficiently reduce the time complexity in such condi-
tions.

4. Experimental Results
In this section, we investigate the actual time costs of the PIT
loss, the FastPIT loss and the OPTM loss. Also, by reproducing
part of experiments in [25] using different losses, we validate
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whether they result in the same performance.

4.1. Time cost experiment

In Section 3, we estimate the time complexity of different loss
functions by mathematical formats, but it is not intuitive enough
for us to understand how fast they run. In addition, matrix accel-
eration by software and hardware may further reduce the actual
time costs. Therefore, recording time costs through experiments
is more reliable.

Here we generate float outputs ranging from zero to one and
binary ground-truth labels by random programs, with the same
shape of B × T × N . The batch size B is set to 128 and T
is fixed as 500. The number of speakers N ranges from 2 to
10. For each N , we repeat the process of data generation and
loss computation using different loss functions for 100 times.
Their average time costs are recorded in Table 2. Experiments
are carried out on both CPU and GPU platforms. The CPU
platform is a single core of Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz, and the GPU platform is a GeForce GTX 1080ti
GPU card with 11GB memory.

Table 2: Time costs (second) of differnt loss functions.

CPU GPU

n spks PIT FastPIT OPTM PIT FastPIT OPTM

2 0.0072 0.0048 0.0055 0.0004 0.0007 0.0012
3 0.0589 0.0212 0.0218 0.0011 0.0016 0.0022
4 0.2951 0.0368 0.0374 0.0046 0.0034 0.0036
5 1.7936 0.0618 0.0594 0.0201 0.0079 0.0050
6 12.874 0.1143 0.0883 0.1250 0.0326 0.0074
7 112.75 0.3447 0.1292 0.8819 0.2011 0.0107
8 - 2.0124 0.1727 7.2475 1.6444 0.0139
9 - 20.267 0.2352 68.288 15.008 0.0166

10 - 186.88 0.2590 - 155.24 0.0216

During the process, losses computed by three loss functions
are equally the same. On the CPU platform, both of our two
proposed methods are faster than the original PIT loss. To be
specific, the FastPIT loss costs the least time for N ≤ 4, while
the OPTM loss runs fastest for the rest cases. As for the GPU
platform, the PIT loss keeps the slight advantage forN ≤ 3, but
the OPTM loss is still the fastest when N is larger than 4. On
both platforms, the PIT loss and the FastPIT loss run in factorial
time as N increases, while the OPTM loss remains relatively
stable. In the extreme case where N equals 10, the OPTM loss
costs only 0.259s on CPU and 0.0216s on GPU; meanwhile it
takes hundreds of seconds for the other two loss functions.

4.2. SA-EEND experiment

4.2.1. Data

SA-EEND method requires audio mixtures of different speak-
ers for training, which can be simulated using a combination of
single-speaker utterances. Consider a diarization-style mixture:
each simulated mixture should have multiple utterances fromN
speakers with reasonable silence intervals between utterances.

Here we employ the Swtchboard-2 (Phase II, III), Switch-
board Cellular (Part 1, 2) and NIST Speaker Recognition
Evualation datasets (2004, 2005, 2006, 2008) for data simu-
lation. There are 5627 speakers in total, among which 5164
speakers are used for training while the rest 463 speakers are for

testing. First we extract speech utterances from audios by us-
ing the time delay neural network (TDNN) based VAD model 1.
Then for each mixture we randomly sample N speakers, each
speaker with a nubmer of utterances fromUmin toUmax. Silent
intervals between two speaker-homogeneous utterances are as-
sumed to follow exponential distribution:

s(δ) ∼ 1

β
exp(− δ

β
). (9)

Note that larger β generates diarization mixtures with less
overlaps. After data generation, 37 recordings named ”back-
ground” noises from MUSAN corpus [34] and 10,000 room
impluse responses (RIRs) from Simulated Room Impulse Re-
sponse Dataset [35] are employed for speech augmentation.
Pseudocode about details can be view in [24]. Here we set
β = 2, N = 2, Umin = 10 and Umax = 20. 100,000 simu-
lated mixtures are generated for training and 500 for testing.

Moreover, 303 2-speaker audios are taken from NIST 2000
CallHome Disk 8 for real data evaluation. We split them
into callhome1-spk2 with 148 audios and callhome2-spk2 with
153 audios. Callhome1-spk2 is used for model adaption and
callhome2-spk2 is for testing.

4.2.2. System configurations

Input features are 23-dimensional fbank features with 25ms
length and 10ms shift. Mean normalization is applied. Each
feature frame is concatenated with the previous 7 frames and
subsequent 7 frames, resulting in 23×15 input dimension. To
deal with long audios and reduce computation, we use a sub-
sampling factor of 10.

For the SA-EEND model, two encoder layers are stacked,
each with 256 attention units and 4 heads. Dimension of the
position-wise layer is set to 1024. We fix batch size B = 64
and length of input sequences T = 500. The model is trained
on simulated training data by 100 epochs using Adam optimizer
with learning rate scheduler [36]. During the process, the learn-
ing rate is set to 10−3. The training process terminates after
100 epochs, and model parameters over the last 10 epochs are
averaged.

For domain adaption, the averaged model is retrained using
callhome1-spk2. Configurations are almost the same as the last
training stage, except that the learning rate is adjusted to 10−5.

In the evaluation stage, the SA-EEND model is tested on
simulated testing data and callhome2-spk2 with or without
adaption. We further apply an 11-frame filter on system out-
puts to get smooth results.

4.2.3. Evaluation metric

Following [25], we employ the diarization error rate (DER) [37]
as our evaluation metric. Only short collars centered on each
speech turn boundary is not evaluated (250ms on both sides).
Note that this much stricter in comparison with [19] and [22],
which assume an oracle VAD and ignore errors raised by over-
lapped speech. For our metric, false alarm and miss detection
by VAD, speaker confusion errors and overlapped speech errors
all account for DER.

4.2.4. Results

Experiments are carried out using three different loss functions.
To avoid interference of the random process, we fix all random
seeds to 777. Results are shown in Table 3.

1The VAD model: http://kaldi-asr.org/models/m4
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Table 3: DERs of the simulated testing data (Simulated),
callhome2-spk2 without adaption (CH) and with adaption
(CH+adapt) using SA-EEND and different loss functions.

Simulated CH CH+adapt

SA-EEND + PIT 9.19% 18.35% 13.00%
SA-EEND + FastPIT 9.19% 18.35% 13.00%
SA-EEND + OPTM 9.19% 18.35% 13.00%

i-vector et al. [25] 33.74% 12.10% -
x-vector et al. [25] 28.77% 11.53% -

According to Table 3, combinations of SA-EEND and dif-
ferent loss functions result in the same DERs. It proves that the
performance of the PIT loss and our two proposed methods is
basically the same. The DER of the simulated testing data using
SA-EEND is significantly lower than the two common baselines
(i-vector and x-vector based methods in [25]) which take the
same training databases, but SA-EEND performs worse than
the baselines on the callhome2-spk2 dataset, whether model
adaption is applied or not. The phenomenon has been reported
in [25], indicating a large mismatch between simulated data and
real-life data. In our future works, we will investigate how to
improve the data simulation algorithms.

5. Conclusion
In this paper, we improve the PIT loss (FastPIT) by construct-
ing loss matrices and further propose the OPTM loss func-
tion for end-to-end diarization training. In comparison with
the PIT loss, our fastest loss reduces the time complexity from
O(T×N×N !) toO(T×N2)+O(N3). Through experiments,
we prove that time costs of three loss functions are similar when
N ≤ 4, while the OPTM loss runs faster for larger N on both
CPU and GPU platforms. We also validate that performance of
the PIT loss, the FastPIT loss and the OPTM loss is equally the
same by reproducing experiments with SA-EEND.
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Claude Barras, “Lstm based similarity measurement with
spectral clustering for speaker diarization,” in Interspeech,
2019, pp. 366–370.

[20] Quan Wang, Carlton Downey, Li Wan, Philip Andrew
Mansfield, and Ignacio Lopz Moreno, “Speaker diariza-
tion with lstm,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2018, pp. 5239–
5243.

[21] Gregory Sell, David Snyder, Alan McCree, Daniel Garcia-
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