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Abstract—In this article, our recent efforts on directly modeling
utterance-level aggregation for speaker and language recognition
is summarized. First, an on-the-fly data loader for efficient network
training is proposed. The data loader acts as a bridge between
the full-length utterances and the network. It generates mini-batch
samples on the fly, which allows batch-wise variable-length training
and online data augmentation. Second, the traditional dictionary
learning and Baum-Welch statistical accumulation mechanisms
are applied to the network structure, and a learnable dictionary
encoding (LDE) layer is introduced. The former accumulates dis-
criminative statistics from the variable-length input sequence and
outputs a single fixed-dimensional utterance-level representation.
Experiments were conducted on four different datasets, namely
NIST LRE 2007, AP17-OLR, SITW, and NIST SRE 2016. Exper-
imental results show the effectiveness of the proposed batch-wise
variable-length training with online data augmentation and the
LDE layer, which significantly outperforms the baseline methods.

Index Terms—Speaker and language recognition, deep neural
network, variable-length training, online data augmentation,
utterance-level aggregation.

I. INTRODUCTION

S PEAKER and language recognition can be defined as
an utterance-level “variable-length sequence classification”

task. In this problem, our aim is to retrieve attributes about
an entire utterance rather than specific word content [1], [2].
Moreover, for the text-independent task, the lexical words are not
constrained; thus, the training utterances and testing segments
may have completely different contents [3]. Therefore, given
the variable-length nature of speech utterances, our goal is to
aggregate them into fixed-dimensional representations, where
the inter-class variability is maximized while the intra-class
variability is minimized [4].
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There are two major categories of methods to obtain utterance-
level representation. The first comprises stacking self-contained
algorithmic components, and a representative of this category is
the classical i-vector approach [5]. Any variable-length speech
utterance can be represented as a low-dimensional i-vector by
accumulating the statistics over time. The process to extract
the i-vector contains a series of separated models, and they
are commonly trained in an unsupervised manner. Moreover,
the front-end i-vector extractor and back-end classifier are opti-
mized separately.

The second category relies on the model trained by a down-
stream procedure through deep neural networks (DNNs). In the
early stages, the speaker and language recognition system based
on a DNN commonly performs at the frame level. The repre-
sentative is the d-vector approach [6]. In this kind of method, a
set of fixed-length short training samples should be prepared in
advance [6]–[10], and these DNNs only give representations or
posteriors at the frame level. A further aggregating operation is
required to obtain the final utterance-level representation.

However, variable-length sequences occur naturally in speech
due to variations in speaker, speaking rate, and phonetic con-
text [11]. The fixed-length frame-level DNNs are not a natural
way to deal with real-world speech utterances with arbitrary
durations. Recently, the utterance-level framework has gained
more attention in the speaker and language recognition commu-
nity. Among others, the state-of-the-art x-vector system shows
superior performance [12]. In the test phase, fixed-dimensional
x-vector embeddings can be extracted from utterances with
arbitrary durations.

In this paper, similar to the x-vector approach, our focus is on
modeling utterance-level aggregation for speaker and language
recognition. Here, a new DNN training scheme is introduced
and its detailed implementations are presented. The main con-
tributions are summarized as follows.

A. Data Preparation

In many previous DNN training implementations, fixed-
dimensional feature representations are extracted and stored on
disk ahead of time. Taking the Kaldi [13] implementation of the
x-vector recipe as an example, several archive files containing
data chunks with different frame lengths and augmentation types
are carefully generated before the DNN training. This procedure
can be regarded as offline data preparation. In this paper, a new
solution with a flexible online workflow is presented. Instead
of dumping all the necessary data chunks into the disk, a data
loader to produce materials for DNN training dynamically is
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introduced. All the operations within the data loader are con-
figurable and composable, which makes it more adjustable to
any desired transformation or augmentation algorithms. Based
on the on-the-fly data loader, a batch-wise variable-length train-
ing strategy and an online data augmentation mechanism for
efficient and robust DNN training are further proposed.

B. Network Structure

First, we present a ResNet-style neural network [14] for
speaker and language recognition rather than using the time-
delay neural network (TDNN) [15] which is adopted for the
x-vector architecture. Based upon the ResNet backbone, sev-
eral pooling layers are investigated, including the temporal
average pooling (TAP) and self-attentive pooling (SAP) lay-
ers, which have been shown to be effective in previous liter-
ature [16]–[18]. Further introduced is a learnable dictionary
encoding (LDE) layer for utterance-level aggregation. This layer
receives a variable-length sequence as input and produces a sin-
gle supervector-size utterance-level representation. It integrates
the traditional dictionary learning and statistical accumulation
steps into a single layer, which is suitable for DNN learning.

The data loader acts as a “producer,” and the network plays
the role of a “consumer.” They are mutually complementary
and form a new learning scheme for DNN-based speaker and
language recognition. Its implementation details are presented
on a modern multiprocessing computation platform, and its
performance is validated on several benchmark datasets.

This paper is an extension of our previous works [18], [19]
with the following extensions. First, a comprehensive descrip-
tion of the data loader for DNN training is presented. Sec-
ond, the effect of variable-length training and an online data
augmentation strategy for speaker and language recognition is
validated. Third, a more systematic exploration of the LDE layer
is conducted, and its robustness under different types of data-
preparation conditions is also validated. Finally, the performance
on additional evaluation sets is further verified and compared
with the state-of-the-art methods.

The rest of this paper is organized as follows. An overview of
the utterance-level DNN framework is presented in Section II.
The general data-preparation paradigm, along with the proposed
data loader, is then explained in Section III. In Section IV, several
context-independent pooling layers (including the LDE layer)
for dealing with the variable-length sequence are elaborated.
Experimental results and discussions are presented in Section V,
and conclusions are provided in Section VI.

II. UTTERANCE-LEVEL DNN FRAMEWORK

A general framework of the utterance-level aggregation in
the DNN is described in this section. As depicted in Fig. 1,
the network accepts variable-length input and produces an
utterance-level result.

First, the raw waveform can be effectively represented as
a short-term spectral feature sequence based on several hand-
crafted filters [20]. Since DNNs typically require a multi-
dimensional array as their input, this kind of full-length sequence
of arbitrary duration is not very suitable for DNN training.

Fig. 1. Utterance-level DNN framework for speaker and language recognition.
It accepts input data sequences with variable length, and produces an utterance-
level result.

Therefore, an automatic data loader is implemented to generate
mini-batch training samples efficiently. Detailed information is
presented in Section III.

Given the input feature sequences, sufficient statistics could
be accumulated and transformed into an utterance-level repre-
sentation as done in the classical i-vector approach [5]. However,
recent studies have shown that a front-end DNN module works
well before aggregating the utterance-level representation. Any
hierarchical network module able to handle variable-length
inputs can be utilized as the front-end local pattern learning
module, including the CNN [17], [21], TDNN [16], LSTM
network [8], [22], or even CNN-Bidirectional LSTM (CNN-
BLSTM) [23].

The representations learned by the front-end local pattern ex-
tractor follow still their temporal order. The remaining question
is how to aggregate the whole sequence over the entire and
potentially long duration. Therefore, several forms of context-
independent pooling layers are presented in Section IV.

The utterance-level representation can then be processed
through a standard feed-forward network, and an output layer
can be built on top. Each unit in the output layer is represented
as a target speaker or language category. All the components in
the pipeline are trained jointly in an end-to-end manner with a
unified loss function.

For the closed-set identification task, the front-end deep fea-
ture extractor and back-end classifier can be jointly trained, and
the utterance-level posterior for each category can be directly
derived from the DNN output. The entire identification system
can be optimized with a softmax-based cross-entropy loss. This
is referred to as the softmax loss for simplicity.

For the open-set speaker verification (SV) task, the DNN acts
as a feature extractor, and another model is needed to generate
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Fig. 2. Block diagram of data-loader DNN-based speaker and language recognition. In the training phase, multiple full-length training waveforms are converted
into a mini-batch of tensor blocks. In the test phase, the full-length test waveform is converted into a sequence of feature vectors.

the pairwise scores for the extracted speaker embeddings. Prob-
abilistic linear discriminant analysis (PLDA) [24] scoring has
been the de facto standard in both i-vector [5] and x-vector [12]
frameworks.

Regarding the SV task, since it is impractical to gather all
possible target identities for training, the extracted speaker em-
bedding needs to be not only separable but also discriminative.
Cai et al. [18] showed the superiority of center loss [25] and
angular softmax (A-Softmax) loss [26] for training more dis-
criminative speaker embeddings.

III. ON-THE-FLY DATA LOADER

Data preparation in conventional speech and language recog-
nition systems typically follows an off-line paradigm. Feature
vectors are generated and stored on the disk first, and utterances
are processed one at a time. There is no need to resize the
length of utterances, and the variable-length feature sequence
can finally be transformed as fixed-dimensional utterance-level
representations like the i-vector. Modern GPUs process batches
of arithmetic operations significantly faster than sequential pro-
cessing, and grouping data into batches can make full use of
the hardware resources for DNN training. To this end, many
previous works train DNNs with fixed-length sequences, which
do not take into the variable-length nature of speech.

In this work, our aim is to find the balance between the
variable-length nature of speech signal and parallel computing
power. More specifically, an on-the-fly data loader for DNN-
based speaker and language recognition is introduced. The data
loader is adopted to maintain an online processing workflow by
generate training samples on the fly. As shown in Fig. 2, there are
multiple real-time operations within the data loader, including
the data slicing, data transformation (i.e., feature extraction and
data augmentation), and data batching operations.

This design principle allows one to efficiently perform a
batch-wise random perturbation, such as variable-length data
slicing and online data augmentation. All operations are exe-
cuted on the fly, and the training samples are generated right
before feeding them into the DNNs. In other words, what the
actual training sample is not precisely known until a specific

DNN training step begins. This uncertainty and randomness let
the network see different training segments derived from the
same utterance in different epochs. Supposing a total number of
U training utterances, the DNN is trained with E epochs. Using
the proposed data loader with a variable-length and online data
augmentation strategy, U × E samples are obtained for DNN
training.

In theory, arbitrary combinations of operations can be made
within the data loader to greatly augment the data. All training
samples are generated on the fly, which allows one to focus on the
operations themselves, without the need to store temporary data
chunks that are not required for the final model inference. This
flexibility allows the re-design of experiments with different
configurations by adjusting the data loader with new specifi-
cations, without the need to prepare new sets of feature vectors.

Since the data flow from the raw waveform to the DNN output
is maintained, it also promotes model inference and deployment
with ease. After the DNN has been trained, as shown in Fig. 2,
the data loader can be easily be turned into the “test” mode by
setting the batch size to one and removing the data slicing, data
augmentation, and data batching operations. The corresponding
utterance-level result can be generated directly by feeding the
arbitrary-duration test waveform into the data loader and then
inferred by the DNN model.

The three primary operations within the data loader are now
described in detail.

A. Data Slicing

Although the training length can be different for each mini-
batch, for a specific training step a fixed-length tensor block is
still needed. To this end, a truncate operation is first implemented
in the data slicing module. For each training step, a random
integer N is first generated in the interval [Nmin, Nmax] from a
uniform distribution. The goal is to sample a continuous data
chunk of length N from the raw utterance of length NR. To
this end, a random starting point S is first regulated from the
interval [0, NR −N ]. The continuous data block of length N is
then truncated from the interval [S, S +N ], as demonstrated in
Fig. 3(a). Since the variables S and N are not the same for each
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Fig. 3. Two core operations on raw utterance within data loader.

Algorithm 1: The Proposed Variable-Length Data Loader
in Training Phase.

Output: Mini-batch tensor Z ∈ RB×F×L for each step
Input: Indexed list of full-length utterances: X =
[x1, x2, x3, . . . , xN−1, xN ]. Each utterance is given as a
one-dimensional waveform.

Input: Total number of utterances U
Input: Total number of training epochs P
Input: Batch size B
Input: Minimum sample points Nmin

Input: Maximum sample points Nmax

1: procedure DataloaderX , U , E, B, Lmin, Lmax

2: Number of batches in an epoch Q← �U/B�
3: for i = 1 to P do
4: Shuffle indexed list randomly Y ← Rand(X )
5: for j = 1 to Q do
6: Generate Nj from range [Nmin, Nmax] randomly
7: Z ∈ RB×F×L ← random initialization
8: for k = 1 to B do
9: Load G with NRj points from Yk+j×B

10: if NRj > Nj then
11: G← TRUNCATE(G)
12: else
13: GE ← EXTEND(G)
14: G← TRUNCATE(GE)
15: end if
16: G←Time Domain AUGMENTATION(G)
17: G ∈ RF×L ← TRANSFROM(G)
18: Z(k)← Frequency or Feature Domain
19: AUGMENTATION(G)
20: end for
21: returnZ
22: end for
23: end for
24: end procedure

training step, the data chunk obtained at each epoch might be
different.

This truncate operation simulates the real-world scenario that
a test segment might belong to any part of the original audio.
Furthermore, where the starting point is or how long it will last
is often not known. The goal is to train a robust speaker and
language recognition system that gives a consistent and correct

decision on not only the full-length raw utterance, but also on
its appropriate sub-segments.

Regarding the short utterances with length NR being less
than the generated random integer N , an extending operation
is implemented before truncation that is inspired by the phe-
nomenon in which the speaker/language information does not
change when the same content is spoken multiple times. The
short utterance is spoken several times until the extended length
ofNE is larger than the random integerN , as shown in Fig. 3(b).
After the extended data of shape NE is obtained, the same
truncate operation as described in the previous paragraph is
performed.

B. Data Transform

For a given slice of data chunk from a raw full-length
utterance, one can first perform several time-domain data-
augmentation operations on the waveform. For example, one
can change the speed of the audio signal [27] or add some noise,
or music background as done in the x-vector approach. One can
then perform a typical feature extraction operation by transform-
ing the augmented waveform into a two-dimensional feature
tensor of size F × L, where F denotes the feature coefficients
and L denotes the frame length. Moreover, a frequency-domain
data augmentation can be performed directly on the extracted
feature sequence.

As given in Algorithm 1, for each training step, all of the
extracted feature sequences are grouped together to construct
a mini-batch tensor of shape B × F × L, where B, F and L
denote the batch size, the feature dimension, and the frame
length, respectively. Since L is different for each mini-batch,
the training samples for each step may have different lengths.

C. Design Details

The full algorithm is shown in Algorithm 1. In summary,
the data loader acts as a “producer” that generates mini-batch
samples for DNN training from the full-length utterances. Mean-
while, the DNN behaves as a “consumer” that uses these mini-
batches of samples to optimize the model parameters. This is
considered a “producer-consumer“ scheme. A solution is thus
proposed that separates the data loading and DNN training mod-
ules by placing a queue in the middle, letting the producers and
consumers execute in different threads. This decouples the data
preparation and DNN training stages, letting the two procedures
run asynchronously and in parallel. Furthermore, the data loader
is accelerated with a multi-thread processing strategy. Multiple
workers are employed to process different batches of the data
and push them to a shared queue for consumption, as illustrated
in Fig. 4.

In modern computation platforms, multi-core CPUs are uti-
lized to implement the data loader task and employ multiple
GPUs to train the network. Under the “producer-consumer“
scheme, data loading for the next several batches on CPUs is
done in parallel with the forward-backward pass on the GPUs.
The ideal status is that GPUs can directly fetch the next batch
of data from the queue immediately after finishing the current
step. In this case, the data loader runs in the background at all
time, the latency of which can be minimized.
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Fig. 4. Producer-consumer design paradigm of data loader.

IV. UTTERANCE-LEVEL AGGREGATION

In this section, several utterance-level aggregation layers in
the deep speaker and language recognition system are presented,
including the TAP layer, the self-attentive pooling (SAP) layer,
and the proposed LDE layer.

A. Temporal Average Pooling (TAP) Layer

The front-end local pattern extractor module is implemented
with a deep CNN architecture. For a given frame-level feature
matrix of size F × L (where F denotes the feature dimension
along the frequency axis and L is the length along the time
axis), the CNN feature maps are typically three-dimensional
tensor blocks of size D ×H × T , where D denotes the number
of channels and H and T denote the height and width of the
feature maps, respectively. Generally,H andT are much smaller
than the original F and L, due to the down-sampling operations
within the CNN structure.

A TAP layer expects its inputs to be two-dimensional se-
quences. Therefore, the output of the CNN along its height (or
frequency) axis is pooled into a two-dimensional D × T tensor.
Here, D not only denotes the number of channels of the CNN,
but also represents the input feature dimension of the TAP layer.
Similarly,T not only denotes the width of the CNN feature maps,
but also represents the time steps in the TAP layer. Note that T
is a variable considering different input frames L.

The TAP layer aggregates the D × T feature matrix by accu-
mulating the mean statistics along the time axis.

B. Self-Attentive Pooling (SAP) Layer

The TAP layer pools the CNN feature maps uniformly along
the time axis. However, not all frames contribute equally to
the utterance-level representation. Therefore, attention-based

pooling is an active area of research in the speaker and lan-
guage recognition community. Intuitively, an attention model
allows the DNN to focus on frames that are informative to the
utterance-level representation.

The SAP layer is implemented in a manner similar
to [18], [28]–[30]; that is, first the variable-length sequence
{o1,o2, . . . ,oT } is fed into an multi-layer perceptron (MLP)
to obtain {h1,h2, . . . ,hT } as a hidden representation. In this
paper, a one-layer perceptron is simply adopted:

ht = tanh(Wxt + b). (1)

Then, the importance of each frame is measured as the similarity
of ht with a learnable context vector µ, and a normalized
importance weight γt is obtained through a softmax function:

γt =
exp(h�t µ)

∑T
t=1 exp(h

�
t µ)

. (2)

The context vectorµ can be seen as a high-level representation
of a fixed query “what is the informative frame over the whole
frame” [28]. It is randomly initialized and jointly learned during
the training process.

After that, the utterance-level representation e is generated
as a weighted sum of the input feature sequence based on the
learned weights:

e =

T∑

t=1

γtot. (3)

C. Learnable Dictionary Encoding (LDE) Layer

The idea of the LDE layer was initially proposed for the task
of texture recognition in computer vision [31]. It treats the two
dimensions of a given image equally and accumulates statistics
along both the width and height axes. Considering the fact
that speech is translation-invariant along the time axis only, the
original LDE layer is modified to aggregate feature descriptors
along the time axis rather than both the time and frequency axes.

Given a variable-length feature matrix of shape D × T , the
LDE layer aggregates them over time. More specifically, it trans-
forms them into a single CD × 1-dimensional utterance-level
representation, which is independent of the length T .

Fig. 5 illustrates the forward pass of the LDE layer.
Here, a set of learnable parameters is introduced first: µ =
{µ1,µ2 . . .µC}.

Each vector µc represents the center of a dictionary com-
ponent, and it acts in a way similar to the mean of a Gaussian
component in the conventional Gaussian Mixter Model (GMM).
Similar to the soft-alignment in the GMM, features are inde-
pendently assigned to dictionary components with non-negative
weights given by a softmax function:

γt(c) =
exp(−s‖ot − µc‖2)

∑C
m=1 exp(−s‖ot − µm‖2)

. (4)

Here, the smoothing factor s controls the decay of the response
with the magnitude of the distance.

One can fix s to be a positive constant. By expanding the
squares operation in (4), it is easy to see that the term e−s‖oi‖

2
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Fig. 5. Block diagram illustrating the forward pass through the LDE layer.

cancels the numerator and denominator, resulting in a soft as-
signment of the following form:

γ̄t(c) =
ew

�
cxi+bc

∑
m ew�mxi+bm

, (5)

where wc = 2 sµc is a vector and bk = −α‖µc‖2 a scalar.
Inspired by the component weights in the conventional GMM,

thesc for each cluster centerµc is further allowed to be learnable:

γt(c) =
exp(−sc‖ot − µc‖2)

∑C
m=1 exp(−sm‖ot − µm‖2)

. (6)

Given a set of T frames and a dictionary, each frame is
assigned a weight γt(c) with respect to each component μc,
where t = 1, 2 . . . T and c = 1, 2 . . . C.

Therefore, the zeroth-order Baum-Welch statistics with re-
spect to each mixture component are calculated as follows:

Nc =

T∑

t=1

γt(c). (7)

In a similar manner, the centered first-order Baum–Welch
statistics with respect to each mixture component are calculated
as follows:

Fc =

T∑

t=1

γt(c)(ot − µc). (8)

This represents the aggregated residual between ot and µc

over time. The aggregated residual is then normalized by the
zeroth-order statistics:

F̃c =
F(c)

N(c)
. (9)

Note that N(c) is a constant, and in practice, one can replace
this scale normalization operation by a L2 normalization oper-
ation. Therefore, (9) can be replaced as

F̃c =
F(c)

‖F(c)‖2 . (10)

Similar to the case in the conventional GMM supervector/i-
vector approach, Fc is concatenated from all dictionary compo-
nents. Thus, the LDE layer outputs a supervector-sized repre-
sentation F̃ = {F̃�1 , F̃�2 . . . F̃�C}�.

In summary, a set of learnable parameters λc =
{µc, sc, }, c = 1, . . . , C is introduced in the LDE layer,
where µc is the center of the dictionary component and sc
denotes the scaling factor. The LDE layer is a directed acyclic
graph, and all the components are differentiable w.r.t the input
O and the learnable parameters. Therefore, the LDE layer can
be trained in an end-to-end manner with the standard stochastic
gradient descent algorithm.

The parameter set µ represents the Gaussian mean vectors
in the GMM, and sc acts as the mixture weight. In this sense,
the LDE layer integrates the powerful Baum-Welch statisti-
cal accumulation procedure into DNNs. The output CD × 1
supervector-sized representation has the same role as the super-
vector in the i-vector GMM, and the supervised supervector is
obtained from the LDE layer. This supervector is projected into
the low-dimensional speaker embedding.

The LDE layer can be considered a combination of traditional
dictionary learning and the pooling layer. Here, the relationship
between the LDE layer and other methods is presented.

1) Relationship to Conventional Dictionary Learning: A
dictionary is usually learned from the distribution of descriptors
in an unsupervised manner. The K-means method learns the
dictionary using hard-assignment grouping. The GMM is a
probabilistic version of K-means, which allows more delicate
modeling of the feature distributions. Each cluster is modeled
with a Gaussian component with its mean vector, covariance
matrix, and mixture weight. The LDE layer makes the inherent
dictionary differentiable and learns the dictionary in a supervised
manner. To see the similarities of the LDE layer to K-means,
consider Fig. 5 with the omission of residual vectors and let the
smoothing factor s→∞. With these modifications, the LDE
layer acts like K-means. Meanwhile, the LDE layer can also be
regarded as a simplified version of the GMM, which neglects
the covariance matrix.

2) Relationship to TAP and SAP Layers: Letting C = 1 and
µ = 0, the LDE layer simplifies to a TAP layer. Note that
the context vector in the SAP layer plays a role similar to the
dictionary centroid in the LDE layer. If one uses a multiple
context vector to compute multiple groups of attentive weights,
it becomes multi-head attention [32]. However, the LDE layer
normalizes the component posteriors to let them sum to unity
across all Gaussian components, rather than normalizing the
posteriors along the time axis. In a loose sense, the LDE layer
can be seen an extension of the SAP layer with multiple context
vectors.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets and Evaluation Metrics

Experiments were conducted using two language identifica-
tion databases (NIST Language Recognition Evaluation (LRE)
2007 [33] and AP17-OLR [34]) and two speaker verification
databases (SITW [35] and NIST SRE 2016 [36]).
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1) NIST LRE 2007: The task of interest is closed-set lan-
guage detection. This corpus has 14 target languages: Arabic,
Bengali, Chinese, English, Hindustani, Spanish, Farsi, German,
Japanese, Korean, Russian, Tamil, Thai, and Vietnamese. There
are 7530 utterances in total, with three nominal durations of
3 s (2–4 s actual), 10 s (7–13 s actual), and 30 s (25–35 s actual).
Each of the three durations has 2510 segments. The training
corpus employed includes the Callfriend, LRE 2003, LRE 2005,
and SRE 2008 datasets, and the development set of LRE 2007.
The total number of training utterances is 37095. System per-
formance is reported in terms of equal error rate (EER) and Cavg

as defined in [33].
2) AP17-OLR: The dateset consists of 10 oriental languages:

Mandarin, Cantonese, Indonesian, Japanese, Russian, Korean,
Vietnamese, Kazakh, Tibetan, and Uyghur [34]. Three test con-
ditions were defined according to the length of the test utter-
ances: 1-s, 3-s, and full-utterance. The 1- and 3-s test utterances
are random excerpts of the original ones. Each test condition
has 22051 utterances. AP16-OL7 and AP17-OL3 were used as
training data, totalling 72234 utterances for training. System
performance is reported in terms of EER and Cavg as defined
in [34].

3) Speakers in the Wild (SITW): The SITW dataset consists
of unconstrained audio-visual data of English speakers, which
naturally includes noises, reverberation, as well as device and
codec variability [35]. Our focus is on its core-core protocol for
both the development and evaluation sets. The duration of enroll-
ment and testing utterances in the test set varies in length from 6
to 240 s. Following the Kaldi recipe, the pooled VoxCeleb1 and
VoxCeleb2 datasets were used as our training set and speakers
overlapping with the evaluation set were removed. Finally, a
training set of 1236567 utterances from 7323 celebrities was
obtained. System performance is reported in terms of equal error
rate (EER) and Cdet as defined in [35].

4) NIST SRE 2016: Our training corpus includes data from
NIST SRE 2004-2010, Mixer 6, and Switchboard 2 Phase 1, 2,
and 3 as well as Switchboard Cellular. The CallMyNet test set
is composed of telephone conversations collected outside North
America, spoken in Tagalog and Cantonese. The duration of
the enrollment segments is approximately 60 s, while the test
segments are uniformly sampled, ranging from 10 to 60 s. An
unlabeled development set of approximately 2200 calls from the
CallMyNet collection is also available. System performance is
evaluated in terms of EER and Cdet as defined in [36].

B. Network Setup

To obtain a higher-level abstract representation, a deep CNN
based on the well-known ResNet [14] architecture was designed.
The primary network structure and parameters are described
in Table I. Batch normalization followed by ReLU activation
functions after every convolutional layer was used. The kernels
in the convolutional layer are 3× 3. A down-sampling operation
was performed on the last three blocks (Res2, Res3, and Res4)
using a stride factor of 2 in the first convolutional layer. There-
fore, the input feature images are down-sampled to (1/8× 1/8)
“images” along the time-frequency axes. Our network is slightly
“thin” because the output channels of the front-end ResNet are

TABLE I
RESNET-LDE STRUCTURE AND THE NUMBER OF

PARAMETERS IN EACH MODULE

only up to 128. Experiments with different types of pooling
layers were conducted to accumulate statistics over time. A fully
connected layer then processed the utterance-level representa-
tion produced by the pooling layers, which was then connected to
a classification output layer. All the components in the pipeline
were jointly trained with a typical softmax loss.

The widely used stochastic gradient descent algorithm with
a momentum of 0.9 and weight decay of 1e-4 was used. The
learning rate was set to 0.1, 0.01, and 0.001, and it was switched
when the training loss plateaued. Since there was no separate
validation set, the converged model after the last optimization
step was used for evaluation.

In the training phase, the model was trained with a mini-
batch size of 128. First, a continuous data chunk was sliced
from the raw full-length utterance, and it was then converted into
64-dimensional log Mel-filterbank energies (Fbanks) within the
data loader. The frame length is 25 ms, with a frame shift of
10s ms. A cepstral mean subtraction was applied over the sliced
data chunk. After the batching operations, a dynamic mini-batch
tensor with a shape of 128× 64× L was generated on-the-fly
for each training step, where L is a batch-wise variable number
ranging from Llow to Lhigh. How to set the suitable number for
different datasets is discussed in the following section.

In the test phase, all the data with different durations were
evaluated on a single unified model. Because the duration is
arbitrary, the test utterances were fed to the trained DNNs one by
one. For the identification task, the utterance-level posterior can
be directly retrieved from the DNN outputs. For the verification
task, the utterance-level embedding can be extracted from the
penultimate layer, and a simple cosine similarity or PLDA was
adopted to obtain the final pairwise score.

C. Effect of Variable-Length Training Mechanism

In this section, the baseline TAP layer is used for temporal
pooling, and the effect of variable-length training for speaker
and language recognition is investigated.

The proposed data loader can flexibly produce samples of any
specific length. Although it is designed primarily for variable-
length training, it can be adapted to generate fixed-length seg-
ments over the entire training stage so as to simulate the con-
ventional fixed-length training scenario.
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Fig. 6. Comparison of learning curves for different lengths of training seg-
ments on NIST LRE 2007.

TABLE II
PERFORMANCE COMPARISON OF FIXED- AND VARIABLE-LENGTH TRAINING ON

2007 NIST LRE. BOLDFACE DENOTES BEST PERFORMANCE FOR

EACH COLUMN. [EER(%)]

Several numbers of typical lengths, including 256, 512, 1024,
and 2048, were tried for NIST LRE 2007. Fig. 6 shows the
learning curves. The configuration used for all the curves are
the same, except for the length of the training segments. The
training loss not only fluctuates wildly during training, but also
converges to a rather high value when the DNN is fed with short
training segments of 256. As the training length increases, the
loss curve becomes much smoother and more stable. There is
clear distance between these learning curves, and one can find
a distinct gap among them. The network trained with longer
segments produces more stable and smoother training curves
and eventually achieves a lower loss value, which indicates a
higher training accuracy. The converged loss value is approx-
imately 0.45 for length 256, and 0.012 for length 2048. This
demonstrates the difficulty of learning information from training
samples with short durations. DNNs tend to be optimized well
for a long-duration dataset and much easier to perfectly fit the
long-duration training samples. This behavior is the same as
that seen with the traditional i-vector, which is known to obtain
a better representation for long-duration utterances.

However, the test results in Table II are not consistent with the
training loss tendency. While the performance consistently im-
proved when the length increased from 256 to 1024, it decreases
as the training length increases from 1024 to 2048. This means
that, although DNNs are apt to reach higher training accuracy
on training data with longer durations, an overfitting problem
might occur. The same phenomenon appears more distinctly in

TABLE III
PERFORMANCE COMPARISON OF FIXED- AND VARIABLE-LENGTH TRAINING ON

AP17-OLR. BOLDFACE DENOTES BEST PERFORMANCE FOR

EACH COLUMN. [EER(%)]

Table III for the AP17-OLR evaluation set. When it comes to
the 1- or 3-s duration test condition, one might intuitively think
that better testing performance could be obtained if the training
sample length matches the testing duration. However, in our
experiments, when DNNs were fed with training samples of 1-s
duration, performance on the 1-s task was inferior to those sys-
tems with a variable-length training strategy. Results on the 3-s
task also confirm our assumption that variable-length training is
also superior to duration-matched fixed-length training.

Since significant differences exist among DNNs trained with
different lengths, one might wonder whether it is feasible to
perform a batch-wise training strategy by pooling all the training
samples with profoundly different lengths. For a more in-depth
analysis of this issue, multiple curves are visualized in Fig. 7.
An interesting phenomenon can be seen from these figures.

First, since the length of each training step is switched arbi-
trarily, the batch-wise learning curve demonstrated in Fig. 7(a)
looks somewhat noisy. After performing the moving average
operation, an epoch-wise loss curve was obtained, as shown in
Fig. 7(b). The curve is almost perfectly smooth and decreases
quite steadily. It can be inferred that although variable-length
training leads to local instability, the downward trend of the loss
curve is still very stable over the long term.

The last 1000 steps were extracted from Fig. 7(a), and are
shown separately in Fig. 7(c). Even if this data block locates in
the latest area near the convergence region, it can be found that
the loss is dithering drastically. While these points all seem to be
in disarray along the time axis, valuable information is revealed
when the data are switched to their corresponding scatter plots
(Fig. 7(d)). In this plot, the randomly selected training length is
shown along the horizontal axis between [300, 800], and loss
value along the Y axis and each time step is represented by one
dot. The dots form a dispersed plot, yet there is undoubtedly
a trend for the time steps with long lengths to have lower loss
values.

Although the long- and short-duration samples lead to some-
what different training tendencies and performances, they can be
combined with a variable-length training strategy. The variable-
length training strategy makes it possible to incorporate diverse
duration conditions, which makes it converge to a better opti-
mization point and also more robust against overfitting.

When performing variable-length training, a key factor af-
fecting the performance is the selection of the training length
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Fig. 7. Learning curves indicating softmax loss at each step in training the neural network for NIST LRE 2007. (a) Batch-wise learning curve; (b) epoch-wise
learning curve; (c) learning curve for last 1000 steps; (d) scattered graph for last 1000 steps.

TABLE IV
PERFORMANCE COMPARISON OF FIXED- AND VARIABLE-LENGTH TRAINING ON

SITW. BOLDFACE DENOTES BEST PERFORMANCE FOR

EACH COLUMN. [EER(%)]

interval, i.e., the upper and lower bounds. A smaller lower bound
introduces more short-duration training samples. This may lead
to anti-over-fitting, but it could also provoke a non-convergence
issue. For the upper bound, in order to have a wider range of
training length, one may look for a larger upper bound. However,
A larger upper bound introduces more long-duration training
samples, which might lead to over-fitting. Moreover, the GPU
memory usage grows linearly as longer training length is used.
For example, training DNNs with data of 1000 frames requires
a frame count five times larger than 200 frames.

Tables IV and III show that a training interval of [300, 800]
or even [200, 400] could achieve satisfying performance on
SITW and AP17-OLR test sets. Larger training length leads to
over-fitting and brings worse results. In contrast, for NIST LRE
2007 and NIST SRE 2016, the DNNs have difficulty to converge
when training with short-duration data. To achieve a better
performance, DNNs need to be trained with longer-duration
data. For NIST SRE 2016, DNNs trained with data length within
the interval [1200, 2000] achieves the best performance.

The choice of the training length range depends on the specific
training data, and one could set proper lower and upper bounds,
considering the training-data fitting degree. There is also a
trade-off between system performance and GPU memory usage.
In our implementation, it was found that a training range of [300,
800] can achieve good performance in most cases while not con-
suming many hardware resources. In the following experiments,
Llow and Lhigh are fixed as 300 and 800, respectively.

Different implementations of the proposed data loader
were also investigated, namely an epoch-wise strategy and a
batch-wise strategy. For the epoch-wise strategy, the length of
the training segments was changed epoch by epoch; for the

TABLE V
PERFORMANCE COMPARISON OF FIXED- AND VARIABLE-LENGTH TRAINING ON

NIST SRE 2016. BOLDFACE DENOTES BEST PERFORMANCE FOR

EACH COLUMN. [EER(%)]

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT IMPLEMENTATIONS OF LDE

LAYER ON NIST LRE 2007. BOLDFACE DENOTES BEST PERFORMANCE FOR

EACH COLUMN. [EER(%)]

batch-wise strategy, the length of the training segments was
changed batch by batch. From the results shown in Tables II
and III, it is evident that the batch-wise strategy achieves better
performance.

D. Exploration of LDE-Layer Implementation

1) Number of Components: In the conventional GMM-UBM
approach, as the number of Gaussian components increases, the
performance varies. The number of mixtures is typically up to
1024 or even 2048. Several settings were attempted in our LDE-
layer implementation. The performance on NIST LRE 2007 with
different sizes of LDE dictionaries is presented in Table VI.
When the number of dictionary components increases from 16
to 64, the performance improves. However, once the number of
dictionary components exceeds 64, the performance decreases,
perhaps because of over-fitting.
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT DATA-PREPARATION MECHANISMS

ON AP17-OLR. DA DENOTES DATA AUGMENTATION AND BOLDFACE DENOTES

BEST PERFORMANCE FOR EACH COLUMN. [EER(%)]

2) Scale Factor: Two types of LDE layers were implemeted
with different setups of the scale factor s. For the first one,
the scale factor was fixed as a constant for all the dictionary
components. In the second setup, s is a group of component-wise
learnable parameters. Here, the number of dictionary compo-
nents was fixed to 64 in order to compare the aforementioned two
setups of the scale factor s. The experimental results on NIST
LRE 2007 are shown in Table VI, showing that the learnable
scale factor performs better than the constant one.

E. Impact of Data-Augmentation Strategy

In this section, the LDE layer is used for temporal pooling
and the impact of the data-augmentation strategy for speaker
and language recognition tasks is investigated.

As a control group, the offline data preparation strategy was
followed as in many previous DNN training procedures. Several
files containing training segments with various frame lengths
were dumped into the disk before DNN training. Further, a sys-
tem with the same data augmentation described in the x-vector
approach was built by adding the reverberation, noise, music,
and babble noise into the audio files. The script provided by the
Kaldi SITW recipe [37] was used, and, finally, feature data with
twice the number of original audios were obtained, one-half of
which are the clean data and the other half the augmented data.

Furthermore, the data loader was employed to generate the
training samples on the fly. Given the significant performance
gains of data augmentation in the x-vector approach, the same
data- augmentation operation was also employed in our pro-
posed on-the-fly data loader. The difference is that the aug-
mented feature files are not generated physically in the hard
drive; all the operations were processed on the fly in memory.
Different noisy types, noise source waves, clips in the noise
source, and signal-to-noise ratio (SNR) were randomly selected
to generate the training segments. All these permutations were
randomly performed on the variable-length segments, so the
network sees different noisy segments from the same clean
speech. To guarantee the proper partition of the clean data, for
each audio file a [0-1] uniform distributed random variable was
sampled. If the value was below 0.5, data augmentation was not
performed for this file. If the value was equal or higher than
0.5, one random data-augmentation operation was added when
preparing the mini-batch tensors.

From Tables VII and VIII, it can be seen that the online data
loader performs slightly better than the offline one. For both the
offline and online procedures, data augmentation significantly
improves the performance. Finally, the on-the-fly data loader
with online data augmentation achieves the best performance.

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT DATA-PREPARATION MECHANISMS

ON SITW. DA DENOTES DATA AUGMENTATION AND BOLDFACE DENOTES

BEST PERFORMANCE FOR EACH COLUMN. [EER(%)]

Fig. 8. Embedding visualization of the two operations in Fig. 3 using t-SNE
on SITW.

F. Validation of Truncate and Extend Operations

In our data loader, there are two core data slicing operations:
a truncate operation and an extend operation. The truncate
operation produces a random training sample by taking a random
sub-segment from a full-length utterance. The extend operation
produces a training sample by repeating a full-length utterance
multiple times. Our goal is to validate whether our network has
the capability to robustly make correct predictions on these two
variants in the test phase.

Seven audio files were randomly selected from the SITW
test set. For each utterance, its corresponding speaker embed-
dings were extracted. In addition, speaker embeddings for their
random sub-segments were also extracted. The t-distributed
Stochastic Neighbor Embedding (t-SNE) is plotted in Fig. 8(a).
The black dots are the embeddings of the raw full-length test
utterances and the others are the speaker embeddings of their
sub-segments. It can be seen that the speaker embeddings from
the same utterance are naturally clustered together.

Fig. 8(b) visualizes the speaker embeddings from the full-
length utterance and its repeated as well as rolled variants. It
can also be seen that those speaker embeddings from the same
utterance are naturally clustered together.

This property is important when developing text-independent
speaker verification or language identification systems. The
extracted embeddings are robust against lexical variabilities.

G. Comparison With TAP and SAP Baselines

In this section, the proposed LDE layer is compared with the
baseline TAP and SAP layers. From Tables IX–XII, it can be seen
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TABLE IX
SYSTEM PERFORMANCE ON 2007 NIST LRE CLOSED-SET TASK. NR DENOTES

NOT REPORTED AND ResNet-LDE V2 DENOTES ResNet-LDE NETWORK WITH

DROPOUT WHILE ResNet-LDE V3 DENOTES A LARGER SIZE ResNet-LDE
NETWORK WITH DROPOUT

TABLE X
SYSTEM PERFORMANCE ON AP17-OLR. ResNet-LDE V2 DENOTES

ResNet-LDE NETWORK WITH DROPOUT WHILE ResNet-LDE V3 DENOTES A

LARGER-SIZE ResNet-LDE NETWORK WITH DROPOUT

that both the SAP layer and LDE layer outperform the baseline
TAP layer on all four speaker and language recognition tasks.
Furthermore, systems with a LDE layer show better performance
compared to a SAP layer.

H. Additional Performance Improvement With Dropout and
Large-Size Network

In previous reports, dropout has been shown to reduce over-
fitting and improve the performance of speaker recognition
tasks [40], [41]. This motivates us to propose a ResNet-LDE V2
system that adds a dropout layer with 0.5 probability. From Ta-
bles IX and XII, it can be observed that significant performance
improvements are achieved in both the speaker verification and
language identification tasks.

Furthermore, since the proposed on-the-fly data loader can
provide a large amount of augmented data and the usage of
dropout could further reduce the risk of over-fitting, a more
extensive network was also explored for better performance.
The ‘thin ResNet‘ in Table I might not be sufficient, and thus

TABLE XI
SYSTEM PERFORMANCE ON SITW DATASET. ResNet-LDE V2 DENOTES

ResNet-LDE NETWORK WITH DROPOUT WHILE ResNet-LDE V3 DENOTES A

LARGER-SIZED ResNet-LDE NETWORK WITH DROPOUT

TABLE XII
SYSTEM PERFORMANCE ON NIST SRE 2016 EVALUATION SET. ResNet-LDE
V2 DENOTES ResNet-LDE NETWORK WITH DROPOUT WHILE ResNet-LDE

V3 DENOTES A LARGER-SIZED ResNet-LDE NETWORK WITH DROPOUT

a ResNet-LDE V3 system that modifies the widths (number of
channels) of the residual blocks from {16, 32, 64, 128} to {32,
64, 128, 256} is proposed. This ResNet-LDE V3 system also
adopts a dropout layer with 0.5 probability.

From Tables IX–XII, it can be seen that the proposed larger
network in the ResNet-LDE V3 system could be well trained
and achieves state-of-the-art performance.

I. Discussions of State-of-the-Art Approaches

1) Discussion of the I-Vector Approach: As shown in
Tables IX–XI, the deep speaker and language recognition system
significantly outperforms the conventional i-vector approach in
most conditions.

Since i-vector is an unsupervised approach, a supervised
back-end is still needed. For closed-set identification, a back-end
logistic regression or SVM might be adopted to obtain the final
score. For the open-set verification, PLDA might be employed
as the back-end. On the contrary, in our supervised DNN frame-
work, the class posteriors can be generated directly from the
network output layer in the identification task. For the open-set
SITW task, a simple cosine similarity measure is sufficient for
the scoring.

Nevertheless, the i-vector system still performs well in some
long-duration language identification tasks, especially when
phonetic information is integrated into the i-vector training
phase. As shown in Table IX, the i-vector trained with phoneme
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discriminant features extracted from the acoustic model achieves
the best performance, especially for the 30-s condition. This
indicates that the simple acoustic filter banks might not be the
best choice, and we can integrate the phonetic information into
DNN training as described in [34], [42], [43].

2) Discussion of Fixed-Length Training for DNNs: DNNs
trained with fixed-length inputs typically perform at the frame
level. Most previous studies report successful results on short-
duration tasks (<3 s) [7]–[9]. Taking the AP17-OLR dataset as
an example, the TDNN-LID and LSTM-LID systems reported
in [34] only achieve performance comparable to that of the
i-vector approach on the 1-s short-duration task.

Moreover, even for some systems utilizing a statistics pooling
layer for better performance, different networks are trained and
tested separately for the 30-, 10-s, and 3-s conditions [38], [44].

In our experiments, a single unified model was adopted to
generate all the 3-, 10-, and 30-s condition results. Our exper-
iments show that a unified model trained with variable-length
inputs can handle all 3-, 10-, and 30-s conditions. It may not be
necessary to train specific models to match various kinds of test
durations.

3) Discussion of Other Utterance-Level DNNs: The most
representative utterance-level DNN system using variable-
length inputs is the well-known x-vector system.

As shown in Table XI, for the SITW test set, it can be seen
that a simple cosine similarity back-end achieves satisfying per-
formance. Adding a PLDA back-end achieves a marginal gain.
However, direct cosine similarity scoring on the x-vectors leads
to degraded results, and an additional PLDA back-end is required
to achieve state-of-the-art performance. In this sense, the speaker
embeddings extracted by the proposed ResNet-based system
might contain more salient speaker-discriminative information.
In the face recognition domain, the state-of-the-art methods
also only employ a cosine similarity back-end for scoring [26].
This might reveal new insights into developing the embedding
network.

For NIST SRE 2016, the change in language introduces a shift
between the data distributions of the training and evaluation
data. Even if one trains a perfect network on the training set,
the extracted embeddings might not follow the distribution of
the evaluation set. Therefore, a simple cosine scoring could
not achieve satisfying performance. From Table XI, it can be
seen that both the x-vector and proposed systems obtains poor
performance with cosine scoring. Thus, the adaptive PLDA
back-end is then adopted as implemented by the Kaldi SRE16
recipe [45]. Both of these two systems achieve significant gain.

J. Performance of Computational Efficiency

1) Data-Loading Efficiency: Here, the focus is on the data
loader to measure its data loading efficiency. For each step,
one should read a set of raw audio files from the disk and
then transform them into a mini-batch tensor. Therefore, this
procedure might need a massive file I/O and CPU computation.

First, an experiment was carried out with an Intel Xeon
E6-2630 @2.2 GHz CPU on a Seagate ST2000NX0253 hard
disk drive (HDD). It can be seen from Fig. 9 that it takes

Fig. 9. Data loading efficiency in different situations.

Fig. 10. Data loading time with different numbers of workers.

approximately 35 seconds to complete a full data loading
procedure.

Note that for each time step, what is really desired is a tiny data
chunk of the full-length utterance, and it is not necessary to read
the entire utterance. Virtual memory techniques can be utilized to
treat the I/O as routine memory accesses. This approach, known
as memory mapping, allows a part of the virtual address space to
be logically associated with the file. With these implementations,
it can be seen from Fig. 9 that a memory map reduces data
loading time in the HDD.

However, the I/O bottleneck still exists. Hence, our audio files
were moved onto a Solid State Drive (SSD). It can be seen that
the data loading efficiency is significantly improved.

The number of workers was further increased from 1 to 32.
With 32 workers, the data loader produces 32 batches of training
samples in parallel and then pushes these data into the queue.
Therefore, for the following 31 steps, the data loading time is
almost zero. Fig. 10 shows the trend of data loading efficiency
with respect to the number of workers. As the number of workers
increases, the data loading efficiency improves. Our CPU has 40
cores, and the best efficiency performance is achieved with 32
workers, which is slightly smaller than the number of CPU cores.

2) Training Efficiency: Here, the training efficiency was
demonstrated using a server with two Intel Xeon E6-2630 CPUs,
four NVIDIA GTX 1080Ti GPUs, and one Samsung 860 PRO
SSD. The pooled Voxceleb dataset was adopted as the training
corpus. The number of audio files processed per second were
measured as our efficiency metric. From Table XIII, it can be
observed that our optimized system processes 882 audio files
per second in the network training when four GPUs are used.
Moreover, the data preparation step (T1) is much faster than
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TABLE XIII
TRAINING EFFICIENCY IN DIFFERENT SITUATIONS. BS DENOTES BATCH SIZE,

T1 REPRESENTS DATA-PREPARATION STEP, AND T2 REPRESENTS DNN
COMPUTATION STEP

TABLE XIV
RUNTIME PERFORMANCE IN THE TEST PHASE WITH A GPU. T1 REPRESENTS

THE DATA PREPARATION STEP AND T2 THE DNN COMPUTATION STEP

the network training step (T2), which enables the GPU to run
continuously.

3) Test Efficiency: Here, the testing phase efficiency was
demonstrated using the same server, but only employing one
CPU worker and one GPU to process test files. One hundred
audio files were randomly selected from the SITW training
data (the pooled VoxCeleb1 and VoxCeleb2 datasets) and the
SITW evaluation data. The average duration of Voxceleb data
is approximately 8 seconds and the average duration of SITW
data is approximately 450 seconds. It was desired, however, to
evaluate the test efficiency under different duration conditions.

From Table XIV, it can be observed that the network inference
time (T2) in the proposed approach is stable as the test duration
increases. Specifically, the network inference time is increased
from 0.011 to 0.013 when the test duration is increased from 8 to
450 seconds. This benefit comes from the high parallelization of
convolutional operations on the GPU device. The data process-
ing time (T1) takes the most time especially for the long-duration
speech utterance. Finally, the overall real-time factor is lower
than 0.01 when network inference is performed on the GPU.

VI. CONCLUSIONS

In this paper, efforts were concentrated on two core issues
related to directly modeling an utterance-level based DNN
for speaker and language recognition: (i) how to prepare the
variable-length inputs for effective and efficient DNN training,
and (ii) how to aggregate the variable-length sequences into
utterance-level representations.

First, regarding the data-preparation procedure, a novel data
loader is proposed to generate variable-length samples in mini-
batches for efficient DNN training. The data loader acts as a
bridge between the training utterances and the network, and
to make full use of every random segments of the training

utterances. Our proposed implementation is flexible, and it
produces batch-wise variable-length training samples on-the-
fly. Furthermore, the data loader is equipped with an online
data-augmentation strategy. The experimental results show the
efficacy of the batch-wise variable-length training and online
data-augmentation techniques.

Second, on the utterance-level aggregation, an LDE layer
is introduced by integrating the traditional dictionary learning
procedure into the deep speaker and language recognition sys-
tem. The LDE layer acts as an enhanced pooling layer and is
placed on top of the front-end local pattern extractor. It accepts
a variable-length sequence and outputs a single super-vector-
sized utterance-level representation. The parameters in the LDE
layer are learnable so that it is suitable for supervised DNN
learning under a unified loss function. The experimental results
show the effectiveness of the LDE layer over TAP and SAP
layers.

To summarize, the utterance-level deep speaker and language
recognition system is explored from “producer” (the data loader)
and “consumer” (the LDE layer) perspectives. The data loader
efficiently produces variable-length training samples on the fly,
and the LDE layer aggregates discriminative utterance-level rep-
resentations from the random augmented variable-length input.
The entire pipeline forms a new training scheme, and the sys-
tem exhibits comparable performance with the state-of-the-art
techniques.
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