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Abstract

Automatic classification of human personality along the Big
Five dimensions is an interesting problem with several prac
tical applications. This paper makes some contributions in
this regard. First, we propose a few automatically-derived
personality-discriminating lexical features which pbinfor-
mation complementary to the conventional acoustic-prasod
cues. We also design a frame-level Gaussian mixture model
based system which adds complimentary information to the sy
tems trained on global statistical functionals. Next, weerthat

the Big Five dimensions are correlated and thus model the de-
pendency between these dimensions in the form of an optimal
tree-structured Bayesian network. Our final sub-system con
sists of within class covariance normalization followedLdy
regularized logistic regression. Fusion of all these stgiesns
achieves better classification performance than indepeiyde
trained classifiers using just acoustic features.

Index Terms: Speaker Personality Classification, Bayesian
Network Structure Learning, Gaussian Mixture Models, \idith
Class Covariance Normalization

1. Introduction

Many recent research efforts in speech processing and-under
standing have focussed on paralinguistic information idi-ad
tion to the words spoken by the speaker. Well-known examples
of such aspects include emotion [1], gender and age [2]. Itis
believed that paralinguistic information can enhancegiesif
realistic automated agents, such as in interactive voggorese
systems.

Conventional paralinguistic aspects such as emotion and
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matic personality classification as one of the sub-taskse Th
Speaker Personality Corpus (SPC) distributed as part of the
challenge containg$40 clips randomly extracted from the
French news bulletins that Radio Suisse Romande broadcaste
during Februan2005. Each clip is roughlyl0 seconds long.
The labeling was performed byl judges using the BF10
guestionnaire. Thd1 ratings for a clip along each of the
OCEAN dimensions are fused into a single binary label by de-
ciding whether at least judges assign it a score higher than
their average for the particular dimension. We are omitting
further details about the SPC since they can be found in the
overview paper on the challenge [6].

Many previous works have tried to address the prob-
lem of automatic classification along the OCEAN dimensions.
Mairesse et al. [7] present a survey of various approacheahwh
utilize acoustic-prosodic, lexical and speech act-ty@uies.
They use various standard classifiers such as support veator
chines and naive Bayes, and achieve significantly bettéoper
mance than chance accuracy.

The present paper makes several contributions. First, we
derive some personality specific rate and durations festure
using an automatic speech recognition (ASR) system in Sec-
tion 2.2. We demonstrate that these features provide simila
discrimination as conventional acoustic-prosodic fesguior
classification along some of the OCEAN dimensions. We also
design a Gaussian Mixture Model (GMM) based system us-
ing frame-level features instead of global functionals patad
over the entire utterance (Section 3). Such systems have bee
shown to perform extremely well in another paralinguistsis,
such as emotion recognition from speech. Next, we obsegve si
nificant correlation between the OCEAN dimensions for sam-

gender are not the only ones which have been addressed in the ples in the SPC. This indicates that design of independest cl

speech processing literature. Another important paraistig
characterization of speakers is based on their persondlitg
Merriam-Webster dictionary defines personality“tee com-
plex of characteristics that distinguishes an individuabma-
tion or group; especially: the totality of an individual'shav-
ioral and emotional characteristics’lt is typically addressed in
literature in terms of the Big Five dimensions - Openness)-Co
scientiousness, Extroversion, Agreeableness and Neigrai
abbreviated as OCEAN [3]. Each of these dimensions is highly
subjective. Thus, the individual or other human evaluatoes
asked to fill a questionnaire designed to contain discritiviea
information about the OCEAN dimensions. The long version
of this questionnaire hasl questions [4], while a more recent
one-minute version (BFL9) just hasl0 items [5]. Scores from
subsets of questions are averaged to arrive at personeditys
for an individual.

The Speaker Trait Challenge at Interspe2gh2 has auto-

sifiers is sub-optimal. We thus propose the use of structned
diction by first learning an optimal tree-structured Bagesiet-
work followed by classification on the lines of tree-augneeht
Naive Bayes [8] (Section 4). As the final system, we use within
class covariance normalization [9] followed by L1-regidad
logistic regression in Section 5. Experiments and resulthe

SPC are presented in Section 6 and we conclude the paper in
Section 7.

2. Feature Design

Many studies in psychology and affective sciences have ex-
plored the link between personality and acoustic-proscllés-
acteristics of the speaker. Scherer [10] was one of the piene
ing researchers to study this link. He found out that several
perceptual cues in speech such as resonance, breathmass, |
ness etc. correlate significantly with some personalitingat



Even though many of the perceptual characterizations densi
ered in that paper were highly subjective (such as gloomy; th
are linked with simple acoustic-prosodic features (suckras
ergy). The baseline feature set for the Interspeech clyalén
motivated by this link.

2.1. Baseline Acoustic-Prosodic Features

The baseline feature set is constructed from a setddbw-
level descriptors (LLDs) such as Mel Frequency Cepstral Co-
efficients (MFCCs), pitch, energy etc. computed at the frame
level from the speech signal. Since the OCEAN labels are as-
signed over the entire utterance, the challenge featureoset
sists of statistical functionals (such as mean, standasiatien,
percentiles etc.) of these LLDs computed over all framekén t
audio clips. A listing of the LLDs and functionals is provitle

in Table1 of the challenge paper [6]. This baseline feature set
is 6125-dimensional.

Many researchers, most notably Pennebaker et al. [11, 12],
have also studied text-based features, broadly termed@€LI
(Linguistic Inquiry and Word Count). These features shagv si
nificant correlation with various personality dimensionsjch
motivated us to explore them further.

2.2. Lexical Rate and Duration Features

Since the SPC does not include the reference audio transcrip
tions, we used a large vocabulary ASR system for extractieg t
lexical features. The acoustic and language models trdiged
the speech group at LIUM, France were used with the SpRinx-
decoder [13]. The MFCC-based acoustic model consis8s of
state, left-to-right Hidden Markov Models witiv25 tied states
and22 Gaussian mixture components per state. The vocabulary
has approximately4000 words and includes word fragments
as well. The fillers include breathiness, laughter and mimsic
addition to silence.

Each utterance was decoded by the ASR system and the
top hypothesis with word boundary information was used to
extract the rate and duration features. The former caphgre t
rate of speech using various basic units such as words and
phonemes. The latter set captures duration of speech and non
speech events such as words and filled pauses. The rate (numbe
per sec) and total duration (normalized by utterance damgti
of words, characters, phonemes, fillers, silence, filledspau
(eub), breathiness and laughter were computed, resulting in a
16-dimensional feature vector for each utterance.

It must be noted that the many of the LIWC features [11, 12]
can only be extracted based on word identity (e.g. part-of-
speech tags). Since our ASR system output is extremely,noisy
we did not extract these word identity-dependent featufas-
thermore, the fact that the human evaluators in SPC could not
understand French also made word identity-related inftona
potentially redundant.

3. GMM-based Frame-Level System

Taking global statistical functionals of acoustic-prasoféa-
tures may smooth-out personality-specific local infororati
Thus, we train a GMM-based system with frame-level acoustic
prosodic features to capture this detailed informatiore Tea-
ture set for this system contains MFCCs, Mel filter-bank ener
gies (MFBs), pitch, energy, loudness, perceptual lineadipr
tion (PLP) features, zero crossing rate, and other LLDs from
the challenge feature set. These features were extracted®v
msec window with a0 msec shift.
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Table 1: Pearson’s correlation coefficient between pairs of
OCEAN dimensions. Numbers in bold represent statistically
significant correlation coefficients using thesided t-test at the
5% significance level.

In order to reduce the dimensionality of the feature set, we
explored principal component analysis and ranking based on
Fisher’s criterion [14], which gives high score to featutieat
achieve small within-class and large between-class \vilitiab
We selected the top0 features, and further reduced our feature
set by excluding features which have a high correlation-coef
ficient (greater tha.8) with other features. When choosing
between two competing, highly-correlated features, wk thie
one that has the largest Fisher score. Finally, we apperd firs
time derivatives to our feature vector, resulting iR4ato 40-
dimensional vector depending on the personality dimension

For each personality dimensién € {O,C,E, A, N}, we
train GMMs forY and NY (A' andA° respectively) denoting
presence and absence of the trait. Given a new test utterance
with feature vectox, we use the following maximum a poste-
riori (MAP) rule for making a decision:

PIADP() 2 P(xIA)P(0) @

4. Tree-Structured Bayesian Network
Structure Learning

The baseline system presented in [6] performs classifit#tio
dependently along each of the OCEAN dimensions. However,
many pairs of dimensions have appreciable correlationficoef
cients, as indicated by Table 1. Thus, design of independent
classifiers for each of the dimensions makes an unrealistic a
sumption. Instead, we propose to learn a classifier whicttljoi
predicts all thes OCEAN labels for a given utterance. One pos-
sibility is to perform multi-class classification over eaafithe

32 unique label combinations. Another is to construct a fully
connected Bayesian network. Both these methods require ex-
tremely large amounts of training data, which is not the case
in the SPC. Thus, we constrain the Bayesian network to have a
tree structure.

The Chow-Liu algorithm [15] was used to infer the optimal
tree from the training labels in the maximum likelihood sens
Another interpretation of this algorithm is that it triesrtoni-
mize the Kullback-Liebler (KL) divergence between the attu
joint distribution of theN random variables (the five OCEAN
dimensions in our case) and a second order product apprexima
tion. This is equivalent to finding the tree with maximum sum
of pairwise mutual informations, which can be done by finding
the maximum weight tree from a fully connected graph with
mutual information as edge weights. We used the Prim-Jarnik
algorithm [16] for this purpose. Fig. 1 shows the optimaktre
found by using this algorithm on the training set OCEAN Ilabel
The root node was arbitrarily selected to be neuroticism.

Once this tree is constructed, we can connect the feature
vector nodeX) to all the other nodes. Ideally, we should have



Figure 1: Optimal tree-structured Bayesian network fospef
ality classification. The root node was arbitrarily pickedoe
neuroticism after structure learningdenotes a feature vector.

learnt these additional links as well. But estimation of nalit
information with continuous-valued random variables ifi-di
cult, especially with limited training data.

After structure learning, we need to learn the following
conditional probability distribution functions (CPDFsjofn
the training data: P(N|x), P(A|N 0,x), P(AIN =
1,x), P(E|A 0,x), P(E|A 1,x), P(C|E
0,x), P(C|E = 1,x),P(O|E = 0,x),P(O|E = 1,x)
wherel and0 denote the presence and absence of the trait re-
spectively. Any classifier can be used to estimate thesei-cond
tional distributions. We used linear SVM with a logistic reg-
sion model trained on its scores for this purpose.

During test, the maximum a posteriori (MAB)tuple of
OCEAN labels can be found out as:

(o,c,e,a,n)ap = arg [P(N = n|x)

max
(0,c,e,a,n)€{0,1}5

P(A=a|N =n,x)P(E =e|A=a,x)

P(C =c|E=¢,x)P(O=0|E = e,x)} 2

4.1. Smoothing Conditional Probability Distributions

Even though the second order CPDFs require fewer instances
to train than the full joint PDF, there is a risk of overfitting

case of the SPC because the training set onl\2hésnstances,
which will further be partitioned into two sets conditioned

the parent random variable beifig@r 1. We thus interpolate all

the CPDFs with the corresponding unconditional distrifuti
prior to the test phase as follows:

Pint(L2 = l2|L1 = ll,X) = OCP(L2 = l2|L1 = ll,X)

+(1-a)P(L2 =12x) (3)

whereL; and L, are two labels from OCEAN and € [0, 1]

is the global interpolation weight. Setting = 0 is equiva-
lent to performing independent classification along eacthef
OCEAN dimensions, i.e. a Bayesian network with no edges.
«a = 1 corresponds to the Bayesian network in Fig. 1. This
hyperparameter is tuned based on classification perforenamc
10-fold cross-validation for each of the five dimensions.

5. Within Class Covariance Normalization
Based L1-Regularized Logistic Regression

For our final system, we adopt a binary logistic regressias-cl
sifier with L1 regularization in LIBLINEAR toolkit [17]. The
L1-norm constraint encourages the weight vector to be spars
which in turn leads to better generalization performancache
feature dimension was standardized over the training sgt. F
thermore, there are multiple utterance samples from éiffier

speakers for each class in our binary classification task. In
order to achieve robust performance, we employed the within
class covariance normalization (WCCN) approach [9] to cedu
the speaker variability before feeding the features to olgést

tic regression classifier. Due to the limited number of sam-
ples for training, we only perform WCCN after PCA. This also
makes the inverse of the average within-class covariance ma
trix numerically stable. The weight of the L1 term in the log-
likelihood objective function is a hyperparameter to beetin

6. Experiments and Results

The baseline feature set 6125 features is too large consider-
ing that the number of training instances is ogB6. To pre-
vent overfitting, we removed all global functionals excejgiam
and standard deviation. This resulted iB&i-dimensional
acoustic-prosodic feature vector. Next, we performedqggpéd
component analysis (PCA) over this vector. The 2@pprin-
cipal components contai#0% of the total variance, and were
retained for all future experiments. We noticed that théquer
mance of an SVM classifier along each of the OCEAN dimen-
sions using this low-dimensional feature vector is closth®
result using the entiré125-dimensional feature vector.

Table 2 shows the development set unweighted average re-
call (UAR) for the multiple systems. The first column shows
the baseline using the full feature set. All columns with "AP
denotes that the low-dimensional acoustic-prosodic featat
was used. “Lex” indicates that thHe-dimensional lexical fea-
ture set was used. The GMM-based sub-system uses only
acoustic-prosodic features since frame-level lexicalfies are
tough to extract. Within each row corresponding to a dimen-
sion (e.g. O), we present two results. The top UAR score is
for the case when all hyperparameters are tuned on the devel-
opment set. The bottom one is when the tuning is done using
10-fold cross-validation over the training set. The lattelpse
us predict the generalization accuracy, while the formeti-is
rectly comparable to the development set performance given
the challenge paper. SVM’s complexity constant is variegrov
{le™® 1e7* 1e7 1e72, 17}, 1}, and the geometric mean of
the best values over the 10-folds is taken. All numbers in bol
represent an improvement over the baseline system. A star in
dicates that the sub-system performed the best for thecparti
ular OCEAN dimension. We present four types of fusion re-
sults. The first three are achieved by majority vote over all,
acoustic-prosodic feature-based and lexical featureebaab-
systems respectively. The final column shows the resulthéor
best sub-system (the starred performance in each row).

We can make multiple key observations from the results.
First, the Bayesian network and WCCN-based classifiers per-
form the best for most dimensions, followed by the GMM-based
classifier. Second, acoustic-prosodic features give fsignitly
better performance than the automatically derived lexXieat
tures in general. This could be attributed to several facgrch
as high error rate of thé-best hypothesis of the ASR system,
and short duration of each clip which makes estimation &f rel
able lexical statistics difficult. Finally, we note thatesetion of
the best classifier for each dimension gives better perfocama
than fusion based on majority vote. This motivates the need f
a weighted majority voting scheme which gives higher weight
to more accurate systems without completely removing infor
mation from the weaker ones.

We next used the sub-systems corresponding to the final
(“Best”) column to evaluate performance on the test sethyl
perparameters were tuned by 10-fold cross-validation theer



System— GMM BN WCCN | 1SVM BN WCCN || Fusion| Fusion | Fusion
Feature— || Baseline| (AP) (AP) (AP) (Lex) (Lex) (Lex) (Al (AP) (Lex) Best
[e) 60.40 65.36 | 60.78 | 67.5% 56.69 | 62.07| 63.42 63.87 | 62.03 | 62.72 || 67.57
59.70 63.02 | 60.34 | 66.96 57.14 | 60.20| 62.81 63.43 | 59.62 | 59.65 || 66.96
C 74.50 73.31 | 74.29* | 73.58 68.37 | 70.22 | 69.17 73.58 | 73.93 | 68.26 || 74.29
72.80 70.23 | 73.18 | 73.2% 62.35 | 62.28| 68.06 72.48 | 73.92 | 66.28 || 73.22
E 80.90 79.23 | 83.62% 79.75 75.94 | 77.58 | 78.11 80.80 | 80.86 | 77.58 || 83.62
81.43 77.63 | 80.88* | 79.75 71.02 | 75.94| 78.10 79.71 | 80.86 | 77.03 || 80.88
A 67.60 65.88 | 70.34 68.49 53.99 | 58.21| 56.67 68.19 | 69.07 | 57.71 || 70.34
64.92 63.66 | 69.0Z 66.59 53.35 | 56.62| 52.37 66.60 | 68.77 | 52.78 || 69.02
N 68.00 66.26 | 69.31 | 71.17 55.88 | 62.26 | 58.10 58.97 | 71.02 | 53.65 || 71.17
68.62 64.68 | 68.30 | 71.1% 54.93 | 60.20| 55.02 60.00 | 71.02 | 54.70 || 71.12
Avg 70.30 70.00 | 69.31 | 72.1F 62.17 | 66.06 | 65.09 69.08 | 71.38 | 63.98 || 73.40
69.49 67.84 | 70.34 | 71.53% 59.80 | 63.05| 63.27 68.44 | 70.84 | 62.09 || 72.53

Table 2: Unweighted average recall (UAR) for personaligssification. AP and Lex stand for acoustic-prosodic anitdéxues
respectively. For each OCEAN dimension, the number in tiperdav represents UAR when all hyper-parameters are tunethen t
development set. The bottom row gives the UAR when the tuisidgne in10-fold cross-validation on the training set.

training and development set combines. The resulting syste
achieved an average UAR of 66.02, which is 1.78% less that
the baseline of 68.0 using linear SVMs [6]. We hypothesize
that this might be due to a mismatch between the test set and
the rest of the database, which makes generalization difficu

Limited amount of training data further compounds this éssu

7. Conclusion and Future Work

This paper presents multiple approaches for automatickebr

sifying human personality along the OCEAN dimensions us-

ing acoustic-prosodic and lexical cues. The presentee@msyst
utilize the characteristics of the challenge corpus inedéht

ways. The GMM-based approach is motivated by the fact that

global statistical functional of acoustic-prosodic featiloose

out on local frame-level information. The Bayesian network
system exploits the correlations between the OCEAN dimen-
sions and performs structured prediction. WCCN is motiyate
by the need to normalize the features in a class-dependsnt wa

by modifying the quadratic kernel of a support vector maehin

While many of these systems surpass the challenge baselines

(4]

(5]

(6]
(7]

(8]
El

[10]

on the development set, we observed that the overall perfor- [11]

mance drops slightly below the baseline for the test sets Thi

indicates poor generalization of the trained systems ie ofs
mismatched datasets and limited training data.

The SPC is a challenging database due to the small num-
ber of training instances. A major direction of future work

would focus on improving the generalizability of all sysem

for example by better smoothing and Bayesian techniquets. Be

ter feature design is another important area for additiomek.

Finally, we would also like to explore advanced label fusion

techniques for combining the outputs from multiple systems

(1]

(2]

(3]
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