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Abstract
Automatic classification of human personality along the Big
Five dimensions is an interesting problem with several prac-
tical applications. This paper makes some contributions in
this regard. First, we propose a few automatically-derived
personality-discriminating lexical features which provide infor-
mation complementary to the conventional acoustic-prosodic
cues. We also design a frame-level Gaussian mixture model
based system which adds complimentary information to the sys-
tems trained on global statistical functionals. Next, we note that
the Big Five dimensions are correlated and thus model the de-
pendency between these dimensions in the form of an optimal
tree-structured Bayesian network. Our final sub-system con-
sists of within class covariance normalization followed byL1-
regularized logistic regression. Fusion of all these sub-systems
achieves better classification performance than independently
trained classifiers using just acoustic features.
Index Terms: Speaker Personality Classification, Bayesian
Network Structure Learning, Gaussian Mixture Models, Within
Class Covariance Normalization

1. Introduction
Many recent research efforts in speech processing and under-
standing have focussed on paralinguistic information in addi-
tion to the words spoken by the speaker. Well-known examples
of such aspects include emotion [1], gender and age [2]. It is
believed that paralinguistic information can enhance design of
realistic automated agents, such as in interactive voice response
systems.

Conventional paralinguistic aspects such as emotion and
gender are not the only ones which have been addressed in the
speech processing literature. Another important paralinguistic
characterization of speakers is based on their personality. The
Merriam-Webster dictionary defines personality as“the com-
plex of characteristics that distinguishes an individual or a na-
tion or group; especially: the totality of an individual’s behav-
ioral and emotional characteristics”. It is typically addressed in
literature in terms of the Big Five dimensions - Openness, Con-
scientiousness, Extroversion, Agreeableness and Neuroticism,
abbreviated as OCEAN [3]. Each of these dimensions is highly
subjective. Thus, the individual or other human evaluatorsare
asked to fill a questionnaire designed to contain discriminative
information about the OCEAN dimensions. The long version
of this questionnaire has44 questions [4], while a more recent
one-minute version (BFI-10) just has10 items [5]. Scores from
subsets of questions are averaged to arrive at personality scores
for an individual.

The Speaker Trait Challenge at Interspeech2012 has auto-

matic personality classification as one of the sub-tasks. The
Speaker Personality Corpus (SPC) distributed as part of the
challenge contains640 clips randomly extracted from the
French news bulletins that Radio Suisse Romande broadcasted
during February2005. Each clip is roughly10 seconds long.
The labeling was performed by11 judges using the BFI-10
questionnaire. The11 ratings for a clip along each of the
OCEAN dimensions are fused into a single binary label by de-
ciding whether at least6 judges assign it a score higher than
their average for the particular dimension. We are omitting
further details about the SPC since they can be found in the
overview paper on the challenge [6].

Many previous works have tried to address the prob-
lem of automatic classification along the OCEAN dimensions.
Mairesse et al. [7] present a survey of various approaches which
utilize acoustic-prosodic, lexical and speech act-type features.
They use various standard classifiers such as support vectorma-
chines and naive Bayes, and achieve significantly better perfor-
mance than chance accuracy.

The present paper makes several contributions. First, we
derive some personality specific rate and durations features
using an automatic speech recognition (ASR) system in Sec-
tion 2.2. We demonstrate that these features provide similar
discrimination as conventional acoustic-prosodic features for
classification along some of the OCEAN dimensions. We also
design a Gaussian Mixture Model (GMM) based system us-
ing frame-level features instead of global functionals computed
over the entire utterance (Section 3). Such systems have been
shown to perform extremely well in another paralinguistic tasks,
such as emotion recognition from speech. Next, we observe sig-
nificant correlation between the OCEAN dimensions for sam-
ples in the SPC. This indicates that design of independent clas-
sifiers is sub-optimal. We thus propose the use of structuredpre-
diction by first learning an optimal tree-structured Bayesian net-
work followed by classification on the lines of tree-augmented
Naive Bayes [8] (Section 4). As the final system, we use within
class covariance normalization [9] followed by L1-regularized
logistic regression in Section 5. Experiments and results on the
SPC are presented in Section 6 and we conclude the paper in
Section 7.

2. Feature Design

Many studies in psychology and affective sciences have ex-
plored the link between personality and acoustic-prosodicchar-
acteristics of the speaker. Scherer [10] was one of the pioneer-
ing researchers to study this link. He found out that several
perceptual cues in speech such as resonance, breathiness, loud-
ness etc. correlate significantly with some personality ratings.



Even though many of the perceptual characterizations consid-
ered in that paper were highly subjective (such as gloom), they
are linked with simple acoustic-prosodic features (such asen-
ergy). The baseline feature set for the Interspeech challenge is
motivated by this link.

2.1. Baseline Acoustic-Prosodic Features

The baseline feature set is constructed from a set of64 low-
level descriptors (LLDs) such as Mel Frequency Cepstral Co-
efficients (MFCCs), pitch, energy etc. computed at the frame
level from the speech signal. Since the OCEAN labels are as-
signed over the entire utterance, the challenge feature setcon-
sists of statistical functionals (such as mean, standard deviation,
percentiles etc.) of these LLDs computed over all frames in the
audio clips. A listing of the LLDs and functionals is provided
in Table1 of the challenge paper [6]. This baseline feature set
is 6125-dimensional.

Many researchers, most notably Pennebaker et al. [11, 12],
have also studied text-based features, broadly termed as LIWC
(Linguistic Inquiry and Word Count). These features show sig-
nificant correlation with various personality dimensions,which
motivated us to explore them further.

2.2. Lexical Rate and Duration Features

Since the SPC does not include the reference audio transcrip-
tions, we used a large vocabulary ASR system for extracting the
lexical features. The acoustic and language models trainedby
the speech group at LIUM, France were used with the Sphinx-3
decoder [13]. The MFCC-based acoustic model consists of3-
state, left-to-right Hidden Markov Models with5725 tied states
and22 Gaussian mixture components per state. The vocabulary
has approximately64000 words and includes word fragments
as well. The fillers include breathiness, laughter and musicin
addition to silence.

Each utterance was decoded by the ASR system and the
top hypothesis with word boundary information was used to
extract the rate and duration features. The former capture the
rate of speech using various basic units such as words and
phonemes. The latter set captures duration of speech and non-
speech events such as words and filled pauses. The rate (number
per sec) and total duration (normalized by utterance duration)
of words, characters, phonemes, fillers, silence, filled pause
(euh), breathiness and laughter were computed, resulting in a
16-dimensional feature vector for each utterance.

It must be noted that the many of the LIWC features [11, 12]
can only be extracted based on word identity (e.g. part-of-
speech tags). Since our ASR system output is extremely noisy,
we did not extract these word identity-dependent features.Fur-
thermore, the fact that the human evaluators in SPC could not
understand French also made word identity-related information
potentially redundant.

3. GMM-based Frame-Level System
Taking global statistical functionals of acoustic-prosodic fea-
tures may smooth-out personality-specific local information.
Thus, we train a GMM-based system with frame-level acoustic-
prosodic features to capture this detailed information. The fea-
ture set for this system contains MFCCs, Mel filter-bank ener-
gies (MFBs), pitch, energy, loudness, perceptual linear predic-
tion (PLP) features, zero crossing rate, and other LLDs from
the challenge feature set. These features were extracted over30
msec window with a10 msec shift.

O C E A N

O - 0.22 0.30 -0.12 0.10
C 0.22 - 0.37 0.02 0.08
E 0.30 0.37 - -0.29 0.27
A -0.12 0.02 -0.29 - -0.43
N 0.10 0.08 0.27 -0.43 -

Table 1: Pearson’s correlation coefficient between pairs of
OCEAN dimensions. Numbers in bold represent statistically
significant correlation coefficients using the2-sided t-test at the
5% significance level.

In order to reduce the dimensionality of the feature set, we
explored principal component analysis and ranking based on
Fisher’s criterion [14], which gives high score to featuresthat
achieve small within-class and large between-class variability.
We selected the top20 features, and further reduced our feature
set by excluding features which have a high correlation coef-
ficient (greater than0.8) with other features. When choosing
between two competing, highly-correlated features, we pick the
one that has the largest Fisher score. Finally, we append first
time derivatives to our feature vector, resulting in a24 to 40-
dimensional vector depending on the personality dimension.

For each personality dimensionY ∈ {O,C,E,A,N}, we
train GMMs forY andNY (Λ1 andΛ0 respectively) denoting
presence and absence of the trait. Given a new test utterance
with feature vectorx, we use the following maximum a poste-
riori (MAP) rule for making a decision:

P (x|Λ1)P (1)
Y

≷
NY

P (x|Λ0)P (0) (1)

4. Tree-Structured Bayesian Network
Structure Learning

The baseline system presented in [6] performs classification in-
dependently along each of the OCEAN dimensions. However,
many pairs of dimensions have appreciable correlation coeffi-
cients, as indicated by Table 1. Thus, design of independent
classifiers for each of the dimensions makes an unrealistic as-
sumption. Instead, we propose to learn a classifier which jointly
predicts all the5 OCEAN labels for a given utterance. One pos-
sibility is to perform multi-class classification over eachof the
32 unique label combinations. Another is to construct a fully
connected Bayesian network. Both these methods require ex-
tremely large amounts of training data, which is not the case
in the SPC. Thus, we constrain the Bayesian network to have a
tree structure.

The Chow-Liu algorithm [15] was used to infer the optimal
tree from the training labels in the maximum likelihood sense.
Another interpretation of this algorithm is that it tries tomini-
mize the Kullback-Liebler (KL) divergence between the actual
joint distribution of theN random variables (the five OCEAN
dimensions in our case) and a second order product approxima-
tion. This is equivalent to finding the tree with maximum sum
of pairwise mutual informations, which can be done by finding
the maximum weight tree from a fully connected graph with
mutual information as edge weights. We used the Prim-Jarnik
algorithm [16] for this purpose. Fig. 1 shows the optimal tree
found by using this algorithm on the training set OCEAN labels.
The root node was arbitrarily selected to be neuroticism.

Once this tree is constructed, we can connect the feature
vector node (x) to all the other nodes. Ideally, we should have



Figure 1: Optimal tree-structured Bayesian network for person-
ality classification. The root node was arbitrarily picked to be
neuroticism after structure learning.x denotes a feature vector.

learnt these additional links as well. But estimation of mutual
information with continuous-valued random variables is diffi-
cult, especially with limited training data.

After structure learning, we need to learn the following
conditional probability distribution functions (CPDFs) from
the training data: P (N |x), P (A|N = 0,x), P (A|N =
1,x), P (E|A = 0,x), P (E|A = 1,x), P (C|E =
0,x), P (C|E = 1,x), P (O|E = 0,x), P (O|E = 1,x)
where1 and0 denote the presence and absence of the trait re-
spectively. Any classifier can be used to estimate these condi-
tional distributions. We used linear SVM with a logistic regres-
sion model trained on its scores for this purpose.

During test, the maximum a posteriori (MAP)5-tuple of
OCEAN labels can be found out as:

(o, c, e, a, n)MAP = arg max
(o,c,e,a,n)∈{0,1}5

[

P (N = n|x)

P (A = a|N = n,x)P (E = e|A = a,x)

P (C = c|E = e,x)P (O = o|E = e,x)
]

(2)

4.1. Smoothing Conditional Probability Distributions

Even though the second order CPDFs require fewer instances
to train than the full joint PDF, there is a risk of overfittingin
case of the SPC because the training set only has256 instances,
which will further be partitioned into two sets conditionedon
the parent random variable being0 or 1. We thus interpolate all
the CPDFs with the corresponding unconditional distribution
prior to the test phase as follows:

Pint(L2 = l2|L1 = l1,x) = αP (L2 = l2|L1 = l1,x)

+ (1− α)P (L2 = l2|x) (3)

whereL1 andL2 are two labels from OCEAN andα ∈ [0, 1]
is the global interpolation weight. Settingα = 0 is equiva-
lent to performing independent classification along each ofthe
OCEAN dimensions, i.e. a Bayesian network with no edges.
α = 1 corresponds to the Bayesian network in Fig. 1. This
hyperparameter is tuned based on classification performance on
10-fold cross-validation for each of the five dimensions.

5. Within Class Covariance Normalization
Based L1-Regularized Logistic Regression

For our final system, we adopt a binary logistic regression clas-
sifier with L1 regularization in LIBLINEAR toolkit [17]. The
L1-norm constraint encourages the weight vector to be sparse,
which in turn leads to better generalization performance. Each
feature dimension was standardized over the training set. Fur-
thermore, there are multiple utterance samples from different

speakers for each class in our binary classification task. In
order to achieve robust performance, we employed the within
class covariance normalization (WCCN) approach [9] to reduce
the speaker variability before feeding the features to the logis-
tic regression classifier. Due to the limited number of sam-
ples for training, we only perform WCCN after PCA. This also
makes the inverse of the average within-class covariance ma-
trix numerically stable. The weight of the L1 term in the log-
likelihood objective function is a hyperparameter to be tuned.

6. Experiments and Results
The baseline feature set of6125 features is too large consider-
ing that the number of training instances is only256. To pre-
vent overfitting, we removed all global functionals except mean
and standard deviation. This resulted in a384-dimensional
acoustic-prosodic feature vector. Next, we performed principal
component analysis (PCA) over this vector. The top22 prin-
cipal components contain90% of the total variance, and were
retained for all future experiments. We noticed that the perfor-
mance of an SVM classifier along each of the OCEAN dimen-
sions using this low-dimensional feature vector is close tothe
result using the entire6125-dimensional feature vector.

Table 2 shows the development set unweighted average re-
call (UAR) for the multiple systems. The first column shows
the baseline using the full feature set. All columns with “AP”
denotes that the low-dimensional acoustic-prosodic feature set
was used. “Lex” indicates that the16-dimensional lexical fea-
ture set was used. The GMM-based sub-system uses only
acoustic-prosodic features since frame-level lexical features are
tough to extract. Within each row corresponding to a dimen-
sion (e.g. O), we present two results. The top UAR score is
for the case when all hyperparameters are tuned on the devel-
opment set. The bottom one is when the tuning is done using
10-fold cross-validation over the training set. The latter helps
us predict the generalization accuracy, while the former isdi-
rectly comparable to the development set performance givenin
the challenge paper. SVM’s complexity constant is varied over
{1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1}, and the geometric mean of
the best values over the 10-folds is taken. All numbers in bold
represent an improvement over the baseline system. A star in-
dicates that the sub-system performed the best for the partic-
ular OCEAN dimension. We present four types of fusion re-
sults. The first three are achieved by majority vote over all,
acoustic-prosodic feature-based and lexical feature-based sub-
systems respectively. The final column shows the results forthe
best sub-system (the starred performance in each row).

We can make multiple key observations from the results.
First, the Bayesian network and WCCN-based classifiers per-
form the best for most dimensions, followed by the GMM-based
classifier. Second, acoustic-prosodic features give significantly
better performance than the automatically derived lexicalfea-
tures in general. This could be attributed to several factors, such
as high error rate of the1-best hypothesis of the ASR system,
and short duration of each clip which makes estimation of reli-
able lexical statistics difficult. Finally, we note that selection of
the best classifier for each dimension gives better performance
than fusion based on majority vote. This motivates the need for
a weighted majority voting scheme which gives higher weight
to more accurate systems without completely removing infor-
mation from the weaker ones.

We next used the sub-systems corresponding to the final
(“Best”) column to evaluate performance on the test set. Allhy-
perparameters were tuned by 10-fold cross-validation overthe



System→ GMM BN WCCN 1 SVM BN WCCN Fusion Fusion Fusion
Feature→ Baseline (AP) (AP) (AP) (Lex) (Lex) (Lex) (All) (AP) (Lex) Best

O 60.40 65.36 60.78 67.57* 56.69 62.07 63.42 63.87 62.03 62.72 67.57
59.70 63.02 60.34 66.96* 57.14 60.20 62.81 63.43 59.62 59.65 66.96

C 74.50 73.31 74.29* 73.58 68.37 70.22 69.17 73.58 73.93 68.26 74.29
72.80 70.23 73.18 73.22* 62.35 62.28 68.06 72.48 73.92 66.28 73.22

E 80.90 79.23 83.62* 79.75 75.94 77.58 78.11 80.80 80.86 77.58 83.62
81.43 77.63 80.88* 79.75 71.02 75.94 78.10 79.71 80.86 77.03 80.88

A 67.60 65.88 70.34* 68.49 53.99 58.21 56.67 68.19 69.07 57.71 70.34
64.92 63.66 69.02* 66.59 53.35 56.62 52.37 66.60 68.77 52.78 69.02

N 68.00 66.26 69.31 71.17* 55.88 62.26 58.10 58.97 71.02 53.65 71.17
68.62 64.68 68.30 71.12* 54.93 60.20 55.02 60.00 71.02 54.70 71.12

Avg 70.30 70.00 69.31 72.11* 62.17 66.06 65.09 69.08 71.38 63.98 73.40
69.49 67.84 70.34 71.53* 59.80 63.05 63.27 68.44 70.84 62.09 72.53

Table 2: Unweighted average recall (UAR) for personality classification. AP and Lex stand for acoustic-prosodic and lexical cues
respectively. For each OCEAN dimension, the number in the top row represents UAR when all hyper-parameters are tuned on the
development set. The bottom row gives the UAR when the tuningis done in10-fold cross-validation on the training set.

training and development set combines. The resulting system
achieved an average UAR of 66.02, which is 1.78% less that
the baseline of 68.0 using linear SVMs [6]. We hypothesize
that this might be due to a mismatch between the test set and
the rest of the database, which makes generalization difficult.
Limited amount of training data further compounds this issue.

7. Conclusion and Future Work
This paper presents multiple approaches for automaticallyclas-
sifying human personality along the OCEAN dimensions us-
ing acoustic-prosodic and lexical cues. The presented systems
utilize the characteristics of the challenge corpus in different
ways. The GMM-based approach is motivated by the fact that
global statistical functional of acoustic-prosodic features loose
out on local frame-level information. The Bayesian network
system exploits the correlations between the OCEAN dimen-
sions and performs structured prediction. WCCN is motivated
by the need to normalize the features in a class-dependent way
by modifying the quadratic kernel of a support vector machine.
While many of these systems surpass the challenge baselines
on the development set, we observed that the overall perfor-
mance drops slightly below the baseline for the test set. This
indicates poor generalization of the trained systems in case of
mismatched datasets and limited training data.

The SPC is a challenging database due to the small num-
ber of training instances. A major direction of future work
would focus on improving the generalizability of all systems,
for example by better smoothing and Bayesian techniques. Bet-
ter feature design is another important area for additionalwork.
Finally, we would also like to explore advanced label fusion
techniques for combining the outputs from multiple systems.
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