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ABSTRACT

Wireless body area sensing networks have the
potential to revolutionize health care in the near
term. The coupling of biosensors with a wireless
infrastructure enables the real-time monitoring
of an individual’s health and related behaviors
continuously, as well as the provision of real-
time feedback with nimble, adaptive, and per-
sonalized interventions. The KNOWME
platform is reviewed, and lessons learned from
system integration, optimization, and in-field
deployment are provided. KNOWME is an end-
to-end body area sensing system that integrates
off-the-shelf sensors with a Nokia N95 mobile
phone to continuously monitor and analyze the
biometric signals of a subject. KNOWME devel-
opment by an interdisciplinary team and in-labo-
ratory, as well as in-field deployment studies,
employing pediatric obesity as a case study con-
dition to monitor and evaluate physical activity,
have revealed four major challenges: (1) achiev-
ing robustness to highly varying operating envi-
ronments due to subject-induced variability such
as mobility or sensor placement, (2) balancing
the tension between acquiring high fidelity data
and minimizing network energy consumption,
(3) enabling accurate physical activity detection
using a modest number of sensors, and (4)
designing WBANS to determine physiological
quantities of interest such as energy expenditure.
The KNOWME platform described in this arti-
cle directly addresses these challenges.

INTRODUCTION

Wearable health monitoring systems coupled
with wireless communications are the bedrock of
an emerging class of sensor networks: wireless
body area networks (WBANSs) [1-7]. Such net-
works have myriad applications, including diet
monitoring, detection of activity or posture, and
health crisis support. This article focuses on the

KNOWME network, which targets applications
in pediatric obesity, a developing health crisis
both within the United States and international-
ly. To understand, treat, and prevent childhood
obesity, it is necessary to develop a multimodal
system to track an individual’s level of stress,
physical activity, as well as other vital signs
simultaneously. Such data must also be
anchorable to context, such as time of day and
geographical location, which provides a greater
understanding of how the external environment
impacts health. The KNOWME network is a
first step in the development of a system that
could achieve these targets. In this article, we
present the fruits of a multiyear collaboration
between communications engineers, computer
systems designers, and preventive health
researchers toward the development of

KNOWME. Specifically, we examined:

* The need for robustness to highly varying
operating environments due to subject-
induced variability such as mobility or sen-
sor placement

e Balancing the tension between achieving
high fidelity data collection and minimizing
network energy consumption

* Accurate physical activity detection using a
modest number of sensors

* Designing WBANS to determine physiologi-
cal quantities of interest such as energy
expenditure
Obesity, the health risk considered in this

article, is a growing health care concern for

youth and adults, and outranks both smoking
and drinking in its deleterious effects on health
and health costs. Understanding how much ener-
gy an individual expends in daily life is important
in designing interventions to prevent or reduce
obesity. The computation of energy expenditure
is complex, and intimately tied to age, gender,
the amount of body fat vs. lean tissue present,
and even emotional state. Energy expenditure is
particularly challenging to assess in children and
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youth due to the biological effects of maturation
into adulthood. In this article, we discuss a sys-
tem design toward the automatic assessment of
energy expenditure. A critical component of
assessing energy expenditure in daily life is
determining the physical state of an individual.
Physical activity (PA) has long been studied in
preventive health through the use of single
accelerometer (ACC) data collection. Unfortu-
nately, this current approach in preventive health
has many drawbacks in implementation [8]: par-
ticipants must wear ACCs for several days and
then return them to researchers for data down-
load, processing, and interpretation. Also, most
current ACC systems for PA assessment come
equipped with proprietary software and only
provide processed measurements, not raw ACC
data; as a result, data cannot be compared across
systems and have limited utility for further signal
processing. Thus, the development of WBANSs
has the potential to revolutionize how preventive
health practitioners assess physical activity and
energy expenditure. In fact, physical activity
detection has been a common application of new
WBAN developments [1, 2, 4, 7].

The development of WBANS presents some
unique challenges and opportunities due to
ongoing design and improvement in sensor tech-
nology as well as an evolving set of standards
that govern low-power wireless communications.
In our efforts, new research problems were
revealed during the implementation of a field-
deployed system using off-the-shelf components.
Additional insights were derived due to our col-
laboration with preventive health researchers
with experience in tracking behavior using sen-
sors such as ACCs.

Several key observations can be underscored.
Modern mobile phones are optimized for multi-
media and entertainment applications in addition
to voice telephony. As such, the systems are good
at performing simple operations over large-scale
data. In contrast, WBANS require complex oper-
ations on relatively small-scale data. While our
test subjects were open to wearing sensor sys-
tems, only a modest amount of hardware was
comfortable. The end goal of this research was to
field-deploy the WBAN and collect data in free-
living conditions from targeted individuals select-
ed by our preventive health collaborators. Given
the requirement for in-field deployment, several
key design choices were constrained. First, we
employed only a few heterogeneous sensors to
maximize compliance. Second, we used off-the-
shelf system components to create a functioning
WBAN and hence had to make our design work
with existing wireless communication protocols,
such as Bluetooth. Given the small set of sensors,
novel feature design and selection from the bio-
metric signals proved to be a critical research
activity. As mobile phones were not designed to
be sensor fusion centers, the energy bottleneck
turned out to be the phone rather than the sen-
sors — in sharp contrast to the framework for
most sensor network research — and innovative
mobile operating system design was needed.
Finally, the uncertainty induced by human vari-
ability and error proved to be larger than expect-
ed and also required new design strategies.
Perhaps our most radical conclusion is that if

new standards were to be written for multiple
sensors’ access to a mobile platform, they should
be substantially different from what is currently
in place. We came to this conclusion after observ-
ing the significant amount of design effort
required to accommodate the existing Bluetooth
implementation in the mobile operating system.

This article is organized as follows. We out-
line four key research efforts toward the realiza-
tion of the KNOWME system; for each research
effort, we summarize our activities and then
highlight the important conclusions drawn from
this work. We describe our novel system archi-
tecture that was adopted for KNOWME. We
provide the extraction of new features from our
multimodal biometric signals. The design of pat-
tern classifiers employing these novel features is
then discussed. As energy can be minimized via
the clever sub-selection of sensors, our new sen-
sor selection algorithm is described. Our innova-
tive mapping of motion parameters to energy
expenditure is also discussed. The deployment of
KNOWME with test subjects is presented, and
final conclusions are drawn.

SYSTEM ARCHITECTURE

The KNOWME network employs a three-tier
architecture [9], depicted in Fig. 1. The first tier
is the WBAN layer or sensor layer, which wire-
lessly provides physiological signals. The second
tier is the mobile phone, which acts as a data
collection hub for the external sensor data. The
mobile phone also processes data locally and
provides simple feedback to the user instantly.
The last layer is a back-end server that can pro-
vide additional processing as well as data stor-
age. The WBAN layer is comprised of the
on-body sensors and the mobile device.

As noted earlier, due to the field deployment
requirement, we used only off-the-shelf sensors
and mobile devices to build KNOWME.
KNOWME consists of a Nokia N95, as well as a
Bluetooth-enabled oximeter (OXI) and an elec-
trocardiograph (ECG) from Alive Technologies
arranged in a star topology with the mobile
phone being the hub. While there are newer and
more energy-efficient wireless protocols such as
Zigbee, we were restricted to using Bluetooth
for communication with the sensors since the
NO5 supports only the Bluetooth wireless proto-
col for sensor interfacing.! Additionally, sensor
data are collected from in-built N95 sensors: an
ACC and a global positioning system (GPS).
The mobile application must gather data from
multiple sensors with minimal user intervention
and with no interruption to regular mobile device
functionality. To achieve continuous long-term
data collection (e.g., 12 h/day for multiple
weeks), mobile application robustness is neces-
sary. In addition to application robustness, vol-
untary user participation is essential for data
collection. Hence, satisfying the user’s primary
purpose of using a mobile phone takes priority
over KNOWME. KNOWME’s execution priority
is lower than other higher-priority tasks, such as
incoming and outgoing calls. Whenever there is
resource contention with higher-priority tasks,
the mobile phone will simply terminate the
KNOWME application.

|
KNOWMIE's
execution priority s
lower than other
higher priority tasks,
such as incoming
and outgoing calls.
Whenever there is
resource contention
with higher priority
tasks, the mobile
phone will simply
terminate the
KNOWME
application.

1 We observe that the
802.15.6 standard for
WBAN systems is current-
ly being drafted and will
certainly influence WBAN
design of the future.
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In KNOWME, the
most complex data
analysis function is
user state detection.
State detection can
take place either on
the phone or on the
back-end server,
which incurs no
computation cost to
the phone, but does
incur a transmission
energy cost.
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Figure 1. KNOWME system architecture flow diagram and screen shot from the sedentary behavior analyzer

implemented on the mobile platform.

The mobile application is divided into two
components: a background process (KMCore)
and a client interface application (KMClient).
The KMCore is comprised of seven components
arranged in a four-layered hierarchy:

* Device manager (bottom)

¢ Data collector

* Data analyzer, local storage manager, data
transmitter

* Service manager (top)

Figure 1 shows how various components in
the KMCore interact with each other. There is
one thread per sensor, providing robustness to
errors from individual failing sensors as could
occur with a single manager for all devices. The
data collector thread receives and synchronizes
sensor data from each device manager, resulting
in a single health record; health records are col-
lected, buffered, and sent to the local storage,
the transmitter, and the analyzer. The local stor-
age manager writes the data to flash storage and
handles configuration data as well. The transmit-
ter module that transfers data to the back-end
handles data compression and encryption for
privacy and energy saving. The analyzer modules
implement a simplified version of the physical
activity detection methods detailed later; while
the back-end server currently implements the
full-blown classifier. We observe that much
effort was employed in designing and operating
KMCore key elements that are a direct conse-
quence of the implemented Bluetooth standard
and the time-division multiple access (TDMA)

strategy. In fact, if a code-division multiple
access strategy were employed, most of the func-
tionality of the device manager and data collec-
tor could be absorbed into the data analyzer.
Non-functioning sensors would be determined
during analysis and would not change any of the
data collection or formatting. Due to the fact
that only a modest number of sensors are being
employed, long spreading sequences would be
unnecessary. The complexity of multi-user detec-
tion is comparable or less than that of the activi-
ty detection methods that we have already
implemented on the mobile phone and are
described in the sequel. Finally, the KMCore
service manager communicates with the
KMClient graphical user interface (GUI). The
GUI framework is fairly complex and resource
intensive, but not critical to data collection. If
mobile phone resources (memory, computation
power) are limited, the KMClient is shut down
without affecting the KMCore since the GUI
and data collection systems are separate.

LESSONS LEARNED FROM SYSTEM DESIGN
Energy Consumption — Energy consumption
to support KNOWME operations is significant
and motivates the design of a host of schemes to
improve battery life. In KNOWME, the sensors
simply transmit data to the mobile phone fusion
center; the Nokia N95 performs all the coordina-
tion, processing, and computation tasks. The
energy consumption (in Joules) of the three sen-
sors followed by their sampling rates and their
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transmission rates (samples/sec) using Bluetooth
over a 10 minute interval were: phone ACC
(37.8 17, 30, 30); ECG (114.8 J, 300, 4); OXI
(1374 J, 100, 10). As the sensors were not pro-
grammable, task scheduling and sensor data
compression were impossible. However, in
KNOWME, the primary energy bottleneck was
the mobile phone. Sensors operated comfortably
during the course of a day; as such, our energy
efficiency research was centered on the mobile
phone. If data are collected from all sensors
(ECG, OXI, ACC, GPS) and written to a local
flash drive on the N95 without buffering, the
battery life is 4 h. This is in sharp contrast to the
N95’s 10 h of rated talk time and 200 standby
hours. By using a combination of data buffering,
adaptive sensor throttling, and dynamic selection
of data transmission methods, battery life can be
improved by nearly 200 percent [9].

In KNOWME, the most complex data analy-
sis function is user state detection. State detec-
tion can take place either on the phone or on
the back-end server, which incurs no computa-
tion cost to the phone, but does incur a trans-
mission energy cost. Figure 2 shows the energy
cost associated with physical activity detection
for local and remote computation based on 10
minutes of ECG and ACC data. We see that the
energy consumption of back-end computation is
a function of the three transmission options
(EDGE, 3G, and WiFi) coupled with compres-
sion costs at the mobile phone. When WiFi is
available, it is energy efficient to perform remote
computation. One anomaly worth noting is that
when using compression and WiFi transmission,
the energy cost is higher than sending uncom-
pressed data. The reason for this discrepancy is
that the energy cost of compressing on the phone
far outweighed the reduced communication
energy on WiFi radio. When the user is roaming,
local computation can be better. Through this
experiment, we demonstrate that there is no sin-
gle, static, best choice when it comes to trading
off the energy costs of computation with com-
munication; the choice of remote or local is a
complex function of compression, computation
and transmission costs.

Application Stability — An inherent challenge
is developing a mobile application to reside on a
mobile device not originally designed for use in
a WBAN. Limited memory and computational
resources of the mobile phone present major
challenges to system stability e.g., an incoming
call may receive higher priority, competing for
system memory with the KNOWME application,
resulting in a non-repeatable memory allocation
failure for KNOWME. Debugging crashes dur-
ing complex system interactions suggested the
design approach of separating critical data col-
lection from visualization/data analysis functions.

The choices of available programming
paradigms on mobile phones are also limited.
For instance, the N95 supports Python, J2ME,
or Native Symbian. Each paradigm provides a
trade-off between programmer productivity and
execution overhead. Due to limited debugging
capability, we employed an emulator, which may
not faithfully capture mobile phone behavior.
Hence, most of the system design effort was
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Figure 2. Local computation costs versus remote computation and energy

transmission costs.

focused on the WBAN design with the primary
goal of providing robustness under unpredictable
operating conditions.

Functional Support — Typical signal process-
ing methods employ complex floating-point com-
putations that are not currently supported by the
NO5 hardware. Such operations are executed as
a software routine, consuming both significant
power as well as time. Thus, naive implementa-
tion of signal processing algorithms on the
mobile phone can cause dramatic application
slowdowns. We used either approximations or
pre-computed values to reduce this impact.

MULTIMODAL PHYSICAL ACTIVITY
RECOGNITION

As shown in Fig. 3a, the KNOWME Network
automatically recognizes physical activities by
fusing multimodal sensor signals as well as mul-
tidomain subsystems. Machine learning methods
are employed in order to perform accurate phys-
ical state detection. We have designed and ana-
lyzed a significant number of novel features,
extracted from the biometric signals. Within
these feature sets, we have assessed the most
informative features. We have employed person-
alized models tailored to individuals resulting in
further performance enhancement. Finally, we
underscore that our approaches account for the
inherent variability found within a single individ-
ual’s behavior due to variations in context.

FEATURE EXTRACTION AND DESIGN

A feature is a characteristic measurement, trans-
form, or structural mapping of the input data
that captures important patterns of phenomena
of interest. Examples include the standard devia-
tion of an ACC reading or the mean of the
instantaneous heart rate via the ECG, which
offer cues to distinguish PA types. The classifier
attempts to map each realization of the collec-
tion of features to a particular activity, or
hypothesis. We consider the following nine PA
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Figure 3. a) Overview of the proposed system for physical activity recognition; b) ECG pre-processing for the temporal feature extrac-
tion, ¢) mean and standard deviation of normalized ECG signals.

states: lying down, sitting, sitting and fidgeting,
standing, standing and fidgeting, playing Wii ten-
nis, slow walking, brisk walking, and running.
Our methods are easily extensible to more states.
ACC signals have long been considered for
PA detection [4]; as such, there is a rich feature
set considered in the literature. ECG signals are
less widely examined. The first set of features,
which we denote as conventional, were selected
based on the prior state of the art on WBANSs.
For the ACC, the conventional features are
mean absolute deviation, correlations, mean of
maxima, mean, median, root mean square, stan-
dard deviation, zero crossing rate, mean crossing
rate, energy, spectral entropy, kurtosis, and
skewness. For the ECG sensor, the mean and
variance of the instantaneous heart-rate consti-
tute the conventional features. The other four
feature sets comprise the results of our feature
design process [10]:
* The Hermite polynomial expansion (HPE)
coefficients of the ECG
* The principal component analysis (PCA)
error vector for ECG
e The standard deviation of multiple normal-
ized beats from the ECG which is novel to
our work, as are
e Cepstrum-based features from both the
ECG and the ACC
ECG signal preprocessing (shown in Fig. 3b) is
performed at the front-end for extracting the
first three feature sets.

Figure 3c shows the mean and standard devi-
ation of the normalized ECG signal for differ-
ent activities. We can see that both the mean
and variance of the normalized waveform carry
discriminative information between different
PAs. HPEs are polynomial-based orthogonal
waveforms employed to reconstruct the ECG
signals. The PCA analysis we have used differs
from prior efforts as we model both the cardiac
activity mean signal as well as the residual arti-
fact noise, the instant heart rate variability, and
the heartbeat shape variability. Our final feature
set employs cepstral features from ECG and
ACC motivated by their potential for separating
convolutional noise. The cepstrum is essentially
the inverse Fourier transform of the log-magni-
tude of the Fourier spectrum of a signal. In
total, we have examined 56 and 112 distinct
temporal features from the ACC and ECG sig-
nals, respectively. The additional features have
resulted in further improved state detection per-
formance at the cost of complexity, which may
challenge the mobile platform. Thus, we have
also conducted a feature analysis to determine
the most informative features for detection. In
contrast to [1, 7], we perform feature selection a
priori to minimize on-phone computation. Two
forms of correlation-based feature selection
were compared: a standard correlation and one
based on the information theoretic measure of
entropy. Our first finding was that both selec-
tion methods yielded essentially the same fea-
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ture sets for our field-collected biometric sig-
nals. Another interesting observation was that
the key features selected for both the built-in
cell phone ACC and the external ACC were
typically the same. Our initial analysis did not
include the cepstral features.

CLASSIFIER DESIGN

A classical machine learning method for classifi-
cation is used for modeling the temporal fea-
tures: the support vector machine (SVM). The
SVM is trained in a supervised manner to build
models for multi-hypothesis testing. In particu-
lar, we developed SVMs for the ECG and ACC
features separately, using the generalized linear
discriminative sequence (GLDS) kernel. The
ACC and ECG SVM classifier outputs are fused
at the score level. The GLDS kernel, using first-
order polynomials, allows computation of the
score function via the computationally efficient
inner product.

A Gaussian mixture model (GMM) approach
is used to model the cepstral features of the
ECG and ACC signals. Since the training data
for each activity of each subject are too limited
to train a good GMM, a universal background
model (UBM) in conjunction with a maximum a
posteriori (MAP) model adaptation approach is
used to model different PAs in a supervised
manner. The expectation maximization (EM)
algorithm is adopted for the UBM training.
Under the GMM framework, during testing,
each signal segment is scored on all the activi-
ties’ models from the same subject. The GMM
system outputs the recognized activity by maxi-
mizing the log likelihood criterion.

By fusing both multimodal (ECG and ACC)
and multidomain (time domain SVM and cep-
stral domain GMM) subsystems at the score
level, the overall system performance is shown to
improve significantly in both accuracy and
robustnesss [10]. Fusion at the score level is par-
ticularly useful when the individual subsystems
(i.e., the ACC and ECG feature sets or temporal
and cepstral domain subsystems) capture com-
plementary information and have different clas-
sification performances for different states. This
discrepancy in discrimination is leveraged in the
development of the optimal sampling protocol to
yield an energy-efficient KNOWME health mon-
itoring application. Typical detection accuracies
were above 90 percent, sometimes as high as 97
percent [10].

LESSONS LEARNED FROM
FEATURE EXTRACTION AND CLASSIFIER DESIGN

The high within-individual variability in biomet-
ric signals was unexpected. The observed differ-
ences are likely due to sensor placement
location, user emotion, fitness, etc.. Even within
a single activity, an individual can perform vari-
ous styles of PA that may not appear in the
training set, decreasing system performance. In
particular, ECG signals appeared to be more
sensitive to intersession variability; robustness
was increased through multisession training data.
We believe that variability compensation will be
an important challenge for future WBAN system
design.

ENERGY-EFFICIENT
SENSOR SELECTION

As noted, our selected set of off-the-shelf bio-
metric sensors is Bluetooth enabled. Bluetooth is
an access protocol/technology for the exchange
of data over short distances between both fixed
and mobile platforms. Several modulation for-
mats have been considered since the inception
of the standard; currently 8-differential phase
shift keying is possible to achieve a 3 Mb/s data
rate. To achieve a desired spectral mask, fre-
quency-hopped spread spectrum is employed,
although not exploited for multiple access. The
Bluetooth protocol is packet-based and enables
a master-slave system wherein a single master
may have up to seven slaves in a piconet. It is
this master-slave piconet that comprises our

WBAN. The system works in a time-division

multiple access mode wherein slaves communi-

cate with the master in a round-robin fashion;
although it is the master (the mobile phone) that
determines with which slave it will communicate.

As previously noted, in contrast to the tradi-
tional view of a sensor network, it is the cell
phone fusion center that is the energy bottleneck
of our system. Coordinating and listening to the

Bluetooth transmissions from the biometric sen-

sors consumes much more energy for the cell

phone than the transmission of those signals
from the sensors. As such, to maximize system
life, we need to optimally determine which sen-
sors to listen to and for how long — this is the
sensor selection problem. In particular, we have
considered the problem of allocating a fixed
number of transmission samples across the sen-
sors while balancing between classification error
and energy consumption. Furthermore, the evo-
lution of physical activity state during the day
can be modeled as a dynamic stochastic system.
We explicitly considered these properties to
determine sequential allocations exploiting
stochastic control methods. Finally, a unique fea-
ture of WBANSs with heterogeneous sensors is
that each sensor has different discriminative
properties as well as different energy costs.
Ideally, we would derive an optimal sampling
protocol based on the SVM classifier. Such an
approach faces two important challenges:

e There is no closed form expression for the
performance of the SVM to optimize.

* The top performing SVM uses a large fea-
ture set and complexity of optimal feature
selection would be prohibitive for imple-
mentation on a mobile device.

Thus, we considered a single exemplary feature

per sensor, exploited Gaussian models for the

sensor measurements, and further approximated
the probability of classification error in order to
convert a combinatorial integer-programming
problem into a continuous vector-valued opti-
mization [11]. This approximation effort is large-
ly motivated by the need to implement the
sampling strategy on the mobile phone. When
the optimal sampling strategy derived in this
manner is applied to the SVM classifier, signifi-
cant energy savings are experienced with no per-
formance loss. We extended our work in [11] by
modeling our allocation problem as a partially

ECG signals
appeared to be

more sensitive to

intersession variabili-

ty; robustness was

increased through

multisession training
data. We believe

that variability
compensation will
an important

be

challenge for future

WBAN system
design.
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observable Markov decision process (POMDP)
[12] to capture the system’s sequential nature.
POMDPs are well matched to our problem as
we can model the dynamics of physical state
change via a Markov chain (Fig. 4b). Dynamic
programming (DP) and greedy search strategies
are employed to optimize the trade-off between
classification error and energy cost, and signifi-
cant energy gains are obtained [13]. We observe
that other sensor selection strategies for WBANs
often assume correct knowledge of the current
PA state [5]. Figure 4a presents a simplified
form of our proposed sensor selection scheme.
The individual is alternating between a set of
physical activities and during this process, a set
of measurements is generated and communicat-
ed to the fusion center, which then estimates the
underlying activity. This estimate is used to
update the fusion centers’ belief on the underly-
ing true activity (belief state) that in turn deter-
mines the subsequent samples’ allocation.

LESSONS LEARNED FROM
ENERGY-EFFICIENT SENSOR SELECTION

The Bluetooth standard mandated the need for
sensor selection, revealing how practical imple-
mentation can drive research questions. Distinct-

ly novel sensor selection algorithms were neces-
sary due to unique aspects of our problem: het-
erogeneous discrimination capabilities and
energy consumption for each sensor, sensing
errors, and imperfect state information. Our
proposed methods proved to be quite successful;
we can achieve significant energy gains, on the
order of 20 percent or more (e.g., Fig. 4c), with
a slight degradation in detection accuracy per-
formance. Furthermore, preliminary results show
that a greedy search scheme’s performance is
comparable to that of the full dynamic program;
thus, we can achieve near optimal performance
with an algorithm implementable on a mobile
phone.

UsING WBANS 10
DETERMINE ENERGY EXPENDITURE

As alluded to in the Introduction, the actual
physical state of an individual is typically not
the end-goal of health monitoring. In the con-
text of pediatric obesity specifically and obesity
in general, one is concerned with how much
energy the individual is expending. Energy
expenditure is notoriously challenging to assess
over the long term due to the expense and bulk
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Figure 4. a) System diagram of sensor selection algorithm; b) Markov chain of seven physical activities; c) improvement in energy con-
sumption via the use of new allocation methods vs. an equal allocation of sensor resources.
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of typical measurement strategies. A common
gold standard for energy measurement is the
rate of consumption of oxygen (O;). In our
studies [14], calibration of our energy expendi-
ture prediction methods was done against a
MedGraphics Cardio II metabolic cart, which
measures the rates of O, and CO, consumption
and expiration. Metabolic carts are expensive
and bulky. In a typical experiment, the test sub-
ject wears a mask that nearly obscures the
entire face; a large tube from the mask feeds
into the measurement system. Clearly, this
technique does not scale well to free-living
studies. More portable carts exist; however,
they are still cumbersome and prohibitively
expensive. On-body sensors, particularly inertial
sensors, represent a cost-effective alternative
without sacrificing accuracy.

The particular problem we studied was the
computation of energy expenditure due to
walking using body-worn inertial sensors. An
inertial sensor is a device that captures the
movement of the object to which it is attached.
Our fundamental hypothesis was that the
movement descriptors captured using inertial
sensors could be used to estimate caloric
expenditure. Since no Bluetooth-based inertial
sensor was available at the time, we developed
our own prototype model to test our algo-
rithms. A single, custom-developed hip-mount-
ed inertial sensor consisting of a triaxial ACC
and a triaxial gyroscope was employed (Fig. 5).
An important component in our study [14] was
to compare the efficacy of gyroscope-based
models against ACC-only solutions with
respect to predicting energy expenditure.
Gyroscopes are much more useful in tracking
dynamic activities and do not suffer from the
problems of gravitational bias as do accelerom-
eters. Our further innovation was the develop-
ment of data-driven kinematic motion models
mapping movement to energy for walking,
which exploited the inherently cyclical nature
of walk.

We designed three prediction methods that
show significant improvement over simple linear
regression fitting: Least Squares Regression
(LSR), Bayesian Linear Regression (BLR), and
Gaussian Process Regression (GPR). Many
accelerometry-based studies on physical activity
in the area of health focus on the use of uniaxial
ACCs. Not surprisingly, triaxial information is
more accurate than uniaxial information. Our
data-driven statistical models allowed us to
bypass count-based techniques and the use of
thresholds yielding improvements over [2]. How-
ever, a surprise from our study was the fact that
gyroscopic information yielded prediction accu-
racy equivalant to, if not better, than ACCs. This
result was important because it demonstrated
the use of a sensor alternative to accelerometers
in measuring energy expenditure.

LESSONS LEARNED FROM
ENERGY EXPENDITURE ESTIMATOR DESIGN

Our analysis showed that LSR-based approaches
are prone to outlier sensitivity and overfitting.
Nonlinear regression methods showed better
prediction accuracy, but required an order of

Figure 5. Illustration of recording procedure. Ground truth collected with a

metabolic cart (red box), while being very accurate, is cumbersome. For this
purpose, we validate inertial sensors (yellow box) against ground truth using

probabilistic techniques.

magnitude increase in runtime. Our study
showed how probabilistic models in conjunction
with joint modeling of triaxial accelerations and
rotational rates could improve energy expendi-
ture prediction for steady-state treadmill walk-
ing, closely matching ground truth.

Another significant contribution of our work
was that our sensors transmitted data via Blue-
tooth to secondary devices as opposed to local
storage. We have successfully connected sensors
to both traditional PCs and Android-based
smartphones to receive streaming data. Range
and the number of simultaneously transmitting
Bluetooth devices limited the maximum data
transmission rate using Bluetooth. We are cur-
rently examining the integration of these inertial
sensors into KNOWME.

KNOWME oN REAL PEOPLE

The efficacy of KNOWME was evaluated on test
subjects recruited from Los Angeles County.
The KNOWME version used included one Alive
heart-rate monitor and the Nokia N95 mobile
device. In-laboratory testing was conducted with
20 overweight Hispanic boys and girls aged
12-17 years [15]. Overweight characterization
was assessed via age and gender-specific body
mass indices. Our experimental data showed that
personal training of the algorithms was essential
to good performance. The highest accuracy
obtained using this system was 94 percent with
seven classes of physical activity using personal-
ized models. For personalized models, the most
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accurately detected activity was running, consis-
tent with prior literature. The least accurately
detected activity was sitting. This is most likely
due to classification confusion between sitting
and sitting fidgeting. When we grouped test sub-
jects by body mass index (BMI) percentile, some
trends were observed: there is a noticeable varia-
tion in the algorithm parameters between the
groups of overweight individuals and heavily
overweight individuals. KNOWME has also been
used for data collection outside of the laboratory
in a so-called free-living setting with 12 over-
weight Hispanic youth aged 12-18 years with an
initialized personalized phase. We achieved 100
percent wear and reporting compliance, validat-
ing the feasibility of personalized training in this
context. The complete compliance in wearing
the system was a surprise, and the test subjects
appeared to enjoy wearing the system, seeing
their biometric signals, and interacting via tex-
ting with the study team. To quote one subject,
wearing KNOWME was like “having a doctor in
your pocket.”

CONCLUSIONS

Our experiences with KNOWME have revealed
that a high-performance WBAN design is possi-
ble employing a modest number of heteroge-
neous sensors. There are a number of key issues
that must be considered with respect to energy
efficiency and the inherent variability due to the
human element. A full-service obesity mobile
health WBAN might include real-time collec-
tion, display, and integration of measures of
physical activity, diet, stress, mood, physical loca-
tion and context, and social network activity,
combined with modalities to intervene on behav-
iors in real time, casual and serious games, etc..
KNOWME can enable real-time intervention.
Our classification and feature design efforts
underscore the need for targeted model develop-
ment and personalized training.

The system architecture design and opti-
mization focused much effort on sensor device
management, thread distinction, and main-
taining buffers being fed by signals from dif-
ferent sensors. Biometric sensors are
inherently of modest data rate, and the num-
ber of different sensor systems is also likely to
be small in these mobile health applications.
Furthermore, to properly process the signals
on the mobile platform will require sophisti-
cated signal processing. Thus, our major con-
clusion with respect to wireless communications
is that a code-division multiple access system
would potentially relieve much of the current
burden on the system architecture design for
mobile health with limited impact on complexi-
ty. Multi-user detection strategies require a
signal processing complexity comparable to
our proposed classification designs that we
are currently successfully implementing on the
mobile platform. Mobile health applications
show significant promise and could potentially
become a large part of the processing on
mobile phones. Thus, given the significant
ongoing research in this area with off-the-
shelf systems, it could be time to revisit the
wireless standards for mobile health.
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