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Abstract
We propose a practical, feature-level fusion approach for com-
bining acoustic and articulatory information in speaker ver-
ification task. We find that concatenating articulation fea-
tures obtained from the measured speech production data with
conventional Mel-frequency cepstral coefficients (MFCCs) im-
proves the overall speaker verification performance. However,
since access to the measured articulatory data is impractical
for real world speaker verification applications, we also ex-
periment with estimated articulatory features obtained using
acoustic-to-articulatory inversion technique. Specifically, we
show that augmenting MFCCs with articulatory features ob-
tained from subject-independent acoustic-to-articulatory inver-
sion technique also significantly enhances the speaker verifi-
cation performance. This performance boost could be due to
the information about inter-speaker variation present in the es-
timated articulatory features, especially at the mean and vari-
ance level. Experimental results on the Wisconsin X-Ray Mi-
crobeam database show that the proposed acoustic-estimated-
articulatory fusion approach significantly outperforms the tra-
ditional acoustic-only baseline, providing up to 10% relative re-
duction in Equal Error Rate (EER). We further show that we
can achieve an additional 5% relative reduction in EER after
score-level fusion.
Index Terms: speech production, speaker verification, articula-
tion features, acoustic-to-articulatory inversion, biometrics

1. Introduction
The goal in a speaker verification (SRE) task is to determine
whether a given segment of speech is spoken by the claimed
target speaker.

At the acoustics level, joint factor analysis (JFA) [1, 2, 3]
has contributed to the state-of-the-art performance in the text
independent SRE. It is a powerful and widely used technique
for compensating the acoustic variabilities caused by different
channels and sessions. Recently, total variability i-vector mod-
eling has gained significant attention in SRE due to its excel-
lent performance, low complexity and small model size [4].
In this approach, a single factor analysis is used as a front-
end to generate a low dimensional total variability space (i.e.
the i-vector space) which jointly models speaker and channel
variabilities [4]. The factor analysis can also be extended to a
simplified supervised version to enhance the performance and
reduce the computational cost [5]. Within the i-vector space,
variability compensation methods, such as Within-Class Co-
variance Normalization (WCCN) [6] and Linear Discriminative
Analysis (LDA), are performed to reduce the variability for the
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subsequent probabilistic LDA (PLDA) modeling [7, 8]. Sparse
representation could also be applied in the SRE task [9, 10, 11].

In addition to the aforementioned state-of-the-art model-
ing methods, various kinds of features have also been proposed
for text independent speaker recognition (e.g. short-term spec-
tral features, voice source features, spectral-temporal features,
prosodic features and high-level features) [12]. Both feature
level and score level fusion based on multiple features have
been shown to enhance the overall SRE system performance
[12]. In this work, our goal is to examine the utility of speech
production-oriented features for the SRE task.

Several studies have shown that an important source of
inter-speaker variability in speech acoustics lies in the variabil-
ity in the vocal tract morphology across various speakers; mor-
phological variability could result from the differences in the
vocal tract length [13, 14, 15, 16], the morphology of the hard
palate and the posterior pharyngeal wall [17, 18, 19]). Since
vocal tract length is closely related to the formant frequency
[16, 14], change in vocal tract length scales the frequency of
the speech spectra for voiced sounds. This has been exten-
sively used for vocal tract length normalization (VTLN) [20, 21]
in automatic speech recognition (ASR). Unlike normalization,
we focus on exploiting morphological variations as the cue for
speaker characteristics in SRE applications in this paper. Speak-
ers with flat palates exhibit less articulatory variability dur-
ing vowel production than speakers with highly domed palates
[22, 23, 24, 25]. Articulation of coronal fricatives is also influ-
enced by palate shape, including apical vs. laminal articulation
of sibilants [26], as well as jaw height and the positioning of the
tongue body [27, 28]. Therefore due to the different vocal tract
morphology characteristics, different speakers articulate even
the same words differently. We also show in [29] that the fusion
of speech and articulation features enhances discrimination be-
tween different morphological structures. This motivates us to
examine the utility of morphological characteristics in the SRE
task by using articulatory features in addition to acoustics.

We find that concatenating articulation features obtained
from the measured speech production data with conventional
Mel-frequency cepstral coefficients (MFCCs) improves the
overall SRE performance. However, since measuring articu-
latory movement during speech production is impractical for
real world SRE applications, SRE experiment is also per-
formed where the measured articulatory features are replaced
with estimated articulatory features obtained using acoustic-
to-articulatory inversion. Specifically, we show that augment-
ing MFCCs with features obtained from subject-independent
acoustic-to-articulatory inversion techniques significantly en-
hances the SRE performance. In other words, we show that the
estimated articulation obtained by articulatory inversion carry
useful information about inter-speaker variation, especially at
the mean and variance level, which leads to better performance.



To our best knowledge, there has not been a study on this topic.
Although the estimated articulatory features are also gen-

erated from speech signals, we can show that adding this new
information (articulation-acoustics mapping) on top of MFCCs
can still enhance the performance. Theoretical supports from
machine learning fields are provided in [30, 31] which show
that the recognition of target label can be improved with addi-
tional knowledge of related labels. Practically, this concatena-
tion based speech-articulatory feature level fusion has been re-
ported to increase the ASR performance [32, 33] significantly.

Next section describes the data set partition and experimen-
tal setup of the adopted X Ray Microbeam database. Feature
extraction, subject-independent articulatory inversion and mod-
eling methods are described in Section 3. Section 4 presents the
experimental results and discussion. Some concluding remarks
are given in Section 5.

2. Data
We used the Wisconsin X-Ray Microbeam data (XRMB) [34]
for our analysis and experiments. A key feature of this
database is that both articulatory measurement and simultane-
ously recorded speech signal are available from multiple speak-
ers. We selected read speech data (citation words, sentences and
paragraphs) from sessions 1 to 101 for each speaker from JW11
to JW63 which resulting in a total of 4034 utterances from 46
speakers with an average duration of 5.72 seconds per utter-
ance. Note that we excluded speech sessions involving differ-
ent speaking styles (such as fast or slow speech, emphasized
speech, or stimuli that involved diadokinesis). We also omitted
speaker sessions where a speaker had to repeat an utterance, as
well as those which were found to contain severe pellet tracking
errors, as detailed in the XRMB Manual [34].

Table 1 shows the two protocols that we adopted in the eval-
uation, namely “ALL” and “L5S”. We used all sessions from
speaker JW11 to JW40 (26 speakers with 2295 utterances) as
the background data and select the session 11 (a paragraph ses-
sion) of each speaker from JW41 to JW63 (20 speakers) as the
target registration utterance. For the testing, protocol “ALL” se-
lects all the sessions (excluding session 11 in the target set) from
speaker JW41 to JW63 (a total of 20 speakers and 1719 utter-
ances) while protocol “L5S” only adopts those sessions that are
more than 5 seconds long (a total of 20 speakers and 840 utter-
ances). The reason to create a separate “L5S” protocol is that
some testing utterances in the “ALL” protocol are too short. In
order to perform Test Segment Score Normalization (T-norm),
we selected all other paragraph sentences (session 12,79,80,81,
totally 95 utterances) in the background set as the T-norm set.

To evaluate the performance of the acoustic-only baseline
as well as the acoustic-estimated-articulatory system, we fol-

Table 1: Data set partition for SRE experiments. Other L5S ses-
sions of JW41-63 denotes all the longer than 5 seconds sessions
(exclude 11) of speaker JW41-JW63.

Data sets & Protocol ALL L5S
Background: all sessions of JW11-40

√ √

Target: session 11 of JW41-63
√ √

Test: other sessions of JW41-63
√

Test: other L5S sessions of JW41-63
√

Tnorm: sessions 11,12,79,80,81 of JW11-40
√ √

lowed the protocol (as shown in Table 1) exactly. For the
speech-real-articulation system, a subset of data were removed
from the train, target and testing sets due to missing data in
some articulatory channels [34]. We name this modified “ALL”
protocol as “ALL-small” protocol. In “ALL-small” protocol,
each utterance is shorter and there are 1849, 18, and 1389 utter-
ances in train, target and testing sets, respectively.

3. Experimental Setup
3.1. Subject-independent inversion

We used the generalized smoothness criterion (GSC) for
acoustic-to-articulatory inversion [35] under a subject-
indepedent inversion setting [36]. The GSC estimates
articulatory parameters given acoustic features so that the
estimated parameters are optimal solution which satisfies
two conditions: (1) the estimated trajectories are smooth and
slowly varying and (2) the difference between the estimated
and original articulatory parameters weighted by similarity
metric of corresponding acoustic features is minimum. The
subject-independent inversion setting uses a probability feature
vector (PFV) for acoustic features. PFV is a normalized
likelihood score of the conventional acoustic feature vector, i.e.
MFCCs, to the 40 clusters of a general acoustic model (GAM)
[36]. The general acoustic model represents the variabilities in
acoustic space, which was created with TIMIT data [37].

In subject-independent acoustic-to-articulatory inversion,
the acoustic of an arbitrary test subject is converted to a PFV
which is then used to find the closest PFV from the chosen ex-
emplar whose articulatory data is used for training the inversion
mapping. It is expected that the PFV reflects the acoustic sound
produced by the test subject irrespective of the speaker, i.e., the
PFVs corresponding to a sound recorded from different speak-
ers including the exemplar should be similar to each other so
that the speaker variability is eliminated in the inversion. The
quality of this speaker variability elimination solely depends on
the generalizations of the GAM used to compute the probabil-
ity feature vector. Note that the GAM used in this work is built
using the TIMIT training corpus whereas the articulatory in-
version is done on XRMB corpus which may have a different
acoustics than that of TIMIT resulting in a poor elimination of
speaker variability during inversion. This in turn gets reflected
in the estimated articulatory features which when used for SRE
task provides inter-speaker discrimination in addition to MFCC.
Thus the SRE performance improvement (Sec4) in this work
may results from the non-linear mapping between acoustic and
articulatory spaces and the residual speaker specific information
present in the probability features computed during the subject-
independent acoustic-to-articulatory inversion.

3.2. Articulatory features

We used tract variables for articulatory parameters as in pre-
vious study [36]. The tract variables are estimated from an
Electromagnetic Articulography database [38], which includes
speech audio spoken by a native female speaker of American
English and its parallel articulatory data. The speaker was asked
to read 460 English sentences (approximately 69 minutes) iden-
tical to the sentences of MOCHA TIMIT database [39]. The
tract variables include nine articulatory parameters, such as lip
aperture (LA), lip protrusion (PRO), jaw opening (JAW OPEN),
the constriction degree (CD) and constriction location (CL) of
tongue tip (TT), tongue blade (TB), and tongue dorsum (TD).
The constriction location parameter for each tongue sensor is



Figure 1: Errorbar of pair-wise correlation coefficients between
session one estimated articulatory signals (after DTW) from all
46 speakers (all speak the same word sequence, totally 1081
pair-wise DTW and correlation). The nine dimensions of the
estimated articulation are LA, PRO, JAW OPEN, TTCD, TBCD,
TDCD, TTCL, TBCL, and TDCL, respectively.

the distance from a fixed point on the palatal line, which is man-
ually chosen by visual inspection, to the projected point of each
sample to the palatal line. We followed the definitions in the
previous study [36] for the other parameters, such as LA, PRO,
JAW OPEN, CDs.

Fig. 1 shows the error bar plot of pair-wise correlation co-
efficients between the estimated articulatory signals of the ses-
sion one (the data of 46 speakers) after temporal alignment on
the utterance pairs. All spoke the same word sequence in this
case, allowing us to compare the inter-speaker variations by
this method. Dynamic time warping (DTW) (applied on the
estimated articulation) was used to remove possible speaking-
rate confounds for this correlation study. Fig.1 shows that
tongue constriction location features (dim 7,8,9) have more
inter-speaker variations than tongue constriction degree features
(dim 4,5,6). Lip aperture and tongue body constriction location
(dim 1,8) show relatively less correlation, implying that their
inter-speaker variations are larger than the other tract variables.

Fig. 2 shows the estimated articulatory signals after DTW
on LA and TBCL of session one from the two-speaker pairs.
Within all the speaker pairs, the pair of speaker JW48 and 33
has the highest correlation, while the pair of speaker JW 48 and
JW 59 has the lowest one (JW48, 33 are female, JW59 is male).
We can see from Figs. 2 (a)-(b) that even with the highest cor-
relation, their estimated articulatory signals are not exactly the
same. We investigated this further and found that the mean and
variance values of these signals could differentiate between dif-
ferent speakers to a large extent, as shown in Figs. 2 (c)-(d).

In order to test our assumption that the mean and vari-
ance might carry the information of inter-speaker variability,
we performed a simple multi-class SVM experiment. Table 2
shows the performance of speaker classification with different
utterance-level features derived from estimated articulatory tra-
jectories. The number of speaker classes is 26. Sessions 12,
79, 80 and 81 of all 26 speakers in the background data set (this
is actually the T-norm set) was used for train set, and session
11 were used for test data. Table2 shows the performance of
3 systems based on different utterance-level features. By using
only mean and variance, system 2 achieve around 50% accu-
racy, indicating that they do carry valuable information regard-

Figure 2: Estimated articulatory signals (after DTW) of lip
aperture and tongue body constriction location of session one
from two-speaker pairs. The top plots are for the pair of speaker
JW 48 and 33, and the bottom plots are for the pair of speaker
JW 48 and 59. The first speaker pair shows high correla-
tion, while the other pair shows low correlation. (a) LA of file
TP001 2 from JW48 and 33; (b) TBCL of file TP001 2 from
JW48 and 33; (c) LA of file TP001 from JW48 and 59; (d) TBCL
of file TP001 from JW48 and 59.

Table 2: The performance of 26 speaker classes (closed set)
identification systems based on different utterance-level fea-
tures derived from estimated articulatory data.

Features & Systems 1 2 3
mean

√ √ √

variance
√ √

mean crossing rate
√

Accuracy 32% 48% 52%

ing inter-speaker variations. This result may also suggest to nor-
malize mean and variance of estimated articulatory parameters
for minimizing speaker-dependent information.

3.3. Front end processing

Wiener filtering [40] was adopted for X-Ray Microbeam data
to reduce stationary artifact noises. After voice activity detec-
tion (VAD), non-speech frames were eliminated and cepstral
features were extracted. Real and estimated articulatory sig-
nals were also truncated based on the VAD results and then re-
sampled at 100 hz. A 25ms Hamming window with 10ms shifts
was adopted for MFCC extraction. Each utterance was con-
verted into a sequence of 36-dimensional feature vectors, each
consisting of 18 MFCC coefficients and their first derivatives.
Cepstral mean subtraction and variance (MVN) normalization
were performed to normalize the MFCC and real articulatory
features to zero mean and unit variance on a per utterance basis.
The reason to perform MVN on the real articulatory signals is
that the baseline values of these sensors have already encoded
the vocal tract shape information of the speakers’ [34]. For the
estimated articulatory signals, we do not perform MVN since
they are calculated from speech signals and mean variance are
useful for speaker recognition. After MVN, MFCCs are con-



Table 3: Performance of MFCC-real-articulation system with
“ALL-small” protocol

ID Systems “ALL-small” (%)
OptDCF EER

1 MFCC-only 11.04 11.95
2 MFCC-real-articulation 9.98 10.15
3 Score level fusion 1+2 6.42 6.77

catenated with real or estimated articulatory signals to generate
the MFCC-real-articulation and MFCC-estimated-articulation
these two enhanced feature sets.

3.4. GMM baseline modeling

A UBM in conjunction with a MAP model adaptation approach
[14] was used to model different speakers in a supervised man-
ner. All the data in the background set was adopted to train a
256-component UBM, and MAP adaptation was performed us-
ing the training set data for each speaker. A relevance factor
of 16 was used for the MAP adaptation. We performed AT-
norm to calibrate the scores. Every testing utterance is scored
on every target sample to generate the trials. The reason to use
the GMM baseline here rather than the state-of-the-art I-vector
PLDA method is that the data set is too small to train a large
scale factor analysis model.

4. Experimental Results and Discussions
We evaluate the system performance in terms of identification
weighted accuracy, verification EER and old OptDCF cost value
[41]. Table3 shows the performance on the MFCC only as well
as the MFCC-real-articulation features systems with the “ALL-
small” protocol. We can see that by augmenting with the mea-
sured articulatory features (although mean and variance normal-
ized), the enhanced feature set reduced the EER from 11.95%
to 10.15%. Score level fusion of these two systems further re-
duced the EER to 6.77%, a 40% relative EER reduction com-
pared to the MFCC only system. Thus it is clear that, adding
real articulation information enhances the SRE performance.

Table 4 and 5 show the SRE performance when estimated
articulatory features are used in augmenting MFCCs in ”ALL”
and ”L5S” protocols respectively. Here we observe similar pat-
terns as in Table3. The MFCC-estimated-articulation features
also achieved 4% and 8% relative EER reduction for “ALL”
and “L5S” protocols, respectively. Score level fusion further
increased this relative reduction to 9% and 14%. However, it
should be noted that the improvement is not as big as the real
articulation case in Table3. The SRE performance improvement
using MFCC-estimated-articulation, though moderate, suggests
the potential benefit that estimated articulatory features may
provide in SRE task. This is particularly important because in a
real world SRE application, we have only access to the speech
signal. In such scenarios it is only articulatory inversion that
can provide information about speaker’s morphological char-
acteristics in terms of the estimated articulatory features. And
experimental results in this work show that estimated articu-
latory features indeed provide production oriented information
(complementary to the MFCCs) to discriminate different speak-
ers. This is also shown by the Detection Error Trade-off (DET)
curves in Fig.3 , which clearly demonstrates that adding esti-
mated articulatory features improves the SRE performance.

Table 4: Performance of MFCC-estimated-articulation system
with “ALL” protocol

ID Systems “ALL” (%)
OptDCF EER Accuracy

1 MFCC-only 8.68 8.73 89.65
2 MFCC-estimated-articulation 8.40 8.44 90.92
3 Score level fusion 1+2 7.83 7.91 91.74

Table 5: Performance of MFCC-estimated-articulation system
with “L5S” protocol

ID Systems “L5S” (%)
OptDCF EER Accuracy

1 MFCC-only 4.84 4.88 95.95
2 MFCC-estimated-articulation 4.34 4.52 97.14
3 Score level fusion 1+2 4.05 4.17 97.02

Figure 3: DET curves of speech only (ID1) and fusion (ID3)
results in Table 4 and 5.

5. Conclusion
We propose a practical feature-level fusion approach for speaker
verification using information from both acoustic and articu-
latory representations. We find that the speaker verification
performance improves by concatenating articulation features
from measured articulatory movement data during speech pro-
duction with conventional MFCCs. However, since access
to the measured articulatory movement is impractical for real
world speaker verification applications, we also experiment
with estimated articulatory features obtained through acoustic-
to-articulatory inversion. Specifically, we show that augment-
ing MFCCs with the estimated articulatory features also sig-
nificantly enhances the speaker verification performance. Our
future works cover investigating better inversion methods that
can maximize the inter-speaker articulatory variations as well
as applying the proposed MFCC-estimated-articulation feature
to the NIST SRE data sets with the state-of-the-art methods.
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