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Abstract—Drilled shaft is an important substructure 

foundation in building construction. A drilled shaft needs to be 

placed precisely in high accuracy and satisfy the diameter 

precision requirement. In order to measure the verticality and 

the diameter of a shaft, the M-superimposed Gaussian Echoes 

Model (GEM) is used to estimate the time of flight (TOF) of 

ultrasound. Compared to the conventional threshold and cross-

correlation based methods, GEM method has higher resolution 

and higher signal-to-noise ratio. However, the GEM method is 

computational expensive. In this paper, we propose an Active 

Shape Models (ASMs) tracking based algorithm to estimate the 

time of flight (TOF) of the ultrasound testing inside a cylindrical 

container. It extracts the pattern of the first several arriving 

peaks and troughs in a more flexible way with better efficiency 

than GEM.  
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I.  INTRODUCTION 

Ultrasonic testing method is widely applied in drilled shaft 
testing, which depends on the accurate estimation of the 
ultrasonic time of flight (TOF). By estimating the diameter 
and verticality of the drilled shaft using TOF, deformation of 
the drilled shaft can be detected. Many existing works have 
been proposed to estimate the ultrasonic TOF, for instance, the 
threshold based method [1][2], the cross-correlation method 
[3] and the model based method [4]. Among these three 
methods, the model based method with Gaussian Echo Models 
(GEMs) achieves the highest resolution [4]. Expectation 
Maximization (EM) algorithm [5][6] or Quasi Maximum 
Likelihood [7] algorithm is used to estimate the GEM model 
parameters. However, these estimation algorithms require 
parameter initialization and heavier computational load than 
the conventional threshold or cross-correlation based methods.  

The above-mentioned methods are all detector based 
algorithms, which assume the consecutive sample sequences 
are independent in generation and sampling. However, this 
may not be always true since the ultrasonic transducers are 
pulled up steadily from the bottom of a drilled shaft, and the 

property of slurry change slowly in specific depth. We here 
consider the correlation between consecutive sample 
sequences and propose a tracking based algorithm with Active 
Shape Models (ASMs) as template. It extracts the pattern of 
the first several arriving peaks and troughs in a more flexible 
way than GEMs.  

The differences between our method and GEMs are as 
follows. First, we focus on the representative points of the 
ultrasound wave shape rather than the exact parameters of an 
ultrasonic signal. Second, we extract the first several peaks 
and troughs of the ultrasound waves rather than the entire 
observed data sequence. Third, we train a template to track 
frame-by-frame rather than analyzing each sample sequence 
independently. 

The rest of this paper is organized as follows: Section II 
explains the training of ASMs, Section III describes the 
tracking algorithm of ultrasonic TOF using ASMs. Section IV 
introduces the experimental setup and Section V discusses the 
results, followed by the conclusions in Section VI. 

II. TRAINING ACTIVE SHAPE MODELS OF ULTRASONIC 

SIGNAL 

Under the assumption that the transducers are pulled up 
steadily from the bottom of the drilled shaft, the sample 
sequences of consecutive sampling depths share some 
similarities, especially in the first few peaks and troughs. This 
motivates us to explore the shape patterns of ultrasonic signal 
to estimate the TOF, and find a more effective model to 
describe the shape of ultrasound. Active Shape Model (ASM) 
was developed by Tim Cootes and Chris Taylor in 1995 and is 
widely used in computer vision applications. It is a kind 
of statistical model describing the object shapes. It iteratively 
deforms to fit an object template. The shapes are constrained 
by the point distribution model (PDM) and can vary only in 
ways which were recorded in the training data [8]. 

In our experiment, we collect ultrasonic signals with 
equipment mentioned in Section V and convert the ultrasound 
signal sequences into a series of consecutive 2D images by 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Shape
https://en.wikipedia.org/wiki/Point_distribution_model
https://en.wikipedia.org/wiki/Active_shape_model#cite_note-Cootes-1


 

mapping the index of time and the voltage of the ultrasound 
signal to the pixel coordinate via linear transformation. After 
the conversion, representative points are extracted from the 
first few peaks and troughs to train an Active Shape Model. 
For a 2D image, we represent n representative points {xi}, 
each point is (ui, vi) for a single point, forming a 2n element 
vector x where 
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By aligning a set of training shapes into a common coordinate 
frame and performing dimension reduction using Principal 
Component Analysis (PCA), we get the ASMs as follows 
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P is the first t principle components of a covariance matrix 
S, and b is a vector of weight under the constraint that  

         ii 3b 
                       (7) 

λi is the corresponding eigenvalue. 

In our work, we try different configurations to extract 
representative points, Fig.1 shows representative points from 
multiple sequences sampled at 17 positions uniformly 
distributed in the 2D image, and Fig.2 demonstrates the 
corresponding normalized mean shape. In the experiment, we 
also try different numbers of representative points as well as 
the different distributions of their positions in the shape 
contour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. TRACKING ULTRASONIC TOF USING ASMS 

In contract to the detector based algorithms, our tracking 
based algorithm can perform faster and each sample sequence 
can be used as a reference for the subsequent sequences.  

Before tracking, we first locate the potential starting point 
of each sample sequence, and extract the region that last for 
300us to construct consecutive 2D images. Then the ASMs 
template is aligned to the image coordinate. Assuming X is the 
model instance in image, it is given by  

          
)(,,, PbxTX sYtXt            (8) 
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The initial estimation of the pose parameters and shape 
parameters are achieved using the threshold based method. In 
the tracking step, we calculate the adjustment along a normal 
to the model boundary toward the strongest image edge by 
minimizing the term in (10), via modifying the pose 

parameters ),,,( sYtXtp  , and the shape parameters b, the 
best location of the point set Y is found to match the model 
instance X. 

2

,,, )(min PbxTY sYtXt  
             (11) 

Because of the time delay and attenuation of ultrasound in 
propagation, the position convergence of the representative 
points in the first peak is faster than the following peaks and 
troughs. This unbalanced convergence is shown in Fig.5. We 
simply multiply a weighted vector when calculating the Error 
of Shape (EOS) and place more importance on the first peak 
and trough, which is more important for estimating TOF. The 
tracking process is shown in Fig.3, where the red dots 
represent the previous position and the blue dots represent the 
estimated position by optimizing equation (10). Fig.4 is the 
contour of the boundary of the ultrasound when the tracking is 
converged. The first point of the ASMs model is 
corresponding to the point for estimating TOF. After tracking 
all the frames, we get a sequence of points to estimate TOF of 
different  ultrasound sample sequence, which are represented 

 
Fig.2 Normalized mean shape 

Fig.1 Representative points   



              

as {k0, k1, ..., km}, that can be transferred into time coordinate 
to represent the TOF. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL SETUP 

The experimental system consists of an ultrasonic 
transducer set with a center frequency of about 40kHz. Our NI 
DAQ equipment including Analogy to Digital Convector 
(ADLINK PXIe 9848) with the sampling frequency up to 
10MHz, a signal generator (NI PXI 5412) for triggering the 
emitting transducer, and a I2C to USB (NI8541) convertor to 
collect the signal from electronic compass LSM303DLH. The 
test was performed inside a 1.5m height bucket with a 
diameter of 80cm to simulate a drilled shaft underground. 

By manually pulling up the transducers set in height, the 
depth counter triggers the signal generator to emit the 
ultrasonic transducer. The ultrasonic wave is reflected from 
the wall of the bucket and received by an 8-direction receiver. 

V. RESULTS AND DISCUSSION 

We first do a single pulse test mainly focusing on the 
accuracy of TOF by placing the transducer set outside the 
bucket, and using a wall to do the test on each channel 
separately. Then we do tests on consecutive sequences by 
continuously pulling up the transducers set vertically. A laser 
Distance Meter (CEM LDM-35) with the resolution of 
±1.5mm used to generate the ground truths. We further 
compare the results with the ASMs based, threshold based, as 
well as the GEMs based method. 

As GEMs are formulated to describe a smooth curve, in 
order to gain a comparable value describing the performance 
of estimated shape between the ASMs based and GEMs based 
method, we extract a number of corresponding points in the 
estimated ultrasound curves estimated by GEMs method, 
which have the same index with the representative points in 
ASMs. Table I is the comparison of each method, where E 
refers to the absolute error of TOF, Ɛ refers to the relative 
error, N refers to the average number of required iterations and 
EOS denotes the sum of Euclidean distance of representative 
points between the estimated shape and the ground truth. 

Because we only extract limit representative points to 
describe the shape, some information of the received 
ultrasound signal is ignored, and the EOS of ASMs method is 
about twice of that of GEMs. Nonetheless, as we only focus 
on the first representative point of the ASMs, whose position 
in x axis of the pixel coordinate can be translated back to time 
for TOF estimation, we can see that the relative error of TOF 
is about 2.11%, while that of threshold based method and 
GEMs based method are about 3.22% and 1.27% respectively.  

The average error of TOF of ASMs is higher than that of 
GEMs. By transferring the coordinate in image of the 
representative point into distance metric, the average error of 
distance of GEMs is 6.12mm while that of ASMs is 10.22mm. 
Both satisfy the range of industrial specifications 50mm [9] 
[10] [11]. Therefore, the ASMs tracking based method can 
perform faster than GEMs based method with a slightly lower 
resolution but calculation still meets the requirement of 
current industrial specification.  

 

 

 

Fig.5 Unblanced convergence 

 

 

Fig.3  Tracking process 

 

Fig.4 Contour of the ultrasound boundary 

 



TABLE I.  COMPARISON OF EACH METHOD 

 

 

 

 

 

 

 

VI. CONCLUSION 

In this paper, we focus on the ultrasonic testing methods of 
drilled shaft and propose the tracking based Active Shape 
Models (ASMs) method to estimate the ultrasonic time of 
flight (TOF) inside a cylindrical capacity. By focusing on the 
representative points, and configuring their distribution and 
number, we train a template within the ASMs framework to 
track the TOF of ultrasonic signal. We compared our tracking 
based ASMs algorithm with the simplex threshold based 
method and GEMs model based method. Result shows that 
our method can provide a faster estimation of TOF than GEMs 
method and a slightly higher resolution than the threshold 
based algorithm, which is suitable and efficient for current 
industrial specification. 
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 Single Sequence Consecutive Sequences 

(Vertical wall) 

Consecutive Sequences 

(Tilting wall) 

 TSa GEMs ASMs TS GEMs ASMs TS GEMs ASMs 

TOF E(us) 46.5 18.5 32.8 48.

2 

18.5 29.5 47.5 19.1 30.9 

TOF Ɛ (%) 3.2  1.3  2.2  3.3  1.3 2.01  3.2  1.3  2.1  

N 1 152 42 1 147 34 1 143 37 

EOS * 42 83 * 34 89 * 39 87 

  
a. Threshold based method 
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