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Abstract
This paper presents a novel automatic speaker age and gender
identification approach which combines five different methods
at the acoustic level to improve the baseline performance. The
five subsystems are (1) Gaussian mixture model (GMM) sys-
tem based on mel-frequency cepstral coefficient (MFCC) fea-
tures, (2) Support vector machine (SVM) based on GMM mean
supervectors, (3) SVM based on GMM maximum likelihood
linear regression (MLLR) matrix supervectors, (4) SVM based
on GMM ‘Tandem’ supervectors, and (5) SVM baseline sys-
tem based on the 450-dimensional feature vectors including
prosodic features at the utterance level provided by the chal-
lenge organizing committee. To improve the overall classifi-
cation performance, fusion of these five subsystems at the score
level is performed. The proposed fusion system achieves 52.7%
unweighted accuracy for the joint age-gender classification task
and outperforms the GMM-MFCC system and SVM baseline,
respectively, by 9.6% and 8.2% absolute improvement on the
2010 Interspeech Paralinguistic Challenge aGender database.
Index Terms: Age, Gender, Gaussian mixture models, Support
vector machine, Maximum likelihood linear regression, Tan-
dem, Supervector, Score level fusion

1. Introduction
Automatic recognition of paralinguistic information, such as
speaker identity, gender, age range, emotional state, etc., can
guide human computer interaction systems to automatically
adapt to different user needs. Identifying the age and gender
information of a speaker given a short speech utterance is a chal-
lenging task and has gained significant attention recently.

Four approaches for age and gender recognition from tele-
phone speech have been compared [1]; namely, a parallel
phoneme recognizer system to compare the Viterbi decoding
scores for each category specific phoneme recognizer, a system
using dynamic Bayesian networks to combine several prosodic
features, a system based solely on linear prediction analysis,
and a GMM system based on MFCCs. It was reported in [1]
that the parallel phone recognizer system performs as well as
human listeners but loses performance on short utterances while
the system based on prosodic features, such as F0, jitter, shim-
mer and harmonics-to-noise-ratio, has shown relative robust-
ness to the variation of the utterance duration. More recently,
novel acoustic level features [2, 3] and lexical level features [4]
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have been proposed to improve the recognition performance.
Furthermore, techniques from speaker verification applications,
such as GMM-SVM mean supervector systems [5], nuisance at-
tribute projection (NAP), and anchor models [6], have been suc-
cessfully applied to speaker age and gender identification tasks
to enhance the performance of acoustic level modeling. Due to
the different aspects of modeling, combining different classifi-
cation methods together can significantly improve the overall
performance [7, 8].

In this paper, we focus on acoustic-level approaches for
speaker age and gender identification. The GMM-SVM mean
supervector method is extended by two kinds of supervectors,
namely maximum likelihood linear regression (MLLR) matrix
supervector [9] and Tandem posterior probability (TPP) super-
vector [10, 11]. Generally, in the GMM-SVM mean supervec-
tor method, maximum a posteriori (MAP) adaptation is used
to adapt the means of a GMM Universal Background Model
(UBM), and the corresponding feature vectors are the Gaus-
sian supervectors (GSVs) which consist of the stacked adapted
means. The idea of MLLR is to estimate an affine transforma-
tion to adapt the means of a speaker independent large vocab-
ulary speech recognition (LVCSR) system to a given speaker.
Thus the MLLR matrix itself contains speaker specific charac-
teristics and the entries of this affine transformation matrix can
be used as feature supervectors for speaker modeling [9] and
age-gender recognition. MLLR can also be used to adapt the
means of a GMM UBM to generate feature supervectors which
is more efficient [12]. For the TPP method, a UBM is trained
as an age and gender independent model; thus each component
of the UBM can be considered to be modeling some underlying
phonetic sounds [11]. It is also shown in [11] that the utter-
ances from different speakers should get different average Tan-
dem posterior probability (TPP) on the same gaussian compo-
nent. This inspired us to explore the potential to consider the
TPP supervector as a histogram describing the characteristics
of different age and gender groups. Thus, we concatenate these
average Tandem posterior probabilities from all the components
of the UBM into a TPP supervector for SVM modeling.

In this work, we use MAP adaptation, MLLR adaptation,
and TPP feature extraction to map each age and gender spe-
cific input utterance into three different supervectors for SVM
classification. All three methods share the same framework of
using a GMM UBM as a front end and thus combining these ap-
proaches is efficient in terms of computational cost. As shown
in Figure 1, score level fusion of the three methods together
with the GMM baseline method is performed to utilize the com-



plementary information of each method. Moreover, combining
these four MFCC based methods with the SVM baseline system
using prosodic features can further enhance the performance.

The remainder of the paper is organized as follows. De-
scription of the corpus and classification task is provided in Sec-
tion 2. In Section 3, each subsystem as well as the score level
fusion method is explained. Section 4 presents experimental
results and Section 5 provides conclusions.

2. Corpus and Classification Task
The database used to evaluate the proposed approach is aGen-
der database [13]. The task is to classify a speaker’s age and
gender class which is defined as follows: children < 13 years
(C), young people 14−19 years (YF/YM), adults 20−54 years
(AF/AM), and seniors> 55 years (SF/SM). The mean and stan-
dard deviation of speech duration after voice activity detection
(VAD) in the training and development data sets of the aGen-
der database are 1.13± 0.86 seconds and 1.14± 0.87 seconds,
respectively. Thus it is indeed a short length speech database.
The training data set of the aGender database (471 speakers)
was divided into 2 parts: data from the last 20 speakers in the
alphabet order of each age and gender class was used for MAP
and MLLR adaptation (140 speakers) and the rest of the data
(331 speakers) was used for UBM training. In this paper, these
2 partitions are denoted as the training set and the UBM set, re-
spectively. The development data set from the aGender database
(20548 utterances) is adopted as the evaluation set in this paper.
Finally, the testing data set from the aGender database (17332
utterances) is evaluated and the results are reported in the end
of Section 4. The details about the aGender database and the
evaluation methods are provided in [13].

3. Methods
The overview of the proposed approach is demonstrated in Fig-
ure 1. In this section, we present the details of each subsystem
as well as the score level fusion method.

3.1. GMM baseline system

The features in our system are 13 dimensional MFCCs (includ-
ing C0) and their first and second order derivatives, which are in
total 39 dimensional coefficients per frame. After voice activity
detection, non-speech frames were eliminated and the 39 di-
mensional MFCC features were extracted. Cepstral mean sub-
traction and variance normalization were performed to normal-
ize the MFCC features to zero mean and unit variance on a per-
utterance basis. In the proposed work, since the training data for
each age and gender class is too limited to train a good GMM,
a UBM in conjunction with a MAP model adaptation approach
[14] was used to model different age and gender classes in a
supervised manner. All the data in the UBM set was adopted
to train a 256-component UBM, and MAP adaptation was per-
formed using the training set data for each age and gender class.
A relevance factor of 12 was used for the MAP adaptation.

3.2. GMM-SVM mean supervector system

The feature extraction and UBM training were done in the
GMM baseline system. Means of Gaussian components were
adapted by MAP adaptation for each UBM set, training set, and
evaluation set utterance. Then the corresponding GMM super-
vectors, created by concatenating the mean vectors of all the
Gaussian components, were modeled by SVM. The supervec-
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Figure 1: System overview.

tor was normalized by the corresponding standard deviation and
weight to fit the supervector kernel [15]. We arbitrarily added
one dummy dimension with value 1 at the head of each mean su-
pervector so that all the support vectors can be collapsed down
into a single model vector and each target score can be calcu-
lated by a simple inner product which makes this framework
computationally efficient [15]. The dimension of the GMM
mean supervector is 1 + (39× 256) = 9985. In addition, there
are more than 30000 utterances in the training and UBM sets
which makes the SVM training data set too large to be handled
efficiently. Instead of directly training a multi-class SVM clas-
sifier using all the high dimensional supervectors, we adopted
a two stage framework [16] which can solve the practical lim-
itation of computer memory requested by large database train-
ing. First, based on the supervector samples from the UBM
set, multiple binary age and gender group based discrimina-
tive classifiers (in our case, 21 1vs1 classifiers plus 7 1vsRest
classifiers) were trained by our modified version of SVMTorch
[17] and employed to map the supervectors into discriminative
aGender characterization score vectors (DACSV) [16]. Since
the scoring function for each binary model is just an inner prod-
uct, the mapping from supervectors to DACSV vectors is com-
putationally efficient. Furthermore, a back end SVM classifier
was trained using LIBSVM [18] to model the probability distri-
bution of each target age and gender class in the DACSV space
using training set supervector samples.

3.3. GMM-SVM MLLR supervector system

For each utterance in the training set and the evaluation set,
MLLR adaptation on the UBM was performed [9, 12]. The cor-
responding MLLR matrix supervector was used for SVM mod-
eling. Since the dimension of the MLLR matrix supervector is
39× 40 = 1560 which is considerably smaller than the dimen-
sion of GMM mean supervector, we used all the supervectors



from the training set to train a multi-class SVM classifier and
performed scoring on the evaluation set. Linear Discriminant
Analysis (LDA) was employed to perform dimension reduction
on the MLLR supervector space, and the linear kernel multi-
class SVM classifier was trained by LIBSVM [18].

3.4. GMM-SVM TPP supervector system

For each utterance in the training and evaluation sets, TPP fea-
ture extraction is performed on the UBM. Given a frame-based
MFCC feature xt and the GMM-UBM λwith M Gaussian com-
ponents (each component is defined as λi),

λ = {wi, µi,Σi}, i = 1, · · · ,M, (1)

the posterior probability is calculated as follows:

P (λi|xt) =
wipi(xt|µi,Σi)

ΣM
j=1wjpj(xt|µj ,Σj)

. (2)

This posterior probability can also be considered as the normal-
ized likelihood ratio. The larger the posterior probability, the
better this Gaussian component can be used to represent this
feature vector. Thus the TPP supervector is defined as follows:

TPPsupervector = [b1, b2, · · · , bM ] (3)

bi =
1

T
ΣT

t=1P (λi|xt). (4)

Since the TPP supervector is a probability distribution over
all the Gaussian components, it is appropriate to use KL-
divergence when measuring the similarity between vectors. Fig-
ure 2 shows that the symmetric KL Divergence between TPP
templates and supervectors which are from the same class is
statistically lower than the one between mismatched supervec-
tors. Thus, based on the discriminative information from KL di-
vergence, TPP supervectors do contain age and gender specific
information. However, because a matrix of kernel distances di-
rectly based on symmetric KL divergence does not satisfy the
Mercer conditions, a linear kernel multi-class SVM classifier
was trained by LIBSVM [18] using TPP supervector samples
from the training set.

3.5. SVM baseline system

The SVM baseline system [13] is provided by the 2010 Paralin-
guistic Challenge, which is based on 450 dimensional acous-
tic features per utterance. The details of feature extraction and
SVM modeling are presented in [13]. Since different kinds of
prosodic features, such as F0, F0 envelop, jitter, and shimmer,
are also included, this system can capture age and gender in-
formation from a prosodic level. Combining this system with
our MFCC feature based systems can further improve the per-
formance.

3.6. Score level fusion

Let there be K input subsystems (as shown in Figure 1, K = 5
in this work) where the kth subsystem outputs its own poste-
rior probability vector lk(xt) for every trial (log-likelihood ra-
tio (LLR) is used for the GMM baseline subsystem). Then the
fused score vector ĺ(xt) is given by:

ĺ(xt) =

K∑
k=1

βklk(xt) (5)

The weight, βk, can be determined either manually or automat-
ically by using the inverse entropy as the weight [19].
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Figure 2: Symmetric KL divergence between TPP templates and
TPP supervectors in the training set.

4. Experimental Results
The evaluation set is used to evaluate the performance of each
subsystem as well as the fusion approach. In Table 1, both un-
weighted and weighted accuracy on average per class (UA/WA,
weighting with respect to number of instances per class) for
each of the 3 different classification tasks (7 class age & gender
{C,YF,YM,AF,AM,SF,SM}, 4 class age {C,Y,A,S} and 3 class
gender {C,F,M}) are presented. The details of these 3 tasks as
well as the evaluation method are provided in [13].

Table 1: Performance of each method and the fusion approach
(MFuse and AFuse denote manually and automatically tuned
weight in score level fusion, respectively.)

age & gender age gender
ID & System UA WA UA WA UA WA
1.GMM base 43.1 42.4 47.0 45.0 76.0 81.7

2.mean supervector 42.6 43.1 46.0 45.5 75.6 82.8
3.MLLR supervector 36.2 36.1 40.5 41.1 68.4 75.8

4.TPP supervector 37.8 38.0 41.6 41.5 71.2 79.6
5.SVM base 44.6 45.0 47.4 46.7 77.6 85.2
MFuse 1+2 45.2 45.3 47.4 48.7 77.6 83.7
MFuse 3+4 40.3 40.3 44.1 43.5 73.4 81.0

MFuse 1+2+3+4 50.4 50.5 53.7 51.8 83.7 89.0
MFuse 1+2+3+4+5 52.7 53.0 55.5 54.0 84.7 90.3
AFuse 1+2+3+4+5 51.2 51.4 54.6 52.5 84.7 89.7

It is shown in Table 1 and Figure 3 that GMM baseline,
SVM baseline, and GMM-SVM mean supervector systems out-
perform the other 2 systems (GMM-SVM MLLR supervector
system and GMM-SVM TPP supervector system) in all 3 tasks.
However, by combining different methods together, significant
improvements in both UA and WA are achieved for all the 3
classification tasks. The automatically tuned weight based score
level fusion (AFuse) approach also increased the classification
accuracy dramatically compared to each individual subsystem.
Thus combining these 5 methods together for speaker age and
gender classification is useful.

In Figure 3, we can see that the improvement is bigger for
short utterances which might be due to the dominant role of



Table 2: Confusion matrix for 7 class age and gender task

C YF YM AF AM SF SM
C 67.0 13.9 5.8 5.2 1.1 6.4 0.7

YF 16.4 59.0 0.5 16.0 0.1 7.7 0.2
YM 0.2 0.4 57.1 1.8 17.6 3.3 19.7
AF 4.0 25.0 0.9 37.9 0.2 31.8 0.1
AM 0.2 0.0 34.5 1.5 25.4 1.3 37.1
SF 4.7 8.9 0.9 27.9 0.3 56.4 0.9
SM 0.1 0.0 15.3 0.5 15.6 2.6 65.9
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Figure 3: Accuracy for different valid speech durations in 7
class age and gender task. (The mean and standard deviation of
valid speech duration in evaluation set are 1.14 and 0.87 seconds.)

short duration speech in this data set. Moreover, according to
the increase of utterance duration, the performance of MLLR
and TPP supervector based systems did not improve dramati-
cally. It might be because the training utterances (1.13 seconds
average) were too short to map a good quality supervector. Val-
idating these 2 methods on a longer duration database is impor-
tant for further work. The small decrease at 4.5 seconds dura-
tion (Figure 3) is consistent with the results in [8] which might
be due to the sparse data in that duration interval.

The confusion matrix for the 7 class age and gender task is
shown in Table 2. We can see that children, youth and senior
groups perform better than adult group and the main confusion
comes from speakers with the same gender of other age groups.
This result is consistent with the big gap between age classifi-
cation accuracy and gender classification accuracy in Table 1.

By using the official testing data set from the aGender
database as the evaluation data, our AFuse system achieved
50.12% UA (47.52% WA) and 82.38% UA (86.27% WA) on
the age recognition and gender recognition tasks, respectively.

5. Conclusions
In this work, we proposed a novel automatic speaker age and
gender identification approach which combines five different
acoustic level modeling methods. GMM baseline, GMM-SVM
mean supervector, GMM-SVM MLLR supervector, GMM-
SVM TPP supervector, and SVM baseline subsystems are com-
plementary with each other and fusing these five methods to-
gether on the score level improves the classification accuracy
significantly. Future work includes investigating the GMM-

SVM Constrained MLLR supervector method, combining other
prosodic or phonetic level methods, and validating the results
with a relatively larger and longer duration database.
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