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Abstract
The support vector machine (SVM) framework based on

generalized linear discriminate sequence (GLDS) kernel has
been shown effective and widely used in language identifica-
tion tasks. In this paper, in order to compensate the distortions
due to inter-speaker variability within the same language and
solve the practical limitation of computer memory requested by
large database training, multiple speaker group based discrim-
inative classifiers are employed to map the cepstral features of
speech utterances into discriminative language characterization
score vectors (DLCSV). Furthermore, backend SVM classifiers
are used to model the probability distribution of each target
language in the DLCSV space and the output scores of back-
end classifiers are calibrated as the final language recognition
scores by a pair-wise posterior probability estimation algorithm.
The proposed SVM framework is evaluated on 2003 NIST Lan-
guage Recognition Evaluation databases, achieving an equal er-
ror rate of 4.0% in 30-second tasks, which outperformed the
state-of-art SVM system by more than 30% relative error re-
duction.
Index Terms: spoken language identification, support vector
machine, score vector modeling

1. Introduction
The goal for language identification (LID) is to determine the
language spoken in a given segment of speech. Approaches
using phonotactic information, namely PRLM (phoneme rec-
ognizer followed by language models) and PPRLM (parallel
PRLM), have been shown quite successful [1, 2]. In PPRLM, a
set of tokenizers are used to transcribe the input speech into
phoneme strings or lattices [3, 4] which are later scored by
n-gram language models. Lately, due to the introduction of
shifted-delta-cepstral (SDC) acoustic features, promising re-
sults using Gaussian Mixture Model (GMM) were reported [5].
The acoustic approach was further improved by using discrimi-
native Maximum Mutual Information (MMI) training for acous-
tic modeling [6]. It is generally believed that phonotactic fea-
ture and spectral feature provide complementary cues to each
other, and therefore in both NIST LRE 2003 and 2005, the best
systems were combinations of phonotactic and acoustic recog-
nizers whose outputs were fused together to generate the final
scores.

Several recent approaches using SVM [7, 8, 9, 10, 11] have
attracted much attention as an alternative solution. SVM as a
classifier maps input feature vector into high-dimensional space
then separate classes with maximum margin hyperplane. Fur-
thermore, its training criteria balance the reduction of errors on
training data and the generalizability of the unseen data which
makes it generalizes well with small quantities of trainning data.

In phonotactic modeling, the score vector modeling frame-
works that map phoneme characteristics into score vectors
based on pair-wise strategy and employ a backend SVM classi-
fier to identify each language has demonstrated superior perfor-
mance over generative language modeling framework [7, 8, 9].

In acoustic modeling, the SVM classifiers with GLDS ker-
nel have shown very competitive performance in the domain
of SDC features [10]. The GLDS kernel is based on an ex-
plicit expansion in feature space using a monomial basis which
gives a very concise way of storing and scoring target models.
Nevertheless, because of the high dimension property of each
feature vector and the practical limitations of computer mem-
ory, the training samples are limited which is not suit for large
database training. Recently, with the desire of LID system to be
speaker independent, a set of speaker dependent anchor GMM
models [11] were trained on SDC features for every speaker
in every language, and backend discriminative SVM classifiers
are adopted to identify the spoken language based on the anchor
GMM outputs. The results show that it is capable to achieve ro-
bust speaker independent language identification by compensat-
ing for intra-language and inter-speaker variability. However,
for every test speech segment, scoring on these entire anchor-
GMM language models are computationally expensive and suf-
ficient training data for each person can not be guaranteed in
practical application.

In this paper, we study how to efficiently achieve ro-
bust speaker independence in LID system with large training
database. We propose to use multiple speaker group based
GLDS kernel classifiers to construct the discriminative lan-
guage characterization score vector (DLCSV) and by fusing
multiple scores with different weights in DLCSV space to gen-
erate a new scoring function with less speaker dependence.
Hence, a backend discriminative classifier followed by poste-
rior probability estimation method is adopted.

The organization of the remainder of this paper is as fol-
lows. Section 2 describes the GLDS kernel. Section 3 explains
our algorithm in detail. Corpora and evaluation methods are
given in section 4. Section 5 presents the performance of pro-
posed method and Section 6 follows with a brief summary.

2. Support vector machine with GLDS
kernel

An SVM is a two-class classifier constructed from sums of a
kernel function K(·, ·):

f(x) =

NX
i=1

αitiK(x, xi) + d (1)

where N is the number of support vectors, ti is the ideal out-
put, αi is the weight for the support vectors xi, αi > 0 and

INTERSPEECH 2007

August 27-31, Antwerp, Belgium350



PN
i=1 αiti = 0. The ideal outputs are either 1 or −1, depend-

ing upon whether the corresponding support vector belongs to
class 0 or class 1. By using kernel functions, SVM can be gen-
eralized to non-linear classifiers by mapping the input features
into a high dimensional feature space.

The original form of the GLDS kernel [10] involves a poly-
nomial expansion b(x), with monomials (between each combi-
nation of vector components) up to a given degree p. The GLDS
kernel between two sequences of vectors X = {xt}t=1···Nx

and Y = {yt}t=1···Ny is denoted as a rescaled dot product be-
tween average expansions:

K(X, Y ) =
1

Nx

NxX
i=1

b(xi)
t ·R−1 · 1

Ny

NyX
j=1

b(yj) (2)

= bx
t ·R−1 · by (3)

where R is the second moment matrix of polynomial expan-
sions and its diagonal approximation is usually used for more
efficiency. In addition, the scoring function of GLDS kernel
can be simplified with the following compact technique [10].

f({xi}) = (

NX
i=1

αitiR
−1

bi + d)t · bx = wt · bx (4)

Where bi
t

are the support vectors, d is denoted as [d 0 · · · 0]t.
Therefore, by collapsing all the support vectors down into

a single model vector w , each target score can be calculated by
just a simple inner product which makes this framework suited
for those applications with dozens of target languages and criti-
cal request of computation complexity very well. However, due
to the high dimension property of expansion and the practical
limitations of computer memory, the training samples are lim-
ited.

3. The proposed LID system
Our focus is on practical considerations that make SVM-SDC
technology more effective. In the proposed method described in
figure1, multiple speaker group dependent GLDS kernel SVM
classifiers are trained to map the expanded cepstral features of
speech segments into DLCSVs, which represent both discrimi-
native language information and inter-speaker variability within
the same language. Therefore, backend discriminative SVM
classifiers are employed to model the probability distribution
of each target language in this DLCSV space. Because back-
end classifiers’ output scores are not log-likelihood values, we
finally transform the SVM output scores into posterior proba-
bilities as the final language scores.
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Figure 1: System overview

3.1. Features

The features in our system are 7 MFCC coefficients (including
coefficient C0) concatenated with SDC 7-1-3-7 feature, which
are in total 56 dimension coefficients per frame. This repre-
sentation is selected based upon prior excellent results with this
choice and the improvement of adding direct coefficients with
the C0 coefficient in this feature vector was studied in [6]. In
this paper, SDC feature refers to this 56 dimension feature. Af-
ter speech activity detection [12], nonspeech frames are elimi-
nated and 56 dimension SDC features are extracted. Then fea-
ture warping [13] and cepstral variance normalization are ap-
plied on the previously extracted SDC features which results
that each feature is normalized to mean 0 and variance 1 on a
per-utterance basis.

3.2. Score vector modeling

Score vector modeling approach [7] has been successfully ap-
plied to spoken language identification. Each spoken utterance
is converted into a feature vector with its attributes representing
the statistics of language information, thus a discriminative vec-
tor space classifier is built in this score vector space to identify
the target language. It is generally agreed upon that the fusion
of multiple phonotactic features improves performance. For in-
stance, the PPRLM approach uses parallel recognizers to derive
multi phonotactic features.

Recently, SVM classifiers are employed as backend in
speaker characterization vectors (SCVs) space to discrimi-
nate between the target language’s SCVs and the SCVs from
the non-target languages. Promising experiment results show
that mapping speech segments into SCVs by thousands of
speaker-specific anchor-GMM language models can improve
the speaker independence of LID systems [11]. However, even
using fast score, scoring with thousands of anchor-GMM mod-
els is very costly in computation complexity.

In this paper, standard SVM-SDC framework [10] is gener-
alized by employing multiple GLDS kernel classifiers to convert
each speech utterance into a score vector, which is the combi-
nation of all classifiers’ output scores, and represents the extent
of matching between each input utterance and all the language
specified constraints on the margins. As demonstrated in fig-
ure1, both pair-wise and parallel one-versus-the-rest discrim-
inative classifiers are trained based on the GLDS approach. L
and N denote the number of target languages and the number of
subgroups in each language respectively and the total numbers
of GLDS kernel classifiers are Ntotal = L×(L−1)

2
+ L × N .

CallFriend corpus used for training is extremely large and each
SDC feature is explicitly expanded into high-dimension space,
thus the training samples are limited for each GLDS classifier.
Thereby, we divide each target language data of the CallFriend
Corpus into N subgroups, and each of which represent a set of
different speakers speaking the same language. By training each
group-based one-versus-the-rest or pair-wise classifiers sepa-
rately, the problem regarding memory limitation is fixed. More-
over, experiments show that significant performance improve-
ment can be obtained by compensating these distortions in the
domain of DLCSVs which result from the inter-speaker vari-
ability presented by different speaker groups within the same
language.

SVMTorch [14] is used to train all these classifiers with
GLDS kernel. After discriminative training, multiple classifiers
are generated, by combining these multiple classifiers’ output
scores together, each input speech utterance can be mapped into
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a single DLCSV score vector.
A backend radial basis function (RBF) kernel SVM clas-

sifier is carried out to discriminate target languages based on
the probability distribution in this DLCSV space. The choice
of RBF kernel is based on its nonlinear mapping function and
small parameters to tune. Furthermore, the linear kernel is a
special case of RBF and the sigmoid kernel behaves like RBF
for certain parameters [15]. Note that the training data of this
backend SVM classifier comes from development data rather
than the data used for training GLDS classifiers, and cross val-
idation is employed to select kernel parameters and prevent the
overfitting problem.

For testing, after test utterances’ DLCSVs are generated,
backend SVM classifier estimates the posterior probability of
each target language, which is used to calibrate the final outputs.

3.3. Language score calibration

The topic of calibrating confidence scores in the field of
multiple-hypothesis language recognition has been studied in
[16], and a detail analysis of the information flow and the
amount of information delivered to the user through the lan-
guage recognition system has been performed. We should es-
timate the posterior probability of each of the M hypotheses
and make a maximum-a-posteriori (MAP) decision. In standard
SVM-SDC systems [10], log-likelihood ratios (LLR) normal-
ization is applied as a simple backend process and is found to
be useful. Suppose S = [S1 · · ·SL]t is the vector of L relative
log-likelihoods from the L target language for a particular mes-
sage, and the posterior probabilities for the original hypotheses
can be denoted as:

Pi =
πie

Si

PL
j=1 πjeSj

, i = 1, 2, · · · , L (5)

where [π1, · · · , πL] denotes the prior. Considering a flat prior,
new log-likelihood normalized score S

′
i is denoted as:

S
′
i = Si − log(

1

L− 1

X

j 6=i

eSj ) (6)

However, the SVM raw scores are not log-likelihood values,
thus LDA and diagonal covariance Gaussians are used to cal-
culate the log-likelihoods for each target language [17] and
achieve improvement in detection performance [10].

In this paper, we use an alternative approach [18] to esti-
mate the posterior probabilities. Given L classes of data, the
goal is to estimate pi = p(y = i|x), i = 1, · · · , L. In the
pair-wise framework, firstly the pair-wise class probabilities are
estimated as:

rij = p(y = i|y = iorj, x) ≈ 1

1 + eAf̂+B
(7)

where A and B are estimated by minimizing the negative log-
likelihood function using known training data and their decision
values f̂ . Then posterior probability pi can be obtained by op-
timizing the following problem:

min
1

2

LX
i=1

X

j,j 6=i

(rjipi − rijpj)
2 (8)

subject to

LX
i=1

pi = 1, pi ≥ 0 (9)

Therefore, the estimated posterior probabilities are applied
to performance evaluation. The probability tool of LIBSVM
[15] is used in our approach. Experiments show that this pair-
wise multi-class probability estimation algorithm is superior
over log-likelihood ratios normalization method.

4. Corpora and evaluation
There are 12 target languages in corpora used in this study: Ara-
bic, English, Farsi, French, German, Hindi, Japanese, Korean,
Mandarin, Spanish, Tamil and Vietnamese. The training data
was drawn from the CallFriend corpus (train, development, and
test sets) available from the Linguistic Data Consortium (LDC).
Each set consists of 20 two-sided conversations from each lan-
guage, approximately 30 minutes long. Development data was
obtained from the 1996 NIST LID development and evaluation
sets, and the experiments are done using the NIST LRE 2003
evaluation database. The task of this evaluation was to detect
the presence of a hypothesized target language for each test ut-
terance. Test data consisted of speech segments of length 3, 10
and 30 seconds. For each of these durations, 960 true trials and
10560 false trials were generated from the primary evaluation
task. Submitted scores are given in the form of Detection Error
Tradeoff (DET) curves and equal error rates (ERR).

5. Experiments
In this paper, after front-end processing, 56 dimension SDC fea-
tures are extracted as in section 3.1 and all monomials up to
degree 3 are used in the expansion b(x) which results in an ex-
pansion dimension of 32509. The number of target languages L
and sub-speaker groups in each language N is 12 and 6, respec-
tively and speakers for these subgroups in each language are
selected by K-mean method. Thus, the total number of GLDS
SVM classifiers Ntotal is 138. Five types of experiments were
conducted to evaluate the performance of each part of proposed
methods. Firstly, Score Vector Modeling approach is evaluated
by system 1-3. GLCSV-12 denotes that only 12 one-verses-the-
rest GLDS classifiers are used to construct the GLCSV space
and the duration of each training utterance is 3 minutes, while
GLCSV-78 uses both 12 one-verses-the-rest and 66 pair-wise
classifiers to map the input speech utterance in GLCSV space.
In GLCSV-138 approach, score vector combines multiple clas-
sifiers’ outputs together, including both 66 one-verse-one and
12 × 6 = 72 group based one-verse-the-rest classifiers. The
duration of speech segments used for training these 138 clas-
sifiers is 30 seconds which is one sixth as long as [10], thus
each language is divided into 6 sub-speaker groups to maintain
the same training samples for comparison with [10]. Secondly,
Log-likelihood normalization and pair-wise posterior probabil-
ity estimation algorithms are evaluated respectively to calibrate
the output language scores. At last, traditional 49 dimension
SDC features with the parameters of 7-1-3-7 is replaced by the
modified 56 dimension SDC features described in section 2.2 to
enhance the capability of language discrimination. Table1 and
figure2 demonstrate the equal error rate performance of each of
the five systems and comparison with the competitive results of
start-of-art SVM systems, GLDS SVM [10] and Anchor GMM
[11], is shown in table2.

The experiment results of system 1-3 show that Score Vec-
tor Modeling achieves considerable improvement in system per-
formance. There are two basic reasons. Firstly, pair-wise clas-
sifiers only need to load training samples from two languages
rather than all the twelve target languages, which request less
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Table 1: SVM system results on NIST 2003 30second task.

SVM-SDC system 1 2 3 4 5
GLCSV-12

√
GLCSV-78

√
GLCSV-138

√ √ √
LLR normalization

√ √ √
Probability estimation

√ √
SDC (7-1-3-7)

√ √ √ √
modified SDC (7-1-3-7 + MFCC)

√
EER-NIST03-30s task (%) 7.0 5.9 5.0 4.7 4.0

Table 2: EER comparison with state-of-art SVM system.

GLDS SVM 6.1%
Anchor GMM 4.8%

Proposed SVM-SDC system 5 4.0%

Figure 2: DET curves on NIST 2003 30second task

memory and allow training processes to use more samples for
each language. Secondly, in GLCSV-138, 12 one-verses-the-
rest classifiers are replaced by multiple speaker group based
classifiers, which represent both discriminative language infor-
mation and inter-speaker variability within the same language.
By using backend classifiers, this speaker group specified vari-
ability can be compensated and make system less speaker de-
pendency.

Further more, SDC feature concatenated with MFCC coef-
ficients achieves significant improvement demonstrated in sys-
tem 5. The results show that this new SDC feature is also effec-
tive in SVM system as well as GMM system[6].

Table1 also shows that the pair-wise posterior probability
estimation method adopted in system 4 is comparable to the
common employed LLR approach. Because the output scores
of backend classifiers are not real log-likelihood values, this al-
ternative language score calibration methods can perform better.

6. Conclusion
In this paper, multiple speaker group based discriminative clas-
sifiers are employed to map the speech utterance into DLCSV
space efficiently, which represents enhanced language infor-
mation as well as compensates for intra-language and inter-
speaker variability. We applied this new approach to the NIST
2003 language evaluation, and experiment results demonstrate
significant improvement by mapping speech segment into this
DLCSV score space. Additionally, both modified SDC feature
extraction and pair-wise posterior probability estimation meth-
ods are proposed to further improve system’s performance.
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