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SUMMARY Robust automatic language identification (LID) is the task
of identifying the language from a short utterance spoken by an unknown
speaker. The mainstream approaches include parallel phone recognition
language modeling (PPRLM), support vector machine (SVM) and the gen-
eral Gaussian mixture models (GMMs). These systems map the cepstral
features of spoken utterances into high level scores by classifiers. In this
paper, in order to increase the dimension of the score vector and allevi-
ate the inter-speaker variability within the same language, multiple data
groups based on supervised speaker clustering are employed to generate
the discriminative language characterization score vectors (DLCSV). The
back-end SVM classifiers are used to model the probability distribution
of each target language in the DLCSV space. Finally, the output scores
of back-end classifiers are calibrated by a pair-wise posterior probabil-
ity estimation (PPPE) algorithm. The proposed language identification
frameworks are evaluated on 2003 NIST Language Recognition Evaluation
(LRE) databases and the experiments show that the system described in this
paper produces comparable results to the existing systems. Especially, the
SVM framework achieves an equal error rate (EER) of 4.0% in the 30-
second task and outperforms the state-of-art systems by more than 30%
relative error reduction. Besides, the performances of proposed PPRLM
and GMMs algorithms achieve an EER of 5.1% and 5.0% respectively.
key words: language identification, supervised speaker clustering, sup-
port vector machine, discriminative language characterization score vec-
tor, pair-wise posterior probability estimation

1. Introduction

Automatic spoken language identification without using
deep knowledge of those languages is a challenging task.
The variability of one spoken utterance can be incurred by
the content, speakers and environment. Normally the train-
ing corpus and test corpus consist of unconstrained utter-
ances from different speakers. Therefore, the core issue is
how to extract the language differences regardless of con-
tent, speaker, and environment information [1], [2]. The
clues that human use to identify languages are studied in
[3], [4]. The sources of information used to discriminate
one language from the others include phonetics, phonology,
morphology, syntax and prosody. At present, most reported
automatic LID systems take advantage of one or more of
these language traits in the identification task.

A number of researchers have used phone recogniz-
ers as front-end for language identification in [5]–[12]. The
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most successful approach to LID uses phone recognizers of
several languages in parallel. In [7], it is shown that even
with one language phone recognizer, an LID system can
be built. It is named phone recognition language model-
ing (PRLM). However, the analysis in [4] also indicates that
the performance of a system can be considerably improved
in proportion to the number of front-end phone recognizers.
Recently, a set of phone recognizers are used to transcribe
the input speech into phoneme lattices [13], [14] which are
later scored by n-gram language models.

Several recent approaches using support vector ma-
chine (SVM) and Gaussian mixture model (GMM) have
attracted much attention as an alternative solution. Due
to the introduction of shifted-delta-cepstral (SDC) acous-
tic features, promising results using SDC are reported [15],
[16]. This approach is further improved by using discrim-
inative Maximum Mutual Information (MMI) training for
acoustic modeling in GMMs [17]. In order to be speaker
independent, a set of speaker dependent anchor GMM mod-
els are trained on SDC features for every speaker in every
language, and back-end discriminative SVM classifiers are
adopted to identify the spoken language based on the GMM
outputs [18].

Vector space modeling approach has been successfully
applied to spoken language identification. The acoustic
characteristics of spoken language are collected into acous-
tics segment models (ASMs) [19], and each spoken utter-
ance is converted into a feature vector with its attributes rep-
resenting the statistics of the acoustics units, thus a discrim-
inative classifier is built in this score vector space to identify
the target language. The main object of these improvements
is to derive the discriminative high level feature vectors in
LID tasks while restraining the disturbance caused by the
variability of speakers or channels in realistic system. Re-
sults in anchor GMM system [18] show that it is capable to
achieve robust speaker independent language identification
through compensation for intra-language and inter-speaker
variability.

However, for every test speech segment, scoring on
these entire anchor-GMM language models is computation-
ally expensive, also sufficient training data for each anchor
speaker can hardly be guaranteed in practical application.
Moreover, the identity of a target language is not sufficiently
described by the score vectors which are generated by the
following language models in conventional PPRLM sys-
tems. To compensate these insufficiencies, it is a natural
extension that multiple groups with similar speakers in one
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language are used to build the multiple target phonotactic
language models or acoustic models. For example, the train-
ing data set can be divided by genders. This approach can
also be applied to SVM system. Each target score in gener-
alized linear discriminant sequence (GLDS) kernel [16] can
be calculated simply by an inner product, and multiple clas-
sifiers are created for different speaker groups in extremely
large database. This is followed by fusing multiple kernels
with different weights in discriminative language character-
ization score vector space. Thus a new scoring function is
generated with less speaker dependence. In this paper, the
hierarchical clustering (HC) algorithm and K-means cluster-
ing algorithm are used together to extract more information
from the available training data.

At the back-end of the LID systems, SVM based clas-
sifiers have demonstrated superior performance over gen-
erative language modeling framework in [19]–[21]. SVM
as a discriminative tool maps input cepstral feature vector
into high-dimensional space and then separates classes with
maximum margin hyperplane. In addition to its discrim-
inative nature, its training criteria also balance the reduc-
tion of errors on training data and the generalization on un-
seen data. This makes it perform well on small quantities
of data and suited for handling high dimensional problem.
In this paper, a back-end radial basis function (RBF) ker-
nel [22] SVM classifier is carried out to discriminate target
languages based on the probability distribution in discrim-
inative language characterization score vector space. The
choice of radial basis function kernel is based on its non-
linear mapping function and relatively small amount of pa-
rameters to tune. Furthermore, the linear kernel is a special
case of RBF and the sigmoid kernel behaves like radial basis
function for certain parameters [23]. Note that training data
of this back-end SVM classifier comes from development
data rather than the data used for training front-end GLDS
classifiers, and cross validation is employed to select ker-
nel parameters and prevent over-fitting problem. For testing,
once the discriminative language characterization score vec-
tors of a test utterance are generated, back-end SVM clas-
sifier can estimate the posterior probability of each target
language, which is used to calibrate final outputs.

In this paper, there are many unfamiliar abbreviations.
For avoiding confusing, these abbreviations are clearly ex-
plained again as follows:

PRLM phone recognition language modeling
PPRLM parallel phone recognition language modeling
SDC shifted-delta-cepstral
LRE language recognition evaluation
GLR generalized likelihood ratio
GLDS generalized linear discriminant sequence
DLCSV discriminative language characterization score

vectors
ASM acoustics segment model
LLR log-likelihood ratio

The remainder of this paper is organized as follows. In

Sect. 2, a speech corpus used for this study is introduced. A
supervised clustering algorithm is described in Sect. 3. How
the DLCSV space is used to improve conventional LID sys-
tems is briefed in Sect. 4. In Sect. 5, the SVM classifier with
RBF kernel is detailed. Besides, a score calibration method
and a probability estimation algorithm are explained in this
section. Experiments and results of the proposed method
are given in Sect. 6. Finally, a brief summary is discussed in
Sect. 7.

2. Speech Corpus

In phone recognizer framework, the Oregon Graduate In-
stitute Multi-Language Telephone Speech (OGI-TS) Cor-
pus [24] is used. It contains 90 speech messages in each of
the following 11 languages: English, Farsi, French, German,
Hindi, Japanese, Korean, Mandarin, Spanish, Tamil and
Vietnamese. Each message is spoken by a unique speaker
and comprises responses to 10 prompts. Besides, phoneti-
cally transcribed training data is available for six of the OGI
Languages (English, German, Hindi, Japanese, Mandarin
and Spanish). Otherwise, the labeled Hong Kong University
of Science and Technology (HKUST) Mandarin Telephone
Speech Part 1 [25] is used to accurately train an acoustic
model for another Mandarin phone recognizer. A telephone
speech database in common use for back-end language mod-
eling is the Linguistic Data Consortium’s CALLFRIEND
corpus. The corpus comprises two-speaker, unprompted,
conversational speech messages between friends. Hundred
North-American long-distance telephone conversations are
recorded in each of twelve languages (the same as 11 lan-
guages as OGI-TS plus Arabic). There are three sets in this
corpus including training, development and test set, each set
consists of 20 two-sided conversations from each language,
approximately 30 minutes long.

Moreover, development data which can be used to tune
the parameters of back-end classifiers is obtained from the
1996 NIST LRE development and evaluation sets. And, ex-
periments are performed on the 2003 NIST LRE [26] 30 s
test set. Here, 960 true trials and 10560 false trials are gen-
erated from the primary evaluation task. Thus, the data com-
prises 80 test segments, for each of the 12 target languages
(the same as the CALLFRIEND corpus). All of the training,
development and evaluation data is in standard 8-bit 8 kHz
mu-law fromat from digital telephone channel.

3. Supervised Speaker Clustering

This section mainly introduces how the training data of each
language is divided into several subgroups by individuality.
Hierarchical clustering (HC) algorithm [27] followed by K-
means clustering is proposed in this section.

3.1 Hierarchical Clustering

K is denoted as the number of speakers in one language cor-
pus, L is the number of target languages and N is set with
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the number of target subgroups in one language corpus.
Consider a collection of total speech segments of one

language X = {x1, x2, . . . , xK} and each xi represents a se-
quence of spectral feature vectors. Here, each speaker is
corresponding to one speech segment. The algorithm can be
described as follows:

1. Initialize the number of clusters c : c← K
2. Compute pair-wise distances between each cluster
3. Find the nearest pair in the c clusters: xi and x j

4. Merge xi and x j as a new cluster
5. Update distances of cluster to new cluster
6. Update the hypothesized number c : c← (c − 1)
7. Iterate steps 3-6 until c = N

Here, generalized likelihood ratio (GLR) distance is
chosen as the pair-wise distances between two clusters.

3.2 Generalized Likelihood Ratio Distance

Consider two speech segments x and y from different speak-
ers. Assume that L(x; μx,

∑
x) and L(y; μy,

∑
y) denote the

likelihood of x for single Gaussian model N(μx,
∑

x) and that
of y for single Gaussian model N(μy,

∑
y) respectively. The

likelihood of attribute two segments from the same speaker
is given by L(z; μz,

∑
z), where z is the union of segments x

and y. The generalized likelihood ratio [28] is defined by:

GLR(x, y) = − log

[
L(z; μz,

∑
z)

L(x; μx,
∑

x) × L(y; μy,
∑

y)

]

= − log

⎡⎢⎢⎢⎢⎣ |
∑

x |α|∑y |1−α
|W |

⎤⎥⎥⎥⎥⎦
M
2

− log

[
1+

MxMy

M2
(μx−μy)T W−1(μx−μy)

] M
2

(1)

where Mx and My are the number of frames from speech
segments x and y respectively, M = Mx + My, α =
Mx/M, and W is their frequency weighted average W =

(Mx
∑

x +My
∑

y)/M. The generalized likelihood ratio dis-
tance has been found useful in the hierarchical clustering
framework. More details can be found in [29].

4. Proposed LID Frameworks

In preceding section, the supervised speaker clustering al-
gorithm is explained firstly. The following sections mainly
introduce some improved frameworks based on clustered
speaker groups and discriminative language characterization
score vectors.

4.1 Parallel Phone Recognizer with Language Model
Groups

Parallel phone recognizer with language model groups sys-
tem is composed of four parts [30]: feature extractor, lan-
guage dependent phone recognizers, score generators and

back-end classifier. The general system architecture for lan-
guage identification task is given in Fig. 1, where PRi and
SGi are language-dependent phone recognizer and score
generator for language i. Acoustic scores (likelihood) are
generated by one pass Forward-Backward decoding algo-
rithm. And, phonotactic scores are generated by the fol-
lowing language models in score generators. Usually, the
number of phonotactic scores is equal to the number of tar-
get languages. Final score vector which is composed of the
two types of scores is sent to back-end classifier for identi-
fication.

Figure 2 shows a Mandarin score generator. In the scor-
ing framework, the training set of each target language is
divided into multiple groups which are used to build corre-
sponding language models. Thus, the dimension of score
vector is extended to high level. The total number of lan-
guage models is Ntotal = L × N, as defined in Sect. 3.1, L is
the number of target languages and N is the number of tar-
get subgroups in one language corpus. So, taking no count
of the acoustic scores, the dimension of discriminative lan-
guage characterization score vectors in PPRLM system is
NDLCSV = L × N × P, where P is denoted as the number
of phone recognizers in parallel. Considering the amount of
training data for language model building, N is limited to a
small number.

4.2 Support Vector Machine Groups

In this section, a proposed method focuses on how to make
SVM-SDC technique more effective. Standard SVM-SDC

Fig. 1 Structure of the proposed PPRLM system.

Fig. 2 Structure of the Mandarin score generator.



570
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Fig. 3 Structure of the proposed SVM system.

framework [16] is improved in this paper by employing mul-
tiple GLDS kernel classifiers to convert each speech utter-
ance into a score vector, which is the combination of all clas-
sifiers’ output scores, and represents the extent of match-
ing between each input utterance and all the language spe-
cific constraints on the margins. In the proposed frame-
work, multiple speaker group dependent SVM classifiers are
trained to map the expanded cepstral features of speech seg-
ments into discriminative language characterization score
vectors. As demonstrated in Fig. 3, both pair-wise and paral-
lel one-versus-the-rest discriminative classifiers are trained
by the generalized linear discriminant sequence approach.
The total numbers of GLDS kernel classifiers are Ntotal =

L × (L − 1)/2 + L × N. Thereby, each target language data
of CALLFRIEND corpus is divided into N subgroups by
speaker clustering algorithm, each of which represents a set
of different speakers speaking the same language. By train-
ing each group-based one-versus-the-rest or pair-wise clas-
sifier separately, a problem regarding memory limitation is
fixed. Moreover, experiments show that significant perfor-
mance improvement can be obtained by compensating these
distortions in the domain of discriminative language charac-
terization score vectors which result from the inter-speaker
variability presented by different speaker groups within the
same language.

SVMTorch [22] is used to train all these classifiers
with above mentioned kernel function. After discrimina-
tive training, multiple classifiers are generated by combin-
ing these multiple classifiers’ output scores together. Each
input speech utterance can be mapped into a single DLCSV.
In the framework shown in Fig. 3, multiple speaker group
dependent SVM classifiers with generalized linear discrim-
inant sequence kernel are trained to map the expanded cep-
stral features of speech segments into discriminative lan-
guage characterization score vectors.

4.3 Gaussian Mixture Modeling Based Speaker Groups

As shown in Fig. 4, the speaker groups GMM system is sim-
ilar to an anchor GMM system. As mentioned in Sect. 1,
the anchor GMM is built by modeling for each speaker data
of each language corpus. The anchors are a predetermined
set of speakers that is non-intersecting with the set of target

Fig. 4 Structure of the proposed GMM system.

speakers in the test utterances [18]. In contrast to anchors,
the speaker groups are generated by clustering. In other
words, each language probability distribution in DLCSV
space is described through multiple Gaussian Mixture Mod-
els. The total number of GMMs are Ntotal = L × N. Ob-
viously, along with the increase of Gaussian mixtures, the
computational complexity will also increase more greatly.

5. Proposed Back-End Classifier

In the LID frameworks, after discriminative language char-
acterization score vectors of test utterances are generated,
back-end SVM classifier estimates the posterior probability
of each target language, which is used to calibrate the final
outputs. This section mainly introduces a proposed back-
end classifier algorithm and a score calibration algorithm.

5.1 RBF Support Vector Machine

An SVM is a two-class classifier constructed from sums of
a kernel function K(., .)

f (x) =
n∑

i=1

αitiK(x, xi) + d,

subject to αi>0 and
n∑

i=1

αiti = 0
(2)

where n is the number of support vectors, ti is the ideal out-
puts, αi is the weight for the support vectors xi. A back-
end radial basis function (RBF) [22] kernel is carried out to
discriminate target languages. RBF kernel is defined as fol-
lows:

K(xi, x j) = exp
( − γ ‖ xi − x j ‖2 ), γ > 0 (3)

where γ is the kernel parameter estimated from the training
data.

5.2 Score Calibration

The topic of calibrating confidence scores in the field of
multiple-hypothesis language recognition has been studied
in [31], and a detailed analysis of the information flow and
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the amount of information delivered to users through a lan-
guage recognition system has been performed. The poste-
rior probability of each of M hypotheses is estimated and
a maximum-a-posteriori (MAP) decision is made. In [16],
log-likelihood ratio (LLR) normalization which has been
proved to be useful is adopted as a simple back-end process.

In the normalization, suppose
−→
S = [S 1, S 2, . . .S L]t is the

vector of L relative log-likelihoods from L target languages
for a particular message, and the posterior probabilities for
original hypotheses can be denoted as:

Pi = πie
S i

/ ⎛⎜⎜⎜⎜⎜⎜⎝
L∑

j=1

π je
S j

⎞⎟⎟⎟⎟⎟⎟⎠ , i = 1, 2, . . . , L (4)

where [π1, . . . , πL] denotes the prior. Considering a flat
prior, new log-likelihood ratio normalized score S ′i is de-
noted as

S ′i = S i − log

⎛⎜⎜⎜⎜⎜⎜⎝ 1
M − 1

∑
j�i

eS j

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

However, the output scores of back-end RBF SVM are
not log-likelihood values, thus linear discriminant analysis
(LDA) and diagonal covariance Gaussian models are used to
calculate the log-likelihoods for each target language [32],
and improvement has been achieved in detection perfor-
mance [16].

In this paper, we proposed an alternative approach [23]
to estimate the posterior probabilities. Given L classes of
data, the goal is to estimate pi = p(y = i|x), i = 1, . . . L. In a
pair-wise framework, firstly pair-wise class probabilities are
estimated as

ri j ≈ p(y = i|y = i or j, x) ≈ 1
/
(1 + eA f̂+B) (6)

where A and B are estimated by minimizing the negative
log-likelihood function using known training data and their
decision values f̂ . Then, posterior probability pi can be ob-
tained by optimizing the following problem:

min
1
2

L∑
i=1

∑
j�i

(r ji p j − ri j pi)2,

subject to
L∑

i=1

pi = 1 and pi > 0

(7)

Therefore, the estimated posterior probabilities are appli-
cable to performance evaluation. The probability tools of
LIBSVM [22] are used in our approach. Experiments in next
section show that this multi-class pair-wise posterior prob-
ability estimation algorithm is superior to commonly-used
log-likelihood ratio normalization method.

6. Experiments and Results

The performance of a detection system is characterized by
its miss and false alarm probabilities. The primary evalua-
tion metric is based upon 2003 NIST language recognition

evaluation [26]. The task of this evaluation is to detect the
presence of a hypothesized target language, given a segment
of conversational speech over the telephone. The target lan-
guage will be one of the following twelve languages: Ara-
bic, English, Farsi, French, German, Hindi, Japanese, Ko-
rean, Mandarin, Spanish, Tamil and Vietnamese. Submitted
scores are given in the form of equal error rates (EER). EER
is the point where miss probability and false alarm probabil-
ity are equal. Experiments of the proposed application are
explained in following sections.

6.1 Performance of Phone Recognizer Systems

In feature extractors of phone recognizer systems, speech
data is parameterized every 25 ms with 15 ms overlap be-
tween contiguous frames. For each frame a feature vector
with 39 dimensions is calculated: 13 Mel Frequency Per-
ceptual Linear Predictive (MFPLP) [33], [34] coefficients,
13 delta cepstral coefficients, 13 double delta cepstral co-
efficients. All the feature vectors are processed by cepstral
mean subtraction (CMS) method.

A Mandarin phone recognizer is built from HKUST
Telephone data in a PRLM system. There are 68 mono-
phones and a three-state left-to-right Hidden Markov Mod-
els (HMM) is used for each tri-phone in each language,
with which acoustic model is described in more detail. But,
PPRLM system is mainly composed of six phone recogniz-
ers. Acoustic model for each phone recognizer is initialized
on OGI-TS corpus and retrained on CALLFRIEND train-
ing set corpus. Since the amount of labeled data is limited,
mono-phone is chosen as acoustic modeling unit.

The outputs of all recognizers are phone sequences
which are used to build the following 3-gram phone lan-
guage models. And, for comparing with other systems in
phone recognizer frameworks, only the phonotatic scores
which are log-likelihoods generated by language models
scoring are composed to DLCSV for classifying.

In this paper, the pair-wise posterior probability estima-
tion algorithm is proposed to calibrate the language scores.
Besides, diagonal covariance Gaussian model followed by
log-likelihood ratio normalization algorithm is evaluated for
comparison. However, it is hardly describe distribution of
the high dimensional DLCSV using Gaussian model. Lin-
ear discriminant analysis method is used to reduce the high
dimension of score vectors [16]. In the mean time, a feed-
forward neural network (NN) is used as the back-end clas-
sifier for another competent system [35].

The equal error rate performances of ten systems with
phone recognizer algorithm are given in Tables 1 and 2.
The main frameworks which are composed by discrimi-
native language characterization score vectors and the fol-
lowed different back-end classifiers are checked with marks.
Firstly, the baseline systems are denoted as DLCSV12 and
DLCSV72 for no speaker cluster in the phone recognizer
framework. Then, the 12 dimensional scores of PRLM-
DLCSV12 can be used to identify the target language, with
no any classifier. Besides, the high dimensional scores can



572
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Table 1 PRLM systems results on 2003 NIST 30 s tasks.

PRLM system 1 2 3 4 5
DLCSV12

√ √
DLCSV24

√ √ √
LLR

√
NN

√
LDA+GM+LLR

√
SVM+PPPE

√
EER (%) 11.9 11.7 10.0 10.7 9.7

Table 2 PPRLM systems results on 2003 NIST 30 s tasks.

PPRLM system 1 2 3 4 5
DLCSV72

√ √ √
DLCSV144

√ √
NN

√
LDA+GM+LLR

√ √
SVM+PPPE

√ √
EER (%) 6.7 6.1 5.7 5.8 5.1

be generated by multiple language models with subgroups.
Considering the amount of training data for language mod-
eling, the target number of subgroups is set to 2 (female
and male). Thus, the dimension of the DLCSV is 24 in
PRLM framework and 144 in PPRLM framework. Sec-
ondly, NN, LLR and PPPE algorithms are evaluated respec-
tively on LRE task for comparing to each other.

6.2 Performance of SVM Groups System

In SVM system, after front-end processing, 56 dimensional
SDC features are extracted as in [16]. And, all polynomi-
als up to degree 3 are used to expand the primary features
into an expansion with dimension of 32509. The numbers
of target languages L and sub-speaker groups in each lan-
guage N are respectively set to 12 and 6. Here, the number
of subgroups is chosen as 6 for two reasons. Firstly, con-
sidering memory limitation, pair-wise classifiers only need
to load training samples from two languages rather than all
of the twelve target languages, which require less mem-
ory and allow training processes to use more samples for
each language. Thus, all of the remaining language data
could be uploaded in one-versus-the-rest classifier training.
Secondly, in DLCSV-138, 12 one-versus-the-rest classifiers
are replaced by multiple speaker group based classifiers,
which represent both discriminative language information
and inter-speaker variability within the same language. By
using back-end classifiers, this speaker group specified vari-
ability can be compensated and make system less speaker
dependent. Thus, the total number of GLDS SVM classi-
fiers Ntotal is 138.

Five types of experiments are conducted to evaluate
the performance of each part of the proposed methods with
check marks in Table 3. Firstly, Score vector modeling [19]
approach is evaluated in systems 1-3. The procedures are
detailed as follows: after one utterance is classified by multi-
ple SVM classifiers, the generated scores are combined into
a score vector which is used to train a high-level model or
classifier. DLCSV12 denotes that only 12 one-versus-the-

Table 3 SVM system results on NIST 2003 30 s tasks.

SVM-SDC system 1 2 3 4 5
DLCSV12

√
DLCSV78

√
DLCSV138

√ √ √
LLR

√ √ √
PPPE

√ √
SDC 7-1-3-7

√ √ √ √
SDC 7-1-3-7 +MFCC

√
EER (%) 7.0 5.9 5.0 4.7 4.0

Table 4 GMM-SDC system results on NIST 2003 30 s task.

GMM-SDC Systems EER (%)
Baseline 9.3
DLCSV24+LDA+GM 8.7
DLCSV24+LDA+GM+LLR 8.3
DLCSV24+SVM+PPPE 7.8
DLCSV72+LDA+GM+LLR 7.1
DLCSV72+SVM+PPPE 6.5
DLCSV144+LDA+GM+LLR 6.6
DLCSV144+SVM+PPPE 5.9
DLCSV240+SVM+PPPE 5.1
DLCSV480+SVM+PPPE 5.0

rest classifiers are used to construct the DLCSV space and
the duration of each utterance is 3 minutes, while DLCSV78
uses both 12 one-versus-the-rest and 66 pair-wise classi-
fiers to map the input speech utterance into DLCSV space.
In DLCSV138 approach, the dimension of score vector is
138 which combines multiple classifiers’ outputs together,
including both 66 one-versus-one and group based one-
versus-the-rest classifiers. The duration of speech segments
used for training these 138 classifiers is 30 seconds. Sec-
ondly, pair-wise posterior probability estimation and log-
likelihood ratio normalization algorithms are evaluated re-
spectively to calibrate the output language scores. At last,
SDC feature with the parameters of 7-1-3-7 is replaced by
the modified 56 dimension SDC features described in [17]
to enhance the capability of language discrimination.

6.3 Performance of GMM Groups Systems

Since acoustic level features are particularly analyzed and
proved to be useful for discriminating one language from
another. The modified 56 dimensional SDC features are also
used in GMM systems. The baseline system is built based
on maximum likelihood (ML) algorithm, and each Gaussian
mixture model corresponds to one target language. The fol-
lowing systems shown in Table 4 are based on sub-speaker
groups. As mentioned in Sect. 3.1, the number of super-
vised clusters for one language N is chosen as 2, 6, 12, 20
and 40, respectively. Thus, the dimension of DLCSV which
are generated by front-end GMM scoring is 24, 72, 144, 240
and 480, respectively. When N is equal to 2, the corpus is al-
most divided by female and male. Thus, the system is based
on a gender dependent Gaussian mixture models. The num-
ber of Gaussian mixture is set to 512 for comparing with
anchor GMM. In addition, pair-wise posterior probability
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Table 5 Comparison with state-of-art systems.

LID Systems EER (%)
Baseline 9.3
PPRLM-MIT [32] 6.6
PPRLM-LIMSI [13] (string) 6.8
PPRLM-LIMSI [13] (lattice) 2.7
Proposed PPRLM system 5 5.1
GLDS SVM 6.1
Proposed SVM-SDC system 5 4.0
Anchor GMM [18] 4.8
Proposed GMM 5.0

estimation (PPPE) and log-likelihood ratio (LLR) normal-
ization approaches are also adopted in experiments of Gaus-
sian mixture modeling system.

6.4 Discussion

The experiment results of DLSCV systems show that dis-
criminative score vector modeling method improves system
performance in most cases. As mentioned above, the main
reason is that multiple discriminative classifiers based on hi-
erarchical clustered speaker groups are employed to map
the speech utterance into discriminative language charac-
terization score vector space, which not only represents en-
hanced language information but also compensates for intra-
language and inter-speaker variability. Moreover, by using
back-end classifiers, this speaker group specific variabil-
ity can be compensated sufficiently and make system less
speaker dependent. Furthermore, as shown in Tables 1-4,
the proposed PPPE method adopted in improved systems is
comparable to the common employed LLR approach. Be-
cause the output scores of back-end classifiers are not real
log-likelihood values, this alternative language score cali-
bration method performs better. And, SDC feature concate-
nated with MFCC coefficients achieves significant improve-
ment as demonstrated in SVM system. Obviously, in GMM
systems, the performance is improved gradually along with
the increase of subgroups. The comparison of performance
with other systems is shown in Table 5. After comparing
the results of phone recognizer systems, using lattice infor-
mation to build language models and scoring by lattice can
improve the performance notably.

Computational cost of the proposed algorithm is low,
compared with the conventional systems. The main reasons
can be explained as follows. Firstly, the improved back-
end SVM classification with PPPE algorithm requires a low
computational cost. Secondly, the increment of computa-
tional cost is focused on generating the discriminative lan-
guage characterization score vectors. Thus, in PPRLM sys-
tem, the time cost of language model scoring is much lower
than phone recognizing. In SVM system, the main com-
putational effort is spent on expanding features from low
dimension to high dimension. Whereas, the computational
cost of GMMs system is raised along with the number of
Gaussian mixture models according to speaker subgroups.
Table 6 shows the computational cost of the most systems
in this paper. The evaluations are carried out on a machine

Table 6 The computational cost of proposed systems.

LID Systems Real Time (RT)
PPRLM system 1 0.743
PPRLM system 2 0.728
PPRLM system 3 0.716
PPRLM system 5 0.739

SVM system 1 1.12 × 10−3

SVM system 3 1.19 × 10−3

SVM system 5 1.96 × 10−3

GMM Baseline 8.6 × 10−3

Proposed GMM 0.171
Anchor GMM 0.634

with 3.4 G Hz Intel Pentium CPU and 1 G Byte memory.

7. Conclusions and Future Work

In this paper, a novel approach using a supervised hierar-
chical algorithm to initialize the speaker groups for further
K-means clustering is introduced in detail. The progressive
use of the groups’ training data for building language mod-
els, support vector machine classifiers and Gaussian mix-
ture models are exploited to map the speech utterance into
discriminative language characterization score vector space
efficiently. This feature set represents enhanced language
information, and at the same time compensates the distur-
bances caused by intra-language and inter-speaker variabil-
ity. The new approach is applied to enhance mainstream sys-
tems including PPRLM, SVM and GMMs systems. Experi-
ment results on 2003 NIST language evaluation task demon-
strate that significant improvement is achieved by mapping
speech utterance into this DLCSV feature space. Further-
more, the traditional back-end classification using Gaussian
classifier with language log-likelihood ratio normalization is
replaced by new methods. Both back-end RBF kernel sup-
port vector machine classifier and pair-wise posterior prob-
ability estimation methods are proposed and investigated to
further improve the performance.

Recently, one common practice in large vocabulary
continuous speech recognition (LVCSR) is to exploit rich
information such as lattice at the end of first pass decoding.
In LID task, this approach of using lattices instead of phone
sequences has been reported with improved performance.
Furthermore, it is generally believed that phonotactic feature
and acoustic cepstral feature provide complementary cues to
each other. The fusion of multiple information sources has
been proven to be effective in recent studies. These direc-
tions will be exploited in our future work.
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