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Abstract—The use of vital signs as a biometric is a potentially
viable approach in a variety of application scenarios such as
security and personalized health care. In this paper, a novel
robust Electrocardiogram (ECG) biometric algorithm based on
both temporal and cepstral information is proposed. First, in
the time domain, after pre-processing and normalization, each
heartbeat of the ECG signal is modeled by Hermite polynomial
expansion (HPE) and support vector machine (SVM). Second,
in the homomorphic domain, cepstral features are extracted
from the ECG signals and modeled by Gaussian mixture
modeling (GMM). In the GMM framework, heteroscedastic
linear discriminant analysis and GMM supervector kernel is
used to perform feature dimension reduction and discrimina-
tive modeling, respectively. Finally, fusion of both temporal
and cepstral system outcomes at the score level is used to
improve the overall performance. Experiment results show that
the proposed hybrid approach achieves 98.3% accuracy and
0.5% equal error rate on the MIT-BIH Normal Sinus Rhythm
Database.
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I. INTRODUCTION

The ECG signal is an emerging novel behavior bio-

metric for human identification. Individual differences in

the heart structure, such as chest geometry, position, and

size, manifest unique characteristics in their ECG signals

which can be used as a biometric trait. Furthermore, the

ECG signal can provide real-time liveness feedback. In

many existing mobile health monitoring or body area sensor

network systems, ECG is an important diagnostic tool for

physiological measure, and thus subject verification based on

the ECG signal itself can be useful for personalized health

service. One disadvantage is that the ECG signal inherently

varies at different heartbeats of the same subject due to

variations in fitness, physical and emotional states as well as

variabilities caused by sensor position changes and long term

baseline shifts. Therefore, most previous works have used a

sequence of heartbeats in rest condition to model healthy

individuals. Compared to systems using ECG signals from

multiple leads [1], promising results based on a single lead

ECG signal have also been proposed in [2]–[6]. Thus, in this

paper, our focus is on ECG biometrics for healthy people

from a single lead sequential signal under rest condition.
With single lead ECG signals, most methods rely on

the reduced feature sets derived from ECG characteristic

points and subsequently supervised classification. Fiducial

points based features are widely used in [2]–[5]. Moreover,

since the fiducial points extraction algorithm is not robust

for all possible types of ECG traces and since only a

certain percentage of the population can be successfully

enrolled [6], the principal component analysis (PCA) based

approach [5], [6] was introduced to model each heartbeat

at the appearance level. However, model scoring on a

long sequence of heartbeats requires feature extraction and

supervised classification for each heartbeat which becomes

computationally expensive. In this paper, we consider robust

alternatives for ECG signal representation and modeling.

In the time domain, after ECG signal pre-processing,

we use Hermite polynomial expansion (HPE) to capture

the ECG shape characteristics and adopt the SVM to per-

form supervised classification. Hermite polynomials are a

classical orthogonal polynomial sequence which have been

successfully used to describe the ECG signal [7] and thus

can be employed to model the morphological differences for

each heartbeat. Furthermore, the HPE projection matrix and

linear kernel SVM scoring functions are combined together

into a model vector, which makes the HPE feature extraction

and sequential scoring just one simple inner product for

computational efficiency.

In most previous works [3]–[6] and the proposed time

domain system, the unit for modeling is each normalized

heartbeat; thus, peak detection, heartbeat segmentation, and

normalization are required as a pre-processing step due to

the inherent heartbeat variability. If the pre-processing is

not accurate or robust, this front end error can accumulate

to influence the subsequent feature extraction and model-

ing steps. Moreover, the computational cost of this pre-

processing step is also high. Therefore, algorithms that do

not require this kind of pre-processing are preferred. Only

a few works have addressed this problem. In [5], long term

(5-seconds window) autocorrelation in conjunction with

discrete cosine transform is adopted for feature extraction,

while nearest neighbor matching is used as the classifier.

The pre-processing step is avoided, but since the ECG signal

within the long processing window is non-stationary, it may

negatively influence the system performance. More recently,

we adopted cepstral features extracted from single lead ECG

signals combined with GMM to perform physical activity

recognition task and demonstrated promising results [8].

Cepstral features, which reside in the homomorphic signal

representation realm (inverse of log spectrum) are especially

conducive for mitigating convolutional effects. Moreover,
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Figure 1. The proposed system overview

ECG cepstral feature calculation does not require heartbeat

segmentation and normalization. This inspired us to explore

the potential of using GMM to model cepstral domain

ECG features from the viewpoint of robust biometrics. In

the GMM framework, Heteroscedastic Linear Discriminant

Analysis (HLDA) [9] and GMM Supervector (GSV) kernel

[10] are used to reduce the cepstral feature dimension and to

perform discriminative modeling, respectively. The system

overview is shown in Figure 1. By fusing both temporal and

cepstral system outcomes at the score level, the biometric

system performance is further improved.

The paper organization is as follows: Sections II-IV

describe the proposed methods, Section V provides the

experimental results and Section VI is the conclusion.

II. SVM SYSTEM BASED ON TEMPORAL FEATURES

A. Signal pre-processing

The length of each heartbeat is different due to inherent

heart rate variability. For mapping each heartbeat of the

ECG waveform signal into a fixed length feature vector,

normalization is performed for temporal feature extraction.

In the ECG pre-processing step, each heartbeat waveform is

normalized to the same time scale and amplitude scale by

using standard methods in the ECG toolbox [6], [11].

B. Hermite polynomial expansion

In this work, the Hermite Polynomial Expansion is used

to map the ECG shapes into feature coefficients which are

further modeled by SVM. Hermite polynomials are classical

orthogonal polynomial sequence representations and have

been successfully used to describe the ECG signals as they

successfully exploit existing similarities between the shapes

of Hermite basis functions and the ECG waveforms [7].

Let us denote the ECG curve vector and polynomial order

by a(t) and L respectively. After pre-processing, each a(t)
has the same time scale length. The Hermite polynomial

expansion can be written as follows [7]:

a(t) =

L−1∑

n=0

cnφn(t, δ) t ∈ [−M,M ] (1)

where cn (n = 0, · · · , L − 1) are the HPE coefficients and

φn(t, δ) is the Hermite basis function defined as

φn(t, δ) =
1√

δ2nn!
√
π
e−t2/2δ2Hn(t/δ) (2)
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Figure 2. Hermite basis functions with δ = 10 and M = 100.

The functions Hn(t/δ) are the physicists’ Hermite polyno-

mials which are defined recursively by:

H0(t) = 1, H1(t) = 2t (3)

Hn(t) = 2tHn−1(t)− 2(n− 1)Hn−2(t) (4)

Figure 2 presents several Hermite basis functions for

different orders, where it can be observed that the higher the

order, the higher is its frequency of changes within the time

domain, and thus resulting in a better capability for capturing

the morphological details. The HPE basis functions can be

denoted by a (2M+1)×L matrix H = [φ
0
φ
1
· · ·φ

L−1
], and

then the expansion coefficients C = [c0c1 · · · cL−1]
T can be

obtained by pseudo-inverse to minimize the sum squared

error E:

E =
∥∥a(t)−

L−1∑

n=0

cnφn(t, δ)
∥∥2
2
=

∥∥a−HC
∥∥2
2

C = (HT ·H)−1 ·HT · a (5)

C. SVM Classification
In this work, the linear kernel is employed for SVM

modeling. Thus, if we arbitrarily add one dummy dimension

with value 1 at the head of each SVM input feature vector,

the scoring function on a sequence of ECG heartbeats

A = {ai}i=1···Na
is defined as follows:

f({A}) = wt · 1

Na

Na∑

i=1

C(ai)

= wt · 1

Na

Na∑

i=1

((HT ·H)−1 ·HT · ai)

= {wt · (HT ·H)−1 ·HT } · { 1

Na

Na∑

i=1

ai}

= W t · { 1

Na

Na∑

i=1

ai} (6)
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Where C(ai) is the HPE coefficients of ai and w is the

collapsed linear kernel SVM scoring model which is defined

in [12]. Therefore, by collapsing all the support vectors

and the HPE matrix down into a single model vector W ,

the scoring function of a target model on a sequence of

heartbeats can be calculated by just an inner product between

the model vector and the averaged heart beats which makes

this framework very computationally efficient.

III. GMM SYSTEM BASED ON CEPSTRAL FEATURES

A. Cepstral feature extraction

The ECG signal has quasi-periodic characteristics as a

result of the convolution between the excitation (heart beat

rate) and system response (ECG waveform shapes) [11].

Thus, in this work, we use cepstral features [8], [13] that

allow us to separate such convolutive effects by simple linear

filtering to model the frequency information of the native

ECG. Furthermore, linear frequency bands are used for

simplicity. Cepstral mean substraction (CMS) and cepstral

variance normalization (CVN) are adopted for achieving

measurement robustness. Finally, HLDA [9] is adopted to

perform dimensionality reduction.

B. GMM and GSV modeling

GMM is used to model the cepstral features of the ECG

signals. In this biometric task, each subject is represented

by a GMM. Since the training data for each subject is too

limited to train a good GMM, the Universal Background

Model (UBM) using a Maximum A Posteriori (MAP) adap-

tation approach [13] is used to model each individual in a

supervised manner while combating data sparsity.

Recently, a combination of both GMM and SVM was

successfully applied by using GMM supervector kernels in

speaker verification and language identification tasks [10].

The GSV approach in this work consists of support vector

machines with GMM supervectors, which is a concatena-

tion of the GMM mean vectors, as input features for the

ECG biometric applications. A linear kernel based upon

an approximation to KL divergence between two GMM

models was derived in [10]. The GMM supervector can be

considered as a mapping between a segment of sensor signal

and a high-dimensional SVM input vector.

In our work, for each segment of time, a GMM is

adapted from the UBM by MAP adaptation; the GMMs were

modeled with diagonal covariance matrices and only the

means of GMMs were adapted. The linear kernel is defined

as the corresponding inner product [10]:

K(μ, μ̂) =

M∑

i=1

(
√
piΣ

− 1
2

i μi)(
√
piΣ

− 1
2

i μ̂i)
t (7)

where pi and
∑

i are the ith UBM mixture weights and

diagonal covariance matrix; μi corresponds to the mean of

the ith Gaussian component in this GMM. Since this kernel

is linear, we can apply the model compaction technique

mentioned in [10], [12]. Therefore we only have to compute

a single inner product between the target model and the

GMM supervector to obtain a score.

IV. SCORE LEVEL FUSION

Let there be K input ECG biometric subsystems, each

acting on a specific feature set, where the kth system outputs

its own normalized log-likelihood vector lk(xt) for every

trial. The fused log-likelihood vector is:

ĺ(xt) =
K∑

k=1

αklk(xt) (8)

The weight αk is determined by logistic regression based

on the training data [14].

V. EXPERIMENT RESULTS

To evaluate the performance of the proposed methods, we

conducted our experiments on the MIT-BIH Normal Sinus

Rhythm Database [15]. It contains 18 ECG recordings from

different subjects collected at the Arrhythmia laboratory of

Boston’s Beth Israel Hospital. The subjects included in the

database did not exhibit significant arrhythmias. The sample

frequency of each ECG recording is 128Hz. Since the

duration of each recording is more than 20 hours, we simply

used the data from hour 1 to hour 2 as the training data and

the data from hour 2 to hour 3 as the testing data. The

experimental results in this paper are based on a 10 seconds

testing duration. The empirically-chosen HPE order, M , δ,

and the GMM gaussian components number are 60, 100, 10,

and 32, respectively. The configuration of cepstral feature

extraction used in this paper is 32 cepstral coefficients, 32

frequency bands and 500 milliseconds window with 50%

overlap with first order delta which is reported to have

good performance in [8]. HLDA is employed to reduce the

cepstral feature dimension from 64 to 40. Before cepstral

feature extraction, a 0.05Hz - 40Hz FIR bandpass filter

was applied to reduce both high frequency noises and low

frequency baseline fluctuations. Both close-set identification

accuracy Pc and Equal Error Rate (EER) of Detection Error

Tradeoff curves are used to evaluate the proposed methods.

In Table I and Figure 3, the results of cepstral feature

based GMM framework including HLDA and GSV algo-

rithms are shown. By using HLDA to perform dimension

reduction, the results improved from 93.96% to 94.78%.

Furthermore, GSV modeling which combines both GMM

and SVM yielded the best cepstral domain result of 95.90%.

Therefore, the experiment results demonstrate that an ECG

based biometric method without the pre-processing steps of

heartbeat segmentation and fiducial detection is effective.

Table I also shows the results of the SVM system based on

HPE coefficients with linear kernel. The proposed temporal

HPE features in conjunction with SVM achieved 98.11%

accuracy. Compared to the result of 89.46% for the PCA
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Table I
PERFORMANCE IN Pc AND EER.

ID Pre-Process Methods Pc (%) EER (%)
1 no Cepstral: GMM 93.96 4.30
2 no Cepstral: GMM+HLDA 94.78 4.05
3 no Cepstral: GSV+HLDA 95.90 2.5
4 yes Temporal: HPE+SVM 98.11 0.55
5 yes Fusion of system (3+4) 98.26 0.50
6 yes EigenPulse: PCA [6] 89.46 13.2

ID and Pre-Process denote System ID (in Figure 3) and ECG pre-processing
(peak detection, heartbeat segmentation and normalization), respectively.
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Figure 3. Performance in DET curves

approach in [6] (In our implementation, the first 50 eigen-

vectors corresponding to the largest eigenvalues are used),

the proposed discriminative SVM modeling based on HPE

features achieved significant improvement. When fusing

both temporal and cepstral domain system outcomes together

at the score level, the performance is further improved.

VI. CONCLUSION

In this work, a novel ECG biometrics algorithm is pro-

posed. In the time domain, HPE and SVM are used to

efficiently model the intra-heartbeat patterns of different

individuals with linear kernel. In the frequency domain,

without the need of heartbeat segmentation and normaliza-

tion, cepstral feature extraction is combined with GMMs

to directly model the short time characteristics of the

ECG signal. Cepstral features provide a natural way for

minimizing convolutive effects by linear filtering. And by

fusing both temporal and cepstral information together, the

overall biometric system performance is improved. Future

work would include validating the performance over a much

larger population of test subjects, comparing/combining with

other biometrics modalities, and investigating the robustness

against a variety of physical and emotional state variabilities.
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