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Abstract This paper presents a generalized i-vector repre-
sentation framework with phonetic tokenization and tandem
features for text independent as well as text dependent
speaker verification. In the conventional i-vector frame-
work, the tokens for calculating the zero-order and first-
order Baum-Welch statistics are Gaussian Mixture Model
(GMM) components trained from acoustic level MFCC
features. Yet besides MFCC, we believe that phonetic infor-
mation makes another direction that can benefit the sys-
tem performance. Our contribution in this paper lies in
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integrating phonetic information into the i-vector represen-
tation by several extensions, forming a more generalized
i-vector framework. First, the tokens for calculating the
zero-order statistics is extended from the MFCC trained
GMM components to phonetic phonemes, trigrams and tan-
dem feature trained GMM components, using phoneme
posterior probabilities. Second, given the zero-order statis-
tics (posterior probabilities on tokens), the feature used
to calculate the first-order statistics is also extended from
MFCC to tandem feature, and is not necessarily the same
feature employed by the tokenizer. Third, the zero-order
and first-order statistics vectors are then concatenated and
represented by the simplified supervised i-vector approach
followed by the standard Probabilistic Linear Discriminant
Analysis (PLDA) back-end. We study different token and
feature combinations, and we show that the feature level
fusion of acoustic level MFCC features and phonetic level
tandem features with GMM based i-vector representation
achieves the best performance for text independent speaker
verification. Furthermore, we demonstrate that the phonetic
level phoneme constraints introduced by the tandem fea-
tures help the text dependent speaker verification system
to reject wrong password trials and improve the perfor-
mance dramatically. Experimental results are reported on
the NIST SRE 2010 common condition 5 female part task
and the RSR 2015 part 1 female part task for text indepen-
dent and text dependent speaker verification, respectively.
For the text independent speaker verification task, the pro-
posed generalized i-vector representation outperforms the
i-vector baseline by relatively 53 % in terms of equal error
rate (EER) and norm minDCF values. For the text depen-
dent speaker verification task, our proposed approach also
reduced the EER significantly from 23 % to 90 % relatively
for different types of trials.
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1 Introduction

Total variability i-vector modeling has gained significant
attention in speaker verification due to its excellent perfor-
mance, compact representation and small model size [3].
In this framework, first, zero-order and first-order Baum-
Welch statistics are calculated by projecting the acoustic
level Mel-frequency cepstral coefficients (MFCC) features
on those Gaussian Mixture Model (GMM) components
using the occupancy posterior probability. Second, in order
to reduce the high dimension of the concatenated statistics
supervectors, a single factor analysis is adopt to generate a
low dimensional total variability space which jointly models
language, speaker and channel variabilities all together [4].
Third, within this i-vector space, variability compensation
methods, such as Within-Class Covariance Normalization
(WCCN) [7], Linear Discriminative Analysis (LDA) and
Nuisance Attribute Projection (NAP) [1] are performed to
reduce the variability for subsequent scoring methods (e.g.,
cosine similarity [3], Support Vector Machine (SVM) [2],
sparse representation [18], Probabilistic Linear Discrimi-
nant Analysis (PLDA) [19, 23], deep belief networks [2],
etc.).

Compared to the back-end modeling methods (as men-
tioned above), the frontend concatenated first-order statis-
tics supervectors before the i-vector factor analysis are
less studied. Conventionally, in the i-vector framework, the
tokens for calculating the zero-order and first-order Baum-
Welch statistics are the MFCC features trained GMM com-
ponents. Such choice of token units may not be the optimal
solution and is pending more detailed investigation. [14]
recently proposed a generalized i-vector framework where
decision tree senones (tied triphone states) in a general Deep
Neural Network (DNN) based Automatic Speech Recogni-
tion (ASR) system are employed as new type of tokens for
calculating statistics, rather than the conventional MFCC
trained GMM components. Although the features for calcu-
lating the first-order statistics remain the same (MFCC), the
phonetically-aware tokens trained by supervised learning
can provide better token separation and discrimination. This
enables the system to compare different speakers’ voices
token by token with more accurate token alignment, which
leads to significant performance improvement on the text
independent speaker verification task. Nevertheless, there
are several other phonetic units (e.g. monophone states,
phonemes, trigrams, etc.) with larger scale that have the
potential to be considered as tokens as well. The frame level
posterior probabilities of these phonetic tokens can also be

converted into tandem features followed by the standard
GMM to fit the conventional GMM framework.

This motivates us to further investigate different alter-
native configurations of phonetic tokens and features for
zero-order and first-order statistics calculation in a gener-
alized framework and apply them to the text independent
speaker verification task. First, we explore the commonly
used monophone states as the phonetic tokens and extend to
even larger units such as trigrams. In this way, the bag of
trigrams vector in the vector space modeling [15] is exactly
the zero-order statistics on these trigrams. Second, since
the number of monophone states is much smaller than the
number of tied triphone states, we converted the phoneme
posterior probabilities into tandem features [6, 9] and then
apply GMM on top of it to generate large components
tokens. This is also motivated by the hierarchical phoneme
posterior probability estimator in [22]. In this setup, the
GMM statistics calculation remains the same as the i-vector
baseline except that the GMM is trained on the tandem
features.

This phoneme posterior probability (PPP) based tan-
dem feature has been reported to be effective in both
ASR [6, 9, 29] and language identification (LID) tasks
[5, 27] as front end features. GMM mean supervector
modeling and conventional i-vector modeling are used to
model this tandem feature in [27] and [5] for LID. In
both methods, the tandem feature outperformed the shifted-
delta-cepstral (SDC) feature relatively by more than 30 %.
We note that the conventional i-vector modeling on tan-
dem features (in [5]) is a special case in our generalized
i-vector framework where tandem features and the derived
GMM components are considered as features and tokens,
respectively.

Since the features for token extraction and the features
for first-order statistics calculation are not necessary the
same [14], we show that in terms of first-order statistics cal-
culation, MFCC is superior than tandem features for speaker
verification. We further explore the hybrid features which
concatenate the acoustic MFCC and the phonetic tandem
features at the frame level as a feature level fusion approach.
Such setup not only achieves better performance but also
directly fit the conventional i-vector framework. Moreover,
the tandem feature may be less informative in noisy environ-
ments where phoneme recognition accuracy is low. Adding
MFCC on top of tandem features could complement and
benefit the zero-order statistics.

Furthermore, we demonstrate that the phonetic level
phoneme constraints introduced by the tandem features
also help the text dependent speaker verification system
to reject wrong password trials and therefore improve the
performance dramatically. In [8], text dependent speaker
verification is defined as a speaker verification task in which
the lexicon used in the test phase is a subset of the lexicon
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pronounced by the speaker during the enrollment. By forc-
ing the lexicon contents of enrollment and testing phrases to
be the same (verbal password), higher accuracy with shorter
duration utterances can be achieved [11, 13, 21, 26]. In [13],
the Hierarchical multi-Layer Acoustic Model (HiLAM) out-
performs the conventional i-vector approach since the latter
one does not explicitly take advantages of the temporal
structure of those text dependent speech utterances. How-
ever, the HiLAM approach requires specific acoustic model
composing for each known password lexicon content which
may not work well on accented speech, dialect or out-of-
vocabulary words. In this work, we enhance the robustness
of i-vector representation against the lexicon contents by
adding phoneme level phonetic tokenizations and tandem
features into the generalized i-vector framework. The pro-
posed feature level fusion approach (concatenating MFCC
and tandem features together as hybrid features) signifi-
cantly reduces the error rate of trials with wrong lexicon
contents. However, it can also make the system vulnera-
ble to those trials where imposter speakers utter the same
password as the target speaker. The solution in this work
is to fuse the i-vector baseline and the proposed hybrid-
GMM-hybrid system together at the score level to achieve
performance improvement for all three types of trials.

In summary, we present a generalized i-vector represen-
tation framework with phonetic tokenizations and tandem
features for both text independent as well as text depen-
dent speaker verification. The contributions are as follows:
(1) The tokens for calculating the zero-order statistics is
extended from the MFCC trained GMM components to a
variety of other phonetic units. (2) Given the zero-order
statistics, the feature for calculating the first-order statis-
tics is also extended from MFCC to tandem features and
is not necessarily the same feature employed by the tok-
enizer. (3) We study different system setups with differ-
ent tokens and features. We show that the feature level
fusion of acoustic level MFCC features and phonetic level
tandem features with GMM based i-vector representation
achieves the best performance for text independent speaker
verification while it can keep the current system struc-
ture unchanged. (4) We demonstrate that the phonetic level
phoneme constraints introduced by the tandem features help
the text dependent speaker verification system to reject
wrong password trials and improve the performance dramat-
ically when the contents are wrong. But the results on those
trials where imposter and target speakers utter the same
lexicon content degrades. We therefore propose a score
level fusion approach to achieve performance improvements
for all types of trials. To our best knowledge, this is the
first time that the generalized representation framework
with phonetic tokenization and tandem features is applied
to the i-vector based text dependent speaker verification
system.

Figure 1 The generalized i-vector framework.

The remainder of the paper is organized as follows.
The baseline and the proposed algorithms are explained in
Section 2. Experimental results and discussions are pre-
sented in Section 3 while conclusions are future works are
provided in Section 4.

2 Methods

The overview of the proposed generalized i-vector frame-
work is shown in Fig. 1. Our generalized framework extends
the choices of tokens and features for statistics calculation
while keeps the factor analysis, variability compensation
and subsequent modeling the same way as the conventional
i-vector method. Table 1 and Fig. 3 demonstrates the five
different tokens that we explored in this work as well as the
processes to extract them. The statistics calculation, factor
analysis based i-vector baseline and our simplified version
simplified supervised i-vector are first described in Section
2.1 as background. The statistics calculation with new types

Figure 2 Schematic of the factor analysis based i-vector and simpli-
fied supervised i-vector modeling [16, 17].
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Table 1 The proposed methods with different combinations of tokens and features for zero-order and first-order statistics calculation.

Methods Tokens for zero-order statistics
Feature for first

order statistics

i-vector Baseline MFCC feature trained GMM components MFCC

Phonemes-MFCC Monophone states MFCC

Tandem-GMM-MFCC Tandem feature trained GMM components MFCC

Trigrams-MFCC Trigrams MFCC

Tandem-GMM-Tandem Tandem feature trained GMM components Tandem

Hybrid-GMM-Hybrid Hybrid feature trained GMM components MFCC+Tandem

of phonetic tokens and tandem features in the general-
ized i-vector framework is then introduced in Section 2.2.
Finally, PLDA modeling and score level fusion is presented
in Section 2.3.

2.1 I-vector Baseline and the Simplified Supervised
i-vector

Given a C component GMM Universal Background Model
(UBM) model λ with λc = {pc, μc, �c}, c = 1, · · · , C and
an utterance with an L frame feature {y1, · · · , yL}, the zero-
order and centered first-order Baum-Welch statistics on the
UBM are calculated as follows:

Nc =
L∑

t=1

P(c|yt, λ) (1)

Fc =
L∑

t=1

P(c|yt, λ)(yt − μc) (2)

where c = 1, · · · , C is the GMM component index and
P(c|yt, λ) is the occupancy posterior probability for yt
on λc. The corresponding centered mean supervector F̃ is
generated by concatenating all the F̃c together:

F̃c =
∑L

t=1 P(c|yt, λ)(yt − μc)∑L
t=1 P(c|yt, λ)

. (3)

The centered mean supervector F̃ can be projected as fol-
lows:

F̃ → Tx, (4)

Figure 3 Tokens for zero-order statistics calculation.

where T is a rectangular total variability matrix of low
rank and x is the so-called i-vector [3]. Considering a C-
component GMM and D dimensional acoustic features, the
total variability matrix T is a CD × K matrix which is esti-
mated the same way as learning the eigenvoice matrix in
[10] except that here we consider that every utterance is
produced by a new speaker [3].

As shown in Fig. 2, we recently proposed the simplified
supervised i-vector method [16, 17] which achieves com-
parable performance to the conversional i-vector baseline
and at the same time reduces the computational cost by a
factor of 100. Since this method relies on the same set of
statistics and is more efficient, it is employed as the factor
analysis based dimensionality reduction method for all the
experiments in this work.

2.2 Statistics Calculation in the Generalized Framework

In our generalized i-vector framework, the zero-order and
first-order statistics for the j th utterance are calculated as
follows:

Nc =
L∑

t=1

P(c|zjt, λ̂) (5)

Fc =
L∑

t=1

P(c|zjt, λ̂)(yjt − μ̂c) (6)

μ̂c =
∑J

j=1
∑L

t=1 P(c|zjt, λ)yt
∑J

j=1
∑L

t=1 P(c|zjt, λ)
. (7)

where c = 1, · · · , C is the new token index and P(c|zjt, λ̂)

is the posterior probability for the j th utterance’s feature
vector at time t on the cth token. Note that the feature (zt)
used to calculate the posterior probability P(c|zt, λ̂) and
the feature (yt) for cumulating the first-order statistics Fc

are not necessarily the same. They can be different just as
shown in Table 1. Global mean μ̂c is computed using all the
training data in the same way as the mean parameter estima-
tion in GMM. Similarly, we also calculated the second-order
statistics for the simplified supervised i-vector modeling.
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The proposed methods with different combinations of
tokens and features for statistics calculation are shown
in Table 1. First, in the conventional i-vector baseline,
both zt and yt in Eqs. 5, 6 are MFCC features and the
tokens are the MFCC trained GMM components. Second,
in the Phonemes-MFCC system, the tokens are the mono-
phone states and the posterior probability P(c|zt, λ̂) is the
phoneme posterior probability (PPP). We employed the
multilayer perceptron (MLP) based phoneme recognizer
[24] with acoustic models from five different languages,
namely Czech, Hungarian, Russian, English and Mandarin.
The models for the first three languages were trained on
SpeechDat-E databases and provided in [24]. Additionally,
we adopted the toolkit in [24] and trained the English and
Mandarin based models both with 1000 neurons in all nets
using the switchboard, fisher databases and the call friend,
call home databases, respectively.

Since there are only limited amount of monophone state
tokens (around 8 times less than the GMM components
for English), the system performance is affected due to the
broad coverage of each phoneme token. Here we propose
two different methods to generate tokens with compara-
ble size of GMM components. First, the PPP features are
converted into tandem features by log transform, principal
component analysis (PCA) and mean variance normaliza-
tion (MVN) [6, 9, 27] as shown in Fig. 3. Then we directly
consider this tandem feature as zt in Eqs. 5, 6 and train a
GMM on top of it to generate the Tandem-GMM tokens.
In this setup, the entire GMM statistics calculation remains
the same except that the GMM model is trained on the tan-
dem features. Second, we increase the time scale of tokens
and adopt the trigrams as the new type of tokens. As shown
in Fig. 3, HTK toolkit [28] is used to decode the PPP fea-
tures and output a lattice file for each utterance which is
further processed into n-gram counts and n-gram indexes by
the lattice-tool toolkit [25]. The decoded n-gram counts are
considered as the posterior probability and the mean of fea-
tures within this n-gram’s range is accounted as yt where t

indexes the whole n-gram here.
Both tandem features and MFCC features can be used (as

zt) to train a GMM tokenizer and both could be projected on
tokens (as yt) for calculating the first-order statistics. There-
fore, we further explore the hybrid features which concate-
nate the acoustic MFCC feature and the phonetic tandem
features at the frame level for both purposes. This feature
level fusion setup not only achieves better performance but
also directly fit the conventional i-vector framework.

2.3 Back-end Modeling

Once we have the low dimensional i-vectors extracted from
the generalized framework, PLDA is applied as the back-
end modeling for both text independent and text dependent

speaker verification tasks. In the text dependent task, each
speaker with each lexicon content password is considered
as a class and different phrases from the same speaker are
labeled with separate classes in the PLDA model train-
ing. We simply employed the weighted summation fusion
approach at the score level with parameters tuned by cross
validation to further enhance the text dependent speaker
verification performance.

3 Experimental Results

3.1 Results on text Independent Speaker Verification

We first conducted experiments on the NIST 2010 speaker
recognition evaluation (SRE) corpus [20] for the text inde-
pendent speaker verification task. Our focus is the female
part of the common condition 5 (a subset of tel-tel) in the
core task. We used equal error rate (EER) and the 2008
and 2010 normalized minimum decision cost value (norm
minDCF) as the metrics for evaluation [20]. For cepstral fea-
ture extraction, a 25ms Hamming window with 10ms shifts
was adopted. Each utterance was converted into a sequence
of 36-dimensional feature vectors, each consisting of 18
MFCC coefficients and their first derivatives. We employed
the Czech phoneme recognizer [24] to perform the voice
activity detection (VAD) by simply dropping all frames that
are decoded as silence or speaker noises. Feature warping is
applied to mitigate variabilities.

The training data for NIST 2010 task include Switch-
board II part1 to part3, NIST SRE 2004, 2005, 2006
and 2008 corpora on the telephone channel. The gender-
dependent GMM UBM consists of 1024 mixture compo-
nents. Token numbers are shown in Table 2 and the tandem
feature dimension is 52. The sizes of i-vectors and the
dimension of speaker-specific subspace in PLDA are 600
and 150, respectively. Simple weighted linear summation is
adopted here as the score level fusion.

In Table 2, the English Phonemes-MFCC system out-
performed the i-vector baseline (3.65 %→3.10 % EER)
by using only 123 phoneme tokens which supports our
claim that phonetic tokens help. Since majority of the NIST
SRE data samples are from English, other language based
phoneme tokens are not as effective as the English one.
So the accuracy of phoneme decoder indeed could impact
the SV performance. By combining systems with phoneme
tokens from multiple languages improved the result. This
is very useful in the multi-lingual or multi-dialects speaker
verification scenarios. Furthermore, in system ID 8 and 9,
we adopt the tandem-GMM components as the tokens and
evaluated different features for the first-order statistics cal-
culation. Results show that MFCC feature is better than
tandem feature in this case. When applying GMM on top of
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Table 2 Performance of the proposed methods on the NIST SRE 2010 core condition 5 female part task (original trials).

ID Methods Tokens
Token Token Feature for first EER norm 08/10

language number order statistics % minDCF

1 i-vector baseline MFCC-GMM 1024 MFCC 3.65 0.19/0.58

2 Phonemes-MFCC Monophone states English 123 MFCC 3.10 0.16/0.55

3 Phonemes-MFCC Monophone states Mandarin 537 MFCC 4.88 0.22/0.59

4 Phonemes-MFCC Monophone states Czech 138 MFCC 5.97 0.25/0.55

5 Phonemes-MFCC Monophone states Hungarian 186 MFCC 5.56 0.24/0.64

6 Phonemes-MFCC Monophone states Russian 159 MFCC 6.23 0.24/0.61

7 Fusion of methods 2+3+4+5+6 2.65 0.15/0.49

8 Tandem-GMM-MFCC Tandem-GMM English 1024 MFCC 2.82 0.14/0.31

9 Tandem-GMM-Tandem Tandem-GMM English 1024 Tandem 3.34 0.16/0.40

10 Trigrams-MFCC Trigrams English 1024 MFCC 5.07 0.24/0.63

11 Hybrid-GMM-Hybrid Hybrid-MFCC English 1024 Hybrid 1.71 0.11/0.19

the tandem features, the number of tokens become compara-
ble to the baseline GMM size which leads to the significant
performance enhanced by 22.7 % relative EER reduction.
Trigrams tokens based system did not improve the per-
formance which might be because its scale is too large
compared to those monophone states and the zero-order
statistics vectors are sparse.

Finally, the Hybrid-GMM-Hybrid single system has
achieved 1.71 % EER and 0.19 norm new 2010 minDCF,
which outperformed the i-vector baseline by relatively 53 %
and 67 %, respectively. This is very promising since in this
setup the entire GMM i-vector framework remains the same,
only features are enhanced to the hybrid ones.

3.2 Results on Text Dependent Speaker Verification

For the text dependent speaker verification task, we used the
Part I female portion of the RSR2015 database as our eval-
uation dataset [13]. In the RSR2015 database, the number
of speakers in the background, development and evalua-
tion sets are 47, 47 and 49, respectively. We used the same
front end, UBM and PLDA configuration as for our text
independent experiments but the UBM, i-vector as well as
the PLDA models that we tested were trained on the Part
I background data. This consists of parallel recordings of
30 TIMIT phrases uttered by 47 female speakers, each of
whom participated in 9 recording sessions on 3 different
recording devices. We used the same development and eval-
uation data in [13] to demonstrate the system performance
and we did not use the development data for training.

The number of trials for each of the four text depen-
dent speaker verification scenarios on the Part I of the RSR
2015 database is shown in Table 3. We can see that only the
target speaker uttering the correct lexicon content is con-
sidered as the true trial, the other cases are all non-target
trials. In order to show the results for all three types of

non-target trials, we evaluate the system performance sep-
arately for each type of trials the same way as in [13].
The gender-dependent GMM UBM consists of 1024 mix-
ture components. Token numbers are shown in Table 2 and
the tandem feature dimension is 52. The sizes of i-vectors
and the dimension of speaker-specific subspace in PLDA
are 400 and 150, respectively.

Table 4 shows the performance of the proposed systems
on the development set of Part I for different definitions of
target and non-target trials in terms of EER, 08 norm min
DCF and 10 norm min DCF. We can see that the proposed
generalized i-vector representation (system 2 and 3) out-
performed the i-vector baseline (system 1) dramatically for
both type 1 and type 3 trials. This is because the introduc-
tion of the phonetic level phoneme constraints introduced
by the tandem features for the zero-order statistics calcu-
lation help the text dependent speaker verification system
to reject wrong password trials. Furthermore, the results of
system 3 is better than system 2 for both type 1 and type 3
trials. This might be because the features for calculating the
first-order statistics in system 3 are the feature level fused
hybrid features. The tandem feature could provide more
lexicon content information which leads the performance
improvement for type 1 and type 3 trials. However, since
more content wise text dependent information is embed-
ded in the hybrid feature, the system is less robust to the
type 2 trials where the target and imposter speakers utter the
same lexicon contents. One possible solution is to classify
the type of trials first and then apply different systems for
different trials [12]. In this work, we propose an alternative
solution by just simply fusing system 1 and 3 at the score
level which not only maintains the error reduction for type
1 and type 3 trials but also improve the performance on type
2 trials. From Table 5, we can see that the proposed fusion
approach reduced the EER significantly from 23 % to 90 %
relatively for different types of trials.
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Table 3 Number of trials for each of the four text dependent speaker verification scenarios on the Part I of the RSR 2015 database.

Speaker Lexical content Trial type
Female

development evaluation

Target correct true 8419 8631

Target wrong false 244123 250229

Imposter correct false 387230 414249

Imposter wrong false 5612176 6006596

Table 4 Performance of the proposed systems on the development set of Part I for different definitions of target and non-target trials in terms of
EER, 08 norm min DCF and 10 norm min DCF (EER/08 norm min DCF/10 norm min DCF).

Speaker
type

Target Imposter System1:MFCC- System2:Hybrid- System3:Hybrid-

Text Correct Wrong Correct Wrong GMM-MFCC GMM-MFCC GMM-Hybrid

Trials

1 tar non - - 0.77 %/0.054/0.3 0.36 %/0.021/0.1 0.01 %/0/0

2 tar - non - 6.26 %/0.324/0.8 7.58 %/0.388/0.9 7.48 %/0.381/0.9

3 tar - - non 0.1 %/0.005/0 0.05 %/0.003/0 0 %/0/0

Table 5 Performance of the proposed fusion system and two reference systems on the development set of Part I for different definitions of target
and non-target trials in terms of EER, 08 norm min DCF and 10 norm min DCF (EER/08 norm min DCF/10 norm min DCF).

Speaker Target Imposter
System 1+3

HiLAM i-vector baseline

Text Correct Wrong Correct Wrong [13] [13]

Trials

tar non - - 0.05 %/0.002/0 1.77 %/0.074/- 3.05 %/0.173/-

tar - non - 5.36 %/0.27/0.7 3.24 %/0.154/- 7.87 %/0.405/-

tar - - non 0 %/0/0 0.45 %/0.018/- 0.94 %/0.046/-

Table 6 Performance of the proposed systems on the evaluation set of Part I for different definitions of target and non-target trials in terms of
EER, 08 norm min DCF and 10 norm min DCF (EER/08 norm min DCF/10 norm min DCF).

Speaker
type

Target Imposter System1:MFCC- System2:Hybrid- System3:Hybrid-

Text Correct Wrong Correct Wrong GMM-MFCC GMM-MFCC GMM-Hybrid

Trials

1 tar non - - 0.23 %/0.009/0 0.1 %/0.004/0 0.02 %/0/0

2 tar - non - 3.85 %/0.192/0.6 4.62 %/0.236/0.7 4.59 %/0.240/0.7

3 tar - - non 0.08 %/0.003/0 0.02 %/0.001/0 0 %/0/0

Table 7 Performance of the proposed fusion system and two reference systems on the evaluation set of Part I for different definitions of target
and non-target trials in terms of EER, 08 norm min DCF and 10 norm min DCF (EER/08 norm min DCF/10 norm min DCF).

Speaker Target Imposter
System 1+3

HiLAM i-vector baseline

Text Correct Wrong Correct Wrong [13] [13]

Trials

tar non - - 0.02 %/0.001/0 0.61 %/0.034/- 1.91 %/0.106/-

tar - non - 2.94 %/0.151/0.5 2.96 %/0.156/- 6.61 %/0.327/-

tar - - non 0 %/0/0 0.14 %/0.008/- 0.75 %/0.036/-
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Similar results are shown in Tables 6 and 7 for the eval-
uation set. Comparing with the state-of-the-art approaches
(HiLAM and convectional i-vector) in Tables 5 and 7,
our proposed method achieves significant performance
improvement on type 1 and type 3 trials and comparable
results on type 2 trials.

4 Conclusions and Future Works

This paper presents a generalized i-vector representation
framework with phonetic tokenizations and tandem features
for text independent and text dependent speaker verification
tasks. First, the tokens for calculating the zero-order statis-
tics is extended from the MFCC trained GMM components
to phonetic phonemes, 3-grams and tandem feature trained
GMM components using phoneme posterior probabilities.
We show that the Tandem-GMM tokens are superior than
the phonemes and trigrams in terms of performance. Since
the features for extracting tokens and the features for cal-
culating the first-order statistics are not necessary the same
, we show that in terms of first-order statistics calculation,
MFCC is superior than tandem features for speaker verifica-
tion. We further explore the hybrid features which concate-
nate the acoustic MFCC and the phonetic tandem features
at the frame level for both purposes. This setup not only
achieves better performance but also fit the conventional i-
vector framework. We also demonstrate that the phonetic
level phoneme constraints introduced by the tandem fea-
tures help the text dependent speaker verification system to
reject wrong password trials and improve the performance
dramatically. Score level fusion of systems with different
tokens and features further improves the overall system
performance.

Future work includes applying tandem feature extraction
on the triphone states, increasing the GMM size and explor-
ing other types of tokens (e.g. articulatory attributes and
pattern classes).
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