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Abstract. With the increasing popularity of portable eye tracking de-
vices, one can conveniently use them to find fixation points, i.e., the
location and region one is attracted by and looking at. However, region
of interest alone is not enough to fully support further behavior and psy-
chological analysis since it ignores the abundant information of visual
information one perceives. Rather than the raw coordinates, we are in-
terested to know the visual content one is looking at. In this work, we first
collect a video dataset using a wearable eye tracker in an autism screen-
ing room setting with 14 different commonly used assessment tools. We
then propose an improved fixation identification algorithm to select sta-
ble and reliable fixation points. The fixation points are used to localize
and select object proposals in combination with object proposal genera-
tion methods. Moreover, we propose a cropping generation algorithm to
determine the optimal bounding boxes of viewing objects based on the
input proposals and fixation points. The resulted cropped images form a
dataset for the subsequent object recognition task. We adopt the AlexNet
based convolutional neural network framework for object recognition.
Our evaluation metrics include classification accuracy and intersection-
over-union (IoU), and the proposed framework achieves 92.5% and 88.3%
recognition accuracy on different testing sessions, respectively.

1 Introduction

Research on human eyes is becoming increasingly attractive in the past few
decades [1, 2]. Researchers found that the trajectory movements of our eyes often
contain some specific patterns [3, 4] and can be mainly described by fixations and
saccades. When someone stares at a point, the gaze may not be strictly fixed,
sometimes jitters within a very small region. On the other hand, saccades are
quick movements of our gazes when we read texts or view scenes. Both fixations
and saccades can vary rapidly along the time. It is therefore almost impossible
to observe and accurately measure eye movement by naked eyes.
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Eye research relies heavily on eye tracking devices which can generate infor-
mation including front scene and fixation point, i.e., the point of gaze. There are
mainly two types of eye tracking devices. The first type is table-mounted ones
that contain an illuminator and a camera mounted above or below the computer
screen. The second ones are head-mounted devices that typically contain an il-
luminator, a front view camera that records the scene one is looking at, and one
or two cameras that capture the movements of the eyes. Table-mounted ones are
suitable for tasks such as texts reading, advertisement viewing, or visual search-
ing on computer screens, while head-mounted wearable ones are more portable
so that the viewer can walk around and perform eye tracking experiments in real
world environments. These wearable eye tracking devices provide great opportu-
nities for research on psychological behavior analysis, advanced human-computer
interaction, Augmented Reality (AR) applications, etc.

Recently, considerable progress on high-level computer vision, especially ob-
ject recognition has been made with the advancement of deep representation
learning. Traditionally, hand-crafted features such as scale-invariant feature trans-
form (SIFT) [4] and histogram of oriented gradients [5] present the main visual
representation methods as they are designed to be invariant to scale, orientation,
affine distortion, and illumination changes. Later, convolutional Neural Networks
(CNNs), which consider deeply layered nonlinear representations with neuron-
s, pushed the boundaries of object recognition to new levels. Some large scale
datasets such as ImageNet [6] are widely used to pretrain a network model from
scratch, and then researchers can fine tune the model with domain specific data.
There are several popular network structures, from the simple Alexnet [7], to
GoogLeNet, VGGNet, and ResNet. CNNs require a large amount of training
data and computing resources, so the introduction of large scale image databas-
es and the advance of GPU computing pave the way for the rapid improve-
ment in object recognition. Also, the emerging deep learning frameworks such
as Caffe [8], Torch, and TensorFlow make it easier to implement the power-
ful CNNs. Similarly, performance of the object detection method has also been
enhanced significantly due to the usage of CNNs. Histogram of Oriented Gradi-
ents (HOG) features and Deformable Part Models (DPM) with Support Vector
Machine (SVM) have been used to detect objects, however, only moderate recog-
nition accuracy was achieved. Currently, several novel CNN based models such
as faster R-CNN and You Only Look Once (YOLO) [9] dramatically improve
the accuracy on the PASCAL VOC and COCO dataset.

As these fields develop rapidly, we come up with an idea of combining them
and trying to identify what we are looking at instead of simply where. This is
of great importance because when we want to analyze a video clip with fixation
point included, we first need to label the frame of interest and objects manually,
which is a time-consuming task. If we can utilize the computer vision technology
to automatically label the object, we would save plenty of time and money for in-
depth analysis of the data. What’s more, when we want to know the conspicuity
of the objects or the histogram of eye fixations on different objects, the proposed
method can generate the results more efficiently and objectively.
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In our study, eye tracking and object recognition are standard tasks individu-
ally, but when combined together, multiple new challenges emerge. Firstly, since
there is few related work, the open databases are scarce. Therefore, we have to
collect a database to perform experiments. Secondly, the eye tracking devices use
fisheye lenses, which produce strong distortion and negatively affect the recog-
nition accuracy when we use the pre-trained models. Thirdly, we seldom look at
the center of an object, so the fixation generated by the eye tracking device is
usually at the edge or even a few pixels away, making it difficult to determine
whether the viewer is actually watching the object or just looking at another
place that is close to the object. Fourthly, the resolution of the captured videos
is relatively low, making small and far away objects more difficult to be distin-
guished. Last but not the least, it is both labor and cost expensive to collect
sufficient amount of training data for large-scaled network training.

In this paper, we first introduce a fixation based object recognition dataset.
The setting is in an Autism Diagnostic Observation Schedule (ADOS) screening
room where the subject looks at those assessment tools. Knowing what the
children look at and how their eye movements behave when stimuli appear will
benefit the diagnosis of Autism and other psychological experiments. In this
scenario, we select 14 commonly used ADOS assessment tools, which are shown
in Fig.1. There are two main reasons for this choice. First, these 14 assessment
tools are standard and widely used in different ADOS screenings. Second, they
are big enough for the eye tracking device to clearly capture.

Fig. 1. Sample images of the selected 14 assessment tools and their labels.

After collecting the data, we preprocess images by identifying fixations. Dur-
ing the testing phase, we first determine the region based on the fixation point
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and the bounding boxes generated by the object detection module, then we
predict the class label using our object recognition system.

The remainder of the paper is organized as follows. In Section 2, we present
the related works. In Section 3, we introduce the data collection procedure and in
Section 4, we describe the methods in details. Experimental results are provided
in Section 5 followed by the conclusions in Section 6.

2 Related works

With the increasing popularity of eye tracking devices, more and more research
on eye-gaze pattern analysis appears. Portable and wearable eye tracking devises
are more convenient for real world eye tracking experiments.

German Research Center for Artificial Intelligence (DFKI) has been working
on this topic [10–12]. The goal of their research is to develop an AR human
computer interaction application, namely, Museum Guide 2.0. It can provide
tourists with personal guide in the museum. The tourist wears the eye tracking
device while walking around. If he looks at an exhibit item, the application can
detect the gaze and present relevant information such as audio descriptions so
that the tourist would have a better understating of the exhibition. The original
implementation of their method is shown as follows: 1. Creation of exhibits
database: take images from different angles with eye tracking device, then extract
SIFT features and label them. 2. Object recognition: crop a region with fixed
size around the fixation point and extract SIFT features. Compare it with every
sample in the database and find the nearest one using Euclidean distance.

Later Shdaifat Mustafa et al. [12] proposed a segmentation-based method to
generate dynamic region size instead of the fixed region size method in step 2.
They first conduct a series of image pre-processing steps, including Canny edge
detection, morphology operations, etc. Then, the proper boundary and bounding
box was selected based on the position of the fixation point.

However, the aforementioned methods have certain limitations. First, during
testing, the SIFT descriptors of the test image needs to be compared with all
the samples in the database, which is not time efficient. Second, SIFT feature
is not robust enough to achieve highly accurate recognition performance. Third,
the segmentation based bounding box detection method is not robust against
fixation deviation and offset. We believe that, using the state-of-the-art YOLO
framework with out proposed selection method for bounding box generation and
the Alexnet model for object recognition would significantly enhance the overall
accuracy and efficiency.

3 Data Collection

3.1 Eye Tracking Device

The eye tracking device used in this study is the UltraFlex headgear designed by
Positive Science [13]. The head-mounted eye tracker includes eye/scene cameras,
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audio, and infrared illumination. The scene camera faces front and the eye cam-
era capture the right eye. Fig.2 shows the eye tracking device and one sample
frame [14]. The IRLED illuminates the eye, then the device and corresponding
software estimate the gaze location by center of the pupil and corneal reflection
and then project the coordinate onto the video captured by the scene camera.
The device operates at 28 frames per second with a resolution of 640 x 480 for
the scene view and 320 x 240 for the eye view.

Fig. 2. The three main components of the DB9-KHG-1 Child Headgear eye tracking
device and the views of the scene camera and the eye camera with detailed information.

3.2 Training Data Collection

In this work, we proposed a new object recognition dataset with a wearable eye
tracking device. This is a close-set datset in which the objects in the testing set
is a subset of the ones in the training set.

In the collection of training data, we collected the images of each object
from different views. The object was put on the table, and the subject wearing
the wearable eye tracking device looks at the object from different angles. If the
object has more than one formats, we treat them as different classes. For instance,
the baby toy can be converted into two different shapes, sitting and lying. We
name them as sitting baby and lying baby separately. Fig.3(a) illustrates these
two classes of baby. After collecting the training data, we extract frames from
the scene video every 10 frames and use the open source tool named LabelImg
to annotate the bounding box of the object of interest. Note that we also create
a special class named ”Others”, which represents the objects that do not belong
to the pre-defined 14 classes, including the table, the floor, and the wall in the
background, etc. Some examples of class ”Others” were shown in Fig.3(b).

3.3 Testing Data Collection

The testing data was collected in two different sessions with objects in short and
long distances.

In session 1, the objects are laid on the table the same way as the training
data collection. In order to efficiently collect the testing data in a real autism
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Fig. 3. Sample training images for the class Baby (a) and Others (b).

clinic setting, we group the objects into seven categories, which is shown in Table.
1. During each round, all objects from one category are put on the table. The
participant is asked to look at the objects from random positions and angles.
Furthermore, the locations of objects were changed several times during the
testing data collection to enhance the generalization. Fig. 4 shows the experiment
setup for this scenario.

In session 2, the subject sits on the ground with most of the objects sur-
rounding him in a circle as shown in Fig. 5. This setting is different from the
one in our training data and session 1. We want to evaluate the robustness of
our model against the recording environment changes.

Table 1. The seven categories of the ADOS assessment tools

Category Assessment tools

1 Baby, Rabbit
2 RedToy, BlueToy, ToyGuy
3 FireEngine, Truck
4 Book, Plate
5 ChestBox, FoodContainer
6 Ball
7 Cup, Jar

Fig. 4. Data collection setup for session 1 testing data.
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Fig. 5. Data collection setup for session 2 testing data.

3.4 Fixation Identification

The eye movements include two types: saccade and fixation. Saccades are the
type of eye movement used to move rapidly from one point to another, while for
fixation, the eye movements are relatively stable in a certain duration. We are
more interested in conducting recognition in fixation points because fixation is
a natural description of the observed eye movement behaviors.

In order to differentiate the fixations from saccades, we use modified Dispersion-
Threshold Identification (I-DT) algorithm similar with the Dispersion-Threshold
algorithm(DT) proposed by Dario D. Salvucci et al. [15].

When there is a fixation, the gaze points tend to cluster together in a specific
timing interval.We utilize the sliding window technique to identify the fixation
points. Two parameters are important in defining window size: the duration and
the dispersion threshold . As mentioned in [16], the duration of a fixation varies
from task to task. Specifically, in the scene viewing task, the duration is usually
set to be at least 200ms. In our experiment, the duration is set at 350ms which
is around 10 frames. Dispersion threshold emphasizes the dispersion (i.e.,spread
distance) of a fixation point. In terms of the dispersion, we simply compute the
dispersion in each window as follows:

Dispersion = max(x) −min(x) + max(y) −min(y) (1)

We set the maximum dispersion as 20 pixel, which could generates a reasonable
amount of fixations [17].

We ignore the noisy samples in the following two conditions. First, the eye
tracking device fails to detect the corneal reflection. Second, the point is beyond
the image boundary. We perform window sliding on the time axis, and obtain
the fixation points based on both duration and dispersion threshold. The pseudo
code for this algorithm is shown in Algorithm1.

This modified Dispersion-Threshold Identification (I-DT) algorithm is more
computational efficient than the original DT algorithm because we directly set
the new start to the frame that incurs termination or the frame next to it instead
of shifting the window by one frame.
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Algorithm 1: Fixation identification algorithm
1 Function Modified I-DT (duration, dispersion threshold) Result: Fixations
2 Initialize the start of the window to the first point while there are still points do
3 Inspect current point i if the point is invalid then
4 if n ≥ duration then
5 n is the number of points in the window The fixation is the middle point of the

window
6 else
7 Abandon the current window
8 end
9 Set the new start to i + 1

10 else
11 Update the current dispersion with point i if dispersion ≥ dispersionthreshold

then
12 if n ≥ duration then
13 The fixation is the middle point of the window
14 else
15 Abandon the current window
16 end
17 Set the new start to i

18 else
19 Add point i to the window
20 end
21 Move to the next point i + 1

22 end

23 end
24 if n ≥ duration then
25 The fixation is the middle point of the window
26 end
27 return fixation

4 Methods

4.1 Data Augmentation

After collecting the training data, we split it into the training set and the vali-
dation set. For each object, we first count the number of images and randomly
choose 75% of the images as the training set and the remaining 25% images as
the validation set.

We first augment the training set by altering the color, contrast, and bright-
ness of the original images [18]. And then, we generate five more crops, namely,
top-left, top-right, bottom-left, bottom-right, and central by using two-thirds of
the region along each axis. This augmentation strengthens our model because
test crops may not be perfect and some of them contain only a portion of the
object. With partial images included in our training set, our model can have
better generalization.

We added nine times more images to the training set using the aforemen-
tioned two augmentation methods, which benefit the training of our CNN mod-
els.

4.2 Segmentation and Bounding Box Selection

For each video frame, the first step is to find the optimal bounding box around
the fixation point. We adopt two different bounding box generation methods.
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The first one is the fixed size method. We use multiple fixed cropping sizes
from 64 x 64, 96 x 96, to 128 x 128 around the fixation and group them together
for testing.

The second one is the deep learning based object detection method. We use
YOLOv2 model pre-trained by the VOC 2007 and VOC 2012 datasets. We feed
testing images into the network and generate detected bounding boxes. Every
input image has multiple detected bounding boxes. So we need to filter out some
nonrelevant detections. First of all, we filter out some severely occluded cropping
boxes based on the RGB threshold. For instance, when the subject rotates the
object, the captured image is very likely to suffer from occlusion with the subject’
hands. Fig.6 illustrates this situation. Secondly, we select the bounding boxes
based on their sizes. As YOLOv2 is a general object detection model, the system
tends to output some unrelated objects such as table, bed, and person, which
are relatively bigger than the objects we are interested in. So we set another size
threshold to further filter out bounding boxes with large sizes.

After bounding box selection, there are still multiple bonding boxes on each
single image. We need to choose correct box around the fixation point. For each
fixation point, we set the fist bounding box contains the fixation as the initial
crop. If there is another bounding box also containing the same fixation point,
we deploy a special selection process to select the final bounding box. It works
as follows: if there is an encompassment relationship of two boxes, we choose the
smaller one as the new crop. Otherwise, we calculate the distance from the two
centers to the fixation and choose the one with smaller distance. In an extremely
rare case when the distance is equal, the two bounding boxes are merged. Fig.7
illustrate the final bounding box generated by the proposed algorithm.

This bounding box selection method is better than the simple union and
intersection. As for the union, the cropping box is likely to grow very big and
contains many unnecessary objects when multiple detection boxes contain the
fixation point. On the contrary side, the intersection of the boxes cannot ful-
ly include the object of interest, and the partial image fails to represent the
characteristic of the whole object.

Note that there are some special cases when the system fails to detect any
object or none of the bounding box contains the fixation; we simply use the
default 96 x 96 region around the fixation. We also consider the case when the
fixation slightly deviates from the object, as shown in Fig. 8, so we try a 16-pixels
soft boundary in all four directions.

4.3 Object Recognition

After augmentation, we have 9000 cropped images for training and another 297
images for validation. Due to the relatively small scale of our training data, we
use the Alexnet structure for CNN modeling. The model is trained from scratch
with a batch size of 128, base learning rate of 0.01, momentum of 0.9, and weight
decay of 0.005. We adopt the step policy for learning rate decrement, reducing
it by a factor of 10 for 1000 iterations. After 2500 iterations, the network is fully
trained, which takes 64 minutes on a desktop with NVIDIA GeForce GTX 745.
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Fig. 6. Some example images when the subject’s hands occlude with the object of
interest.

Fig. 7. Four final bounding boxes generated by our algorithm are marked as white
rectangles. The rectangles with labels are the raw bounding boxes generated by the
YOLOv2 detection system. The blue points are the fixation outputs from the wearable
eye tracker.

Fig. 8. Sample images when the fixation point slightly deviates from the object.
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4.4 Evaluation

In the testing step, we first obtain cropped images, then feed them into the net-
work to receive output scores. We use classification accuracy as an evaluation
metric for the recognition system and intersection-over-union (IoU) for the de-
tection system. The algorithm works as follows: we go through all the ground
truth bounding boxes of an image. If the fixation point is in a bounding box (with
some deviation toleration), we first calculate the IoU between the detection out-
put and this bounding box, and then evaluate the classification accuracy. If none
of the ground truth bounding boxes contains the fixation point, we believe that
the subject is looking at some objects not belong to our pre-defined class. In this
case, we need to verify whether the proposed system successfully predicts it as
class ”Others”. Algorithm 2 shows the pseudo code for this algorithm.

Algorithm 2: Test result evaluation algrithm
1 Function Evaluation()
2 for all gt ∈ groundtruths(GT ) do
3 if the bounding box of GT contains fixation then
4 Calculate IoU
5 Compare predication class of GT

6 end

7 end
8 if None of the GT bounding box tontains fixation then
9 Compare prediction with class label ”Others”

10 end

5 Experimental Results

5.1 Cropped Image Generation

In our experiment, we find that using the general YOLOv2 detection system
combined with our customized bounding box selection method improves the
overall fixation aware object recognition performance by 9% absolutely compared
to the fixed size cropping baseline as shown in Table2.

As for IoU, the proposed approach outperforms the baseline by 2%. Since
we only calculate IoU when the final object recognition prediction is correct,
the improvement on IoU is not that high compared to the accuracy. The main
reason might be that when the prediction is correct, the region covered by the
baseline fixed size cropping is very similar to our selected bounding box.

5.2 Object Recognition

Table3 shows the recognition accuracy for each of the selected 14 commonly used
assessment tools. Our system achieves 100% recognition accuracy in the flow-
ing classes: Baby, RedToy, Truck, ChestBox, FoodContainer, and Jar. It works
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Table 2. Comparison of two bounding box selection methods

type session 1 testing data session 2 testing data IoU

fixed size bounding box 83.3% 79.9% 56.9%
our proposed method 92.5% 88.2% 58.3%

Fig. 9. Sample predictions of our system. (a)-(c) and (f) are the correct samples while
(d)-(e) are the misclassified samples. The cyan rectangles are the bounding boxes gen-
erated by Section IV 4.2 while the red rectangles are the human annotated ground
truths. The blue points are the fixation points.

fairly well in recognizing Rabbit, BlueToy, FireEngine, Book, Ball, and Others.
However, the performance in ToyGuy, Plate, and Cup is not very satisfying. In
Fig.9(a), the system detects the baby and the fixation point is in the region.
However in Fig.9(b), the system fails to detect the blue toy, so we use a default
region of 96 x 96 for test. Fig.9(c) is similar to Fig.9(b), except that there is
no ground truth bounding box containing the fixation, so we classify it to class
”Others”. In Fig.9(d), the detection system outputs a small part of the rabbit,
and coincidently the fixation is also in that region, which leads to the wrong
prediction as class ”Others”. In Fig.9(e), we use a default region, but since it is
quite larger than the toy guy, our system makes a wrong prediction that it is a
blue toy. The example shown in Fig.9(f) is a soft boundary sample. The fixa-
tion point is within 16 pixels from the detection bounding box, and the system
recognizes it as a food container.

As shown in Table 3, our proposed system achieves 92.5% and 88.2% accuracy
for the overall fixation aware object recognition task for testing session 1 and 2,
respectively. Because the data collection setup for the training data collection
and testing session 1 are the same, so the recognition accuracy on testing session
1 is higher than testing session 2. The performance can be further enhanced if
the outputs from the wearable eye tracking devices are more accurate, robust
and with high resulution.
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Table 3. Performance of our proposed method on the session 1 testing data, including
the number of correct predictions, total number of test images, and the recognition
accuracy.

Class Correct Total Accuracy

Baby 23 23 100.0%

Rabbit 19 20 95.0%

RedToy 17 17 100.0%

BlueToy 24 25 96.0%

ToyGuy 13 18 72.2%

FireEngine 11 12 91.7%

Truck 10 10 100.0%

Book 8 9 88.9%

Plate 4 5 80.0%

ChestBox 3 3 100.0%

FoodContainer 12 12 100.0%

Ball 18 20 90.0%

Cup 11 13 84.6%

Jar 8 8 100.0%

others 30 33 90.9%

all 211 228 92.5%

6 Conclusions

In this paper, we introduce a new wearable eye tracking video dataset captured
in a real autism clinic setting. We try to develop an algorithm that combines the
eye tracking and computer vision technologies together to recognize the object
tag when one is looking at. With the usage of deep learning object detection
and recognition network, the proposed system could enable researchers to easily
analyze and label the data. We believe that the proposed method shows great
potential to extend our application beyond the computer screen setting to more
general indoor settings, such as home, office, hospital, supermarket, etc. We can
also consider outdoor activities, such as driving and campus walking. Future
works include collecting more data, using more advanced network models and
utilizing unsupervised clustering methods for better accuracy and efficiency.
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