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Summary

Semi-Markovian jump systems are more general than Markovian jump systems
in modeling practical systems. On the other hand, the finite-time stochastic
stability is also more effective than stochastic stability in practical systems.
This paper focuses on the finite-time stochastic stability, exponential stochastic
stability, and stabilization of semi-Markovian jump systems with time-varying
delay. First, a new stability condition is presented to guarantee the finite-time
stochastic stability of the system by using a new Lyapunov-Krasovskii functional
combined with Wirtinger-based integral inequality. Second, the stability crite-
rion is further proved to guarantee the exponential stochastic stability of the
system. Moreover, a controller design method is also presented according to the
stability criterion. Finally, an example is provided to illustrate that the proposed
stability condition is less conservative than other existing results. Additionally,
we use the proposed method to design a controller for a load frequency control
system to illustrate the effectiveness of the method in a practical system of the
proposed method.
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1 INTRODUCTION

Many practical systems have structures subject to random abrupt changes in inputs, internal variables, and other system
parameters, which could be caused by component failures and sudden environmental disturbances. In order to describe
such kind of systems, Markovian jump linear systems (MJLSs) are firstly introduced by Krasovskii and Lidskii.1 The
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control of MJLSs has been a hot research subject and received great attention in the past decades. Lots of results related
to such systems have been reported in the literature.2-10 However, the jump time of a Markov chain is supposed to be
exponentially distributed in general, which limits the applications of MJLSs. Meanwhile, since in MJLSs, the transi-
tion rates are considered to be constants, which would definitely be more conservative than the results of semi-MJLSs
(S-MJLSs) because the transition rates of S-MJLSs are supposed to be time varying. Thus, MJLSs have many limitations in
applications, and the results obtained on it are conservative in some sense. Since S-MJLSs are more common than MJLSs,
much attention has been paid to S-MJLSs in the literature, which has wide applications such as power systems, vehicles,
and aircrafts.11,12 The probability of the distribution of sojourn time is replaced from exponential distribution to Weibull
distribution, and some significant results were presented in the work of Huang and Shi.13 Further results on the controller
design of S-MJLSs were also proposed in the work of Huang and Shi.14 In the work of Hou et al,15 the stability of Ito dif-
ferential equations with semi-Markovian jump parameters was investigated. In the work of Zhang et al,16 a semi-Markov
kernel approach was presented to investigate the stability of discrete-time S-MJLSs.

In practical industry systems, there always exists time delay, which is an important source of instability and poor per-
formance. In most of circumstances, the exact value of delay is not possible to be known in advance, which can only be
estimated in a controller design process. Thus, the research of time-delay systems has attracted many researchers from the
control community. Naturally, since the investigation of MJLSs with time delay is a very important branch, the research
for S-MJLSs with time delay is a hot topic nowadays. To mention a few, in the work of Li et al,17 the time varying transition
rates were expressed as an average value and a disturbance, which make the result easy to be implemented in MATLAB.
In the work of Huang and Shi,18 the sojourn time partition technique was firstly proposed.

On the other hand, finite-time stability is a more practical concept, and it is very helpful to study the behavior of the
system within a finite possible short interval.19-22 Thus, it finds application whenever it is desired that the state variables
do not exceed a given threshold during the transients. In a practical process, we usually pay a great attention to the
behavior of systems in a fixed time interval. For example, in some special applications, we need the system stable error
that is small enough in a fixed time interval, but some controller design methods only consider the stability of the system
theoretically, which cannot satisfy the fast stability requirement. Thus, the finite-time stability is investigated to address
these transient performances of control systems. For a practical network control system, it is often modeled as a S-MJLS. To
study the behavior of network control systems in a finite interval, the investigation of the finite-time stability for S-MJLSs
is necessary. Until now, the pursuing of less conservative controller design methods for S-MJLSs is still difficult in solving
the addressed problem. Although there are some existing results that can guarantee the finite-time stability or finite-time
boundedness of the system,23-25 it is worth noting that the results of finite-time stability for S-MJLSs with time delay so far
are still conservative and leave much room for further improvement, which motivates our present study.

In this paper, our purpose is to solve the problems of finite-time stochastic stability and exponential stochastic stabil-
ity analysis and stabilization for continuous-time S-MJLSs with time-varying delay. At first, a new Lyapunov-Krasovskii
functional is proposed, then the new finite-time stochastic stability criterion is also proposed. Meanwhile, the stability
criterion is proved to guarantee the exponential stochastic stability of the system. Furthermore, the stabilization criterion
is also proposed for S-MJLSs with time delay. Finally, Example 1 is used to demonstrate the less conservatism of the devel-
oped results than that of other existing results. Furthermore, we use a one-area load frequency control (LFC) to illustrate
the effectiveness of the presented results as in Example 2.

The contributions of this paper can be summarized as follows. First, the result is presented to guarantee the finite-time
stochastic stability of the system by using a new Lyapunov-Krasovskii functional combined with Wirtinger-based integral
inequality. It is worth noting that by using Wirtinger-based integral inequality, the proposed Lyapunov-Krasovskii func-
tional needs to be well designed to deal with the extra terms. Second, part of the conditions concerned with the finite-time
stochastic stability of the system can also guarantee the stochastic stability of the system. Thus, using the advanced triangle
inequality and the new Lyapunov-Krasovskii functional, the result is less conservative than some existing results.

We organized the remainder of this paper as follows. The model of S-MJLSs with time-varying delay is introduced,
and the main problems are described in Section 2. In Section 3, a new stability criterion is derived by a new Lyapunov
functional and a new triangle inequality. Furthermore, the stabilization criterion is also proposed. We use an LFC system
to illustrate the effectiveness of our proposed methods in Section 4. Finally, we conclude this paper in Section 5.

Notation. Rn and Rm×n represent the set of real n-vector and m × n matrices, respectively. The superscript T stands
for matrix transpose. The notation P > 0(≥ 0) means that matrix P is positive definite or semi-positive definite. In
denotes an identity matrix with dimension n, and 0m,n denotes an m× n dimension zero matrix. “∗” is used to denote
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the symmetric terms in a block matrix P, {P}i represents the ith row of its explicitly expressed block structure, sym(P)
is short for P + PT, diag{· · ·} means a block diagonal matrix, and  denotes the set {1, 2, … , s}.

2 PROBLEM FORMULATION

In this section, we introduce the model of S-MJLSs with time-varying delay. Then, some definitions and lemmas are intro-
duced for the subsequent development. Consider the following class of S-MJLSs with time-varying and mode-dependent
delays:

ẋ(t) = A(r(t)) x(t) + Ad (r(t)) x
(

t − τr(t)(t)
)
+ B (r(t))u(t),

x(t) = ψ(t), t ∈ [−τM , 0], r(0) = r0, (1)

where u(t) ∈ Rp is the control input, x(t) ∈ Rn is the state vector, and τr(t)(t) ∈ [τm, τM] is assumed to be time varying and
mode dependent. ψ(t) is the given initial condition, which is a continuous function defined on the interval [−τM, 0]. r(t)
is a finite-state Markovian jump process representing the system mode, which takes discrete values in a given finite set
 = {1, 2, 3, … , s}, and r0 is the initial mode.

Defining Π̄ = [πij(h)], where i, j = 1, 2, … , s, the evolution of the semi-Markov process {r(t), t ⩾ 0} is governed by the
following probability transitions:

Pr{r(t + h) = j|r(t) = i} =

{
πij(h)h + o(h) i ≠ j
1 + πii(h)h + o(h) i = j,

(2)

where πij(h) is the transition rate from mode i to mode j at t, for i ≠ j, with
s∑

j=1, j≠i
πij(h) = −πii(h), (3)

for each mode i, j ∈  , o(Δt)∕Δt → 0. A(r(t)), Ad(r(t)), and B(r(t)) are denoted as Ai, Adi, and Bi, where i is the mode of
systems. τi(t) denotes the mode-dependent time-varying state delay in the system and satisfies the following condition:

0 ≤ τmi ≤ τi(t) ≤ τMi,

τ̇i(t) ≤ u,

with τm = mini∈τmi and τM = mini∈τMi.
First, we introduce the following definitions and lemmas.
Define the transition rate matrix in the Markov process as follows:

Π̄ =

⎡⎢⎢⎢⎢⎣
π11(h) π12(h) · · · π1s(h)
π21(h) π22(h) · · · π2s(h)
⋮ ⋮ ⋱ ⋮

πs1(h) πs2(h) · · · πss(h)

⎤⎥⎥⎥⎥⎦
. (4)

Remark 1. Huang and Shi13 used Weibull distribution of sojourn time to replace the exponential distribution of
sojourn time, and then, the transition rate in S-MJLSs is time varying instead of constant in MJLSs. In practice, the
transition rate πij(h) is generally bounded by πij ⩽ πij(h) ⩽ π̄ij, where πij and π̄ij are the lower and upper bound of
πij(h). In our paper, we use πij(h) = πij +Δπij to describe πij(h), where πij = 1

2
(πij + π̄ij) and |Δπij| ⩽ κij, κij = 1

2
(π̄ij − πij).

Definition 1. (See the work of Cheng et al26)
The autonomous system (1) is said to be finite-time stochastically stable (FTSS) with respect to (c1, c2,T, R̂) if

sup
−τM≤υ≤0

E
{

xT(υ)R̂x(υ), ẋT(υ)R̂ẋ(υ)
} ≤ c1 ⇒ E

{
xT(t)R̂x(t)

}
< c2, ∀t ∈ [0,T],

where R̂ > 0 and c1 and c2 are 2 positive scalars with c2 > c1.
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Definition 2. (See the work of Gao et al6)
For any finite ψ(t) ∈ Rn defined on [−τM, 0] and initial mode r0 ∈ S, the S-MJLS in (1) is exponentially stochastically
stable if there exist positive constants ϵ and α such that

E|x(t)|2 ≤ ϵe−αt |ψ|2τM
,

where |ψ|τM
= sup−τM≤s≤0 |ψ(s)| for any possible continuous ψ. ϵ is a decay coefficient and α is a decay rate.

Lemma 1. (See the work of Seuret and Gouaisbaut27)
For any matrix R > 0 and a differentiable signal x in [α, β] → Rn, the following inequality holds:

−∫
β

α
ẋT(s)Rẋ(s)ds ≤ 1

β − α
ϖTΩ̂ϖ,

where

Ω̂ =
⎡⎢⎢⎣
−4R −2R 6R
∗ −4R 6R
∗ ∗ −12R

⎤⎥⎥⎦ , ϖ =
[

xT(β) xT(α) 1
β−α

∫ β
α xT(s)ds

]T
.

Lemma 2. (See the work of Li et al17)
Given any scalar ε and square matrix H ∈ Rn×n, the following inequality, ie,

ε(H + HT) ≤ ε2T + HT−1HT ,

holds for any symmetric positive definite matrix T ∈ Rn×n.

According to the above definitions and lemmas, the following problems are addressed.

1. Stability analysis: we present new conditions to guarantee the finite-time stochastic stability of the open-loop system.
2. Stabilization: we propose a new controller design method on the basis of the new criterion to guarantee the finite-time

stochastic stability of the closed-loop system.

3 MAIN RESULTS

In this section, we discuss the finite-time stochastic stability for the system in (1). Furthermore, the relationship between
the finite-time stochastic stability and the exponential stochastic stability for the time-delay S-MJLSs is proved by a
corollary. Lastly, a new controller design criterion is also proposed.

3.1 Stability analysis for time-delay semi-Markovian jump systems
In this section, we present a finite-time stability criterion according to a new triangle inequality and a new
Lyapunov-Krasovskii functional.

Theorem 1. The S-MJLS in (1) with u(t) = 0 is FTSS with respect to (c1, c2,T, R̂) if there exists a set of matrices Pi > 0,
Q1i > 0, Q2i > 0, Q3i > 0, S1 > 0, S2 > 0, R1 > 0, R2 > 0, Mi such that the following inequalities hold for all i ∈  :

Φ1i < 0, (5)
Φ2i < 0, (6)

eατm

s∑
j=1
πij(h)Q1j − eατM

s∑
j=1,i≠j

πij(h)Q2j − S1 < 0, (7)

eατM

s∑
j=1,i≠j

πij(h)Q2j + eατM

s∑
j=1
πij(h)Q3j − S2 < 0, (8)

eατM

s∑
j=1
πij(h)Q3j − S2 < 0, (9)

c1Λ < λ1e−αTc2, (10)



LI ET AL. 5

where

Φi = ΠT
2

( s∑
j=1

Pjπij(h) + αPi

)
Π2 + sym

(
ΠT

1 PiΠ2
)
+ sym

(
ΠT

5 MiωiΠ5
)

+ ΣT
1

[
eατm Q1i + eατM Q3i +

eατm − 1
α

S1 +
eατM − 1

α
S2

]
Σ1 + ΣT

2

(
−Q1i + eα(τM−τm)Q2i

)
Σ2

+ ΣT
3
(
μeα(τM−τm) − 1

)
Q2iΣ3 − ΣT

4 Q3iΣ4 + ΣT
5

(eατm − 1
α

R1 +
eατM − 1

α
R2

)
Σ5 + ΠT

3
1
τm

Ω1Π3,

Φ1i = Φi + ΠT
4

2
τM

Ω2Π4 +
1
τM

ΠT
6Ω2Π6, Φ2i = Φi + ΠT

4
1
τM

Ω2Π4 +
2
τM

ΠT
6Ω2Π6,

Π1 =
[
ΣT

5 ΣT
1 − ΣT

2 ΣT
1 − (1 − u)ΣT

3
]T
, Π2 =

[
ΣT

1 τmΣT
6 τMΣT

7
]T
,

Π3 =
[
ΣT

1 ΣT
2 ΣT

6
]T
, Π4 =

[
ΣT

1 ΣT
4 ΣT

7
]T
, Π5 =

[
ΣT

1 ΣT
2 ΣT

3 ΣT
4 ΣT

5
]T
,

Π6 =
[
ΣT

3 ΣT
4 ΣT

8
]T
, Σi =

[
0n×(i−1)n In 0n×(8−i)n

]
, i = 1, 2, … , 8,

Λ = 3max
i∈ λmax(P̄i) + τMeατM

(
max

i∈ λmax(Q̄1i) + max
i∈ λmax(Q̄2i) + max

i∈ λmax(Q̄3i)
)

+ τ2
MeατM

(
λmax(R̄1) + λmax(R̄2)

)
+ τ2

MeατM
(
λmax(S̄1) + λmax(S̄2)

)
,

P̄i = diag
{

R̂− 1
2 R̂− 1

2 R̂− 1
2

}
Pidiag

{
R̂− 1

2 R̂− 1
2 R̂− 1

2

}
,

Q̄ni = R̂− 1
2 QniR̂− 1

2 , n = 1, 2, 3, ωi =
[

Ai 0 Adi 0 −I
]
,

R̄m = R̂− 1
2 RmR̂− 1

2 , S̄m = R̂− 1
2 SmR̂− 1

2 , m = 1, 2, λ1 = max
i∈ λmin(P̄i),

Ω1 =
⎡⎢⎢⎣
−4R1 −2R1 6R1

∗ −4R1 6R1

∗ ∗ −12R1

⎤⎥⎥⎦ ,Ω2 =
⎡⎢⎢⎣
−4R2 −2R2 6R2

∗ −4R2 6R2

∗ ∗ −12R2

⎤⎥⎥⎦ .
Proof. In the proof, we construct the stochastic Lyapunov-Krasovskii functional candidate as follows:

V(x(t), r(t), t) = V1(x(t), r(t), t) + V2(x(t), r(t), t) + V3(x(t), r(t), t) + V4 (x(t), r(t), t) , (11)
V1(x(t), t) = eαtγT

r(t)(t)P(r(t))γr(t)(t),

V2(x(t), r(t), t) = ∫
t

t−τm

eα(s+τm)xT(s)Q1(r(s))x(s)ds + ∫
t−τm

t−τr(t)(t)
eα(s+τM)xT(s)Q2(r(s))x(s)ds

+ ∫
t

t−τM

eα(s+τM)xT(s)Q3(r(s))x(s)ds,

V3(x(t), r(t), t) = ∫
0

−τm
∫

t

t+θ
eα(s−θ)ẋT(s)R1ẋ(s)dsdθ + ∫

0

−τM
∫

t

t+θ
eα(s−θ)ẋT(s)R2ẋ(s)dsdθ,

V4(x(t), r(t), t) = ∫
0

−τm
∫

t

t+θ
eα(s−θ)xT(s)S1x(s)dsdθ + ∫

0

−τM
∫

t

t+θ
eα(s−θ)xT(s)S2x(s)dsdθ,

γr(t)(t) =
[

xT(t) ∫ t
t−τm

xT(s)ds ∫ t
t−τr(t)(t)

xT(s)ds
]T
. (12)

The weak infinitesimal operator ∇ of the stochastic process { xt rt }, t ≥ 0, is given as

∇V(x(t), r(t), t) = lim
Δ→0

1
Δ
[E {V (x(t + Δ), r(t + Δ), t) |xt, rt} − V (x(t), r(t), t)] . (13)
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For different rt = i, we have the following equations:

∇V1 = αV1 + eαt lim
Δ→0

1
Δ

[
E
[
γT

r(t+Δ)(t + Δ)P(r(t + Δ))γr(t+Δ)(t + Δ)
]

−γT
r(t)(t)P(r(t))γr(t)(t)

]
(14)

= αV1 + eαt lim
Δ→0

1
Δ

[ ∑s
j=1, j≠i Pr {r(t + Δ) = j|r(t) = i} γT

i (t + Δ)Pjγj(t + Δ)
+Pr {r(t + Δ) = i|r(t) = i} γT

i (t + Δ)Piγi(t + Δ) − γT
i (t)Piγi(t)

]

= αV1 + eαt lim
Δ→0

1
Δ

⎡⎢⎢⎣
∑s

j=1, j≠i
qij(Gi(h+Δ)−Gi(h))

1−Gi(h)
γT

j (t + Δ)Pjγj(t + Δ)

+ 1−Gi(h+Δ)
1−Gi(h)

γT
i (t + Δ)Piγi(t + Δ) − γT

i (t)Piγi(t)

⎤⎥⎥⎦ ,
where h is the time elapsed when the system stays at mode i from the last jump, Gi(t) is the cumulative distribution
function (CDF) of sojourn time when the system remains in mode i, and qij is the probability density of the system
jump from mode i to mode j. Given that Δ is small, we have

γi(t + Δ) = γi(t) + Δγ̇i(t) + o(Δ).

Then, the infinitesimal generator becomes

∇V1 = αV1(x(t), r(t), t) + eαt

([
γi(t)
γ̇i(t)

]T

ϕ(i, h)
[
γi(t)
γ̇i(t)

])
,

where

ϕ(i, h) = lim
Δ→0

1
Δ

⎡⎢⎢⎢⎣
∑s

j=1, j≠i
qij(Gi(h+Δ)−Gi(h))

1−Gi(h)

[
Pj ΔPj
∗ 0

]
+ 1−Gi(h+Δ)

1−Gi(h)

[
Pi ΔPi
∗ 0

]
−
[

Pi 0
0 0

] ⎤⎥⎥⎥⎦ .
According to the property of the CDF, we have

lim
Δ→0

(Gi(h + Δ) − Gi(h))
(1 − Gi(h)) Δ

= πi(h), lim
Δ→0

1 − Gi(h + Δ)
1 − Gi(h)

= 1, lim
Δ→0

(Gi(h + Δ) − Gi(h))
1 − Gi(h)

= 0,

where πi(h) is the transition rate of the system jumping from mode i. Defining πij(h) ≜ qijπi(h) for i ≠ j and πii(h) ≜
−
∑s

j=1, j≠i πij(h), we obtain

∇V1 = eαt

[
αγT

i (t)Piγi(t) + γT
i (t)

( s∑
j=1

Pjπij(h)

)
γi(t) + 2γ̇T

i (t)Piγi(t)

]
.

On the other hand, we have

∇V2 ≤ eα(t+τm)xT(t)Q1ix(t) − eαtxT(t − τm)Q1ix(t − τm) +
s∑

j=1
πij(h)∫

t

t−τm

eα(s+τm)xT(s)Q1jx(s)ds (15)

+eα(t+τM−τm)xT(t − τm)Q2ix(t − τm) − eαtxT (t − τi(t))Q2ix (t − τi(t))
+μeα(t+τM−τm)xT (t − τi(t))Q2ix (t − τi(t))

+
s∑

j=1
πij(h)∫

t−τm

t−τj(t)
eα(s+τM)xT(s)Q2jx(s)ds + eα(t+τM)xT(t)Q3ix(t)

−eαtxT(t − τM)Q3ix(t − τM) +
s∑

j=1
πij(h)∫

t

t−τM

eα(s+τM)xT(s)Q3jx(s)ds,

∇V3 = eαt

(
ẋT(t)R1ẋ(t) eατm−1

α
− ∫ t

t−τm
ẋT(s)R1ẋ(s)ds

+ẋT(t)R2ẋ(t) eατM−1
α

− ∫ t
t−τM

ẋT(s)R2ẋ(s)ds

)
,

∇V4 = eαt

(
xT(t)S1x(t) eατm−1

α
− ∫ t

t−τm
xT(s)S1x(s)ds

+xT(t)S2x(t) eατM−1
α

− ∫ t
t−τM

xT(s)S2x(s)ds

)
.
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Noticing πij(h) ≥ 0 for j ≠ i and πii(h) ≤ 0, then we have

N∑
j=1
πij(h)∫

t−τm

t−τi(t)
e(s+τM)xT(s)Q2jx(s)ds ≤ ∫

t−τm

t−τM

eα(s+τM)xT(s)

( s∑
j=1,i≠ j

πij(h)Q2j

)
x(s)ds

= ∫
t

t−τM

eα(s+τM)xT(s)

( s∑
j=1,i≠ j

πij(h)Q2j

)
x(s)ds

−∫
t

t−τm

eα(s+τM)xT(s)

( s∑
j=1,i≠ j

πij(h)Q2j

)
x(s)ds.

Suppose ϵi =
τi(t)
τM

, we have the following equations:

−∫
t

t−τi(t)
ẋT(s)R2x(s)ds ≤ −1 − ϵi

τM ∫
t

t−τi(t)
τi(t)ẋT(s)R2x(s)ds − 1

τM ∫
t

t−τi(t)
τi(t)ẋT(s)R2x(s)ds,

−∫
t−τi(t)

t−τM

ẋT(s)R2x(s)ds ≤ − 1
τM ∫

t−τi(t)

t−τM

(τM − τi(t)) ẋT(s)R2x(s)ds − ϵi

τM ∫
t−τi(t)

t−τM

(τM − τi(t)) ẋT(s)R2x(s)ds.

According to Lemma 1, one obtains

−∫
t

t−τm

ẋT(s)R1ẋ(s)ds ≤ 1
τm

ϖT
1Ω1ϖ1,

−∫
t

t−τi(t)
τi(t)ẋT(s)R2ẋ(s)ds ≤ ϖT

2Ω2ϖ2,

−∫
t−τi(t)

t−τM

(τM − τi(t)) ẋT(s)R2ẋ(s)ds ≤ ϖT
3Ω2ϖ3,

where

ϖ1 =
[

xT(t) xT(t − τm) 1
τm

∫ t
t−τm

xT(s)ds
]T
,

ϖ2 =
[

xT(t) xT(t − τi(t)) 1
τi(t)

∫ t
t−τi(t)

xT(s)ds
]T
,

ϖ3 =
[

xT(t − τi(t)) xT(t − τM) 1
τM−τi(t)

∫ t−τi(t)
t−τM

xT(s)ds
]T
.

On the other hand, for appropriate dimension matrix Mi, we have

2ζT
i (t)Mi [Aix(t) + Adix(t − τi(t)) − ẋ(t)] = 0.

In this part, without loss of generality, 2 cases are discussed as follows.

Case 1. Assume that the following inequalities hold:

eατm

s∑
j=1
πi j(h)Q1j − eατM

s∑
j=1,i≠ j

πij(h)Q2 j ≥ 0,

eατM

s∑
j=1,i≠ j

πij(h)Q2 j + eατM

s∑
j=1
πij(h)Q3 j ≥ 0,

eατM

s∑
j=1
πij(h)Q3 j ≥ 0.
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In addition, we have

∫
t

t−τm

xT(s)eαs

(
eατm

s∑
j=1
πij(h)Q1j − eατM

s∑
j=1,i≠j

πij(h)Q2j

)
x(s)ds

≤ ∫
t

t−τm

xT(s)eαt

(
eατm

s∑
j=1
πij(h)Q1j − eατM

s∑
j=1,i≠j

πij(h)Q2j

)
x(s)ds,

∫
t

t−τi(t)
xT(s)eαs

(
eατM

s∑
j=1,i≠j

πij(h)Q2j + eατM

s∑
j=1
πij(h)Q3j

)
x(s)ds

≤ ∫
t

t−τi(t)
xT(s)eαt

(
eατM

s∑
j=1,i≠j

πij(h)Q2j + eατM

s∑
j=1
πij(h)Q3j

)
x(s)ds,

∫
t−τi(t)

t−τM

xT(s)eαs

(
eατM

s∑
j=1
πij(h)Q3j − S2

)
x(s)ds

≤ ∫
t−τi(t)

t−τM

xT(s)eαt

(
eατM

s∑
j=1
πij(h)Q3j − S2

)
x(s)ds.

Furthermore, we obtain

∇V ≤ eαtζT
i (t) ((1 − ϵi) Φ1i + ϵiΦ2i) ζi(t) + eαt

⎡⎢⎢⎢⎢⎣
∫ t

t−τm
xT(s)

(
eατm
∑s

j=1 πij(h)Q1j − eατM
∑s

j=1,i≠j πij(h)Q2j − S1

)
x(s)ds

+ ∫ t
t−τi(t)

xT(s)
(

eατM
∑s

j=1,i≠j πij(h)Q2j + eατM
∑s

j=1 πij(h)Q3j − S2

)
x(s)ds

+ ∫ t−τi(t)
t−τM

xT(s)
(

eατM
∑s

j=1 πij(h)Q3j − S2

)
x(s)ds

⎤⎥⎥⎥⎥⎦
(16)

< 0,

where

ζi(t) =

[
xT(t), xT(t − τm), xT (t − τi(t)) , xT(t − τM), ẋT(t),

1
τm

∫ t
t−τm

xT(s)ds, 1
τi(t)

∫ t
t−τi(t)

xT(s)ds, 1
τM−τi(t)

∫ t−τi(t)
t−τM

xT(s)ds

]T

.

Case 2. If Case 1 cannot hold, the following inequalities must hold:

eατm

s∑
j=1
πij(h)Q1j − eατM

s∑
j=1,i≠j

πij(h)Q2j < 0,

eατM

s∑
j=1,i≠j

πij(h)Q2j + eατM

s∑
j=1
πij(h)Q3j < 0,

eατM

s∑
j=1
πij(h)Q3j < 0.

It is easy to obtain that

∇V ≤ eαtζT
i (t) ((1 − ϵi) Φ1i + ϵiΦ2i) ζi(t) < 0.

Then, we have the following relation according to the above inequality:

E [∇V (xt, rt, t)] ≤ E [αV (xt, rt, t)] .

We integrate the aforementioned inequality between 0 and t, multiply the above inequality by e−αt, and obtain the
following:

e−αtE [V (xt, rt, t)] − E [V (x0, r0, 0)] ≤ 0.
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From (11), one can obtain

E [V (x0, r0, 0)] ≤
⎡⎢⎢⎢⎢⎢⎣

max
i∈ λmax(P̄i) + 2max

i∈ λmax(P̄i)

+τMeατM

(
max

i∈ λmax(Q̄1i) + max
i∈ λmax(Q̄2i) + max

i∈ λmax(Q̄3i)
)

+τ2
MeατM

(
λmax(R̄1) + λmax(R̄2)

)
+τ2

MeατM
(
λmax(S̄1) + λmax(S̄2)

)
⎤⎥⎥⎥⎥⎥⎦
× sup

−τM≤s≤0

{
xT(s)R̂x(s), ẋT(s)R̂ẋ(s)

}
≤ c1Λ.

On the other hand, according to (11), we have

E [V (xt, rt, t)] ⩾ E
[
eαtxT(t)Pix(t)

]
⩾ max

i∈ λmin(P̄i)E
[
xT(t)R̂x(t)

]
= λ1E

[
xT(t)R̂x(t)

]
.

Then, it can be derived that

E
[
xT(t)R̂x(t)

]
<

1
λ1

E [V (xt, rt, t)] ≤ 1
λ1

eαtE [V (x0, r0, 0)] ≤ 1
λ1

eαtc1Λ < c2.

According to Definition 1, the unforced system (1) is said to be FTSS with respect to (c1, c2,T, R̂). The proof is completed.
□

Remark 2. It is worth noting that Wirtinger-based integral inequality is a better triangle inequality than Jensen's
inequality and the free-weight matrix method. However, inevitably, it can also generate a more complexity of LMI
conditions. With the development of the computer technology, the CPU of the computer becomes faster and faster.
Thus, it still makes sense to trade-off the complexity for a less conservative result.

Remark 3. It is known that the finite-time stability and the Lyapunov stability are independent concepts28; a system
can be finite-time stable but not necessarily required to be Lyapunov stable and vice versa. However, for the time-delay
S-MJLSs we are dealing with, finite-time stability and Lyapunov stability share some common conditions. In fact, by
deleting the condition in (10), we would have the exponential stochastic stability for the S-MJLS in (1) directly. The
detailed proof will be listed in Corollary 1.

Corollary 1. The S-MJLS in (1) with u(t) = 0 is exponentially stochastically stable if there exists a set of matrices Pi > 0,
Q1i > 0,Q2i > 0, Q3i > 0, S1 > 0, S2 > 0,R1 > 0,R2 > 0 such that the inequalities in (5), (6)-(8), and (9) hold for all i ∈  .

Proof. From the inequality in (16), we have
∇V < 0.

On the other hand, defining d1 ≜ maxi∈ {‖Ai‖}, d2 ≜ maxi∈ {‖Adi‖}, we have

|x(t)| ≤ [d2τM + 1
] |ψ|τM

+ ∫
t

0
d1 |x(s)| ds,

when 0 ≤ t ≤ τM. According to Gronwall-Bellman lemma, we have

|x(t)| ≤ d|ψ|τM
,

where d = (d2τM + 1) ed1τM . For any −τM ≤ t − τi(t) ≤ −τm, |x(t − τi(t))| ≤ max{1, d}|ψ|τM
= d|ψ|τM

. When t > τM,
according to Dynkin's formula, we have

EV(xt, i, t) = EV(xτM , i, τM) + E ∫
t−τM

0
∇V(xs, i, s)ds ≤ Λ |ψ|2τM

. (17)

On the other hand, we have

E [V (xt, rt, t)] ≥ max
i∈ λmin(Pi)eαtE|x(t)|2. (18)

Combining (17) and (18), we have

E
[|x(t)|2] ≤ Λ

max
i∈ λmin(Pi)

e−αt |ψ|2τM
, (19)



10 LI ET AL.

when t ≥ τM. It is easy to prove that when 0 ≤ t ≤ τM , the inequality in (19) always holds with the same method.
Thus, from Definition 2, we know that the S-MJLS in (1) is exponentially stochastically stable, which completes
the proof.

If the time delay is constant in the system, which means τm = τM, we would have the following corollary.

Corollary 2. The autonomous S-MJLS in (1) with u(t) = 0 and τm = τM is FTSS with respect to (c1, c2,T, R̂) if there exist
a set of matrices Pi > 0, Qi > 0, S > 0, R > 0, M̄i such that the following inequalities hold for all i ∈  :

Φ̄i < 0,

eατ
s∑

j=1
πij(h)Qj − S < 0,

c1Λ̄ < λ̄1e−αTc2,

where

Φ̄i = Π̄T
2

( s∑
j=1

Pjπij(h) + αPi

)
Π̄2 + sym

(
Π̄T

1 PiΠ̄2
)
+ ΣT

1

[
eατQi +

eατ − 1
α

S
]
Σ1

−ΣT
2 QiΣ2 + ΣT

3

(eατ − 1
α

R
)
Σ3 + Π̄T

3
1
τ
Ω̄Π̄3 + sym

(
Π̄T

5 M̄iω̄iΠ̄5
)
,

Π̄1 =
[
ΣT

3 ΣT
1 − ΣT

2
]T
, Π̄2 =

[
ΣT

1 τΣT
4
]T
, Π̄3 =

[
ΣT

1 ΣT
2 ΣT

4
]T
,

Π̄5 =
[
ΣT

1 ΣT
2 ΣT

3
]T
, Ω̄ =

[−4R −2R 6R
∗ −4R 6R
∗ ∗ −12R

]
, ω̄i =

[
Ai Adi −I

]
,

Λ̄ = 2max
i∈ λmax(P̄i) + τMeατM max

i∈ λmax(Q̄i) + τ2
MeατMλmax(R̄) + τ2

MeατMλmax(S̄),

P̄i =
[

R̂− 1
2 R̂− 1

2 R̂− 1
2

]T
Pi

[
R̂− 1

2 R̂− 1
2 R̂− 1

2

]
, Q̄i = R̂− 1

2 QiR̂− 1
2 ,

R̄ = R̂− 1
2 RR̂− 1

2 , S̄ = R̂− 1
2 SR̂− 1

2 , λ̄1 = max
i∈ λmin(P̄i).

Remark 4. Considering the time-varying transition rate term πij(h), it is impossible for us to solve the inequalities
in Theorem 1 by MATLAB. It is worth noting that there exist many ways to deal with this problem, such as the
approach in the work of Li et al,17 remark 5 in the work of Shen et al,2 and the method in the work of Huang and Shi.14

Considering the length of this paper, we only use the method in the work of Li et al17 to further derive the following
feasible theorem according to Remark 1.

Theorem 2. For given scalars τM > 0, τm > 0,κij > 0, the S-MJLS in (1) is FTSS with respect to (c1, c2,T, R̂) if there
exists a set of matrices Pi > 0, Q1i > 0, Q2i > 0, Q3i > 0, S1 > 0, S2 > 0, R1 > 0, R2 > 0 and Tij such that the following
inequalities hold for all i ∈  : [

Φ̂1i + ΠT
2

(∑s
j=1 Pjπij + 1

4

∑s
j=1,i≠j κ2

ijTij

)
Π2 Ψi

∗ −ϝi

]
< 0, (20)

[
Φ̂2i + ΠT

2

(∑s
j=1 Pjπij + 1

4

∑s
j=1,i≠j κ2

ijTij

)
Π2 Ψi

∗ −ϝi

]
< 0, (21)[∑s

j=1 πijQ̄1j + 1
4

∑s
j=1,i≠j κ2

ijJij − S1 Ψ1i
∗ −ϝ1i

]
< 0, (22)[∑s

j=1 πijQ̄2i + 1
4

∑s
j=1,i≠j κ2

ijLij − S2 Ψ2i
∗ −ϝ2i

]
< 0, (23)[

eατM
∑s

j=1 πijQ3i + 1
4

∑s
j=1,i≠j κ2

ijDij − S2 Ψ3i
∗ −ϝ3i

]
< 0, (24)

c1Λ < λ1e−αTc2, (25)
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where

Φ̂i ≜ ΠT
2 (αPi) Π2 + sym

(
ΠT

1 PiΠ2
)
+ ΣT

1

[
eατm Q1i + eατM Q3i +

eατm − 1
α

S1 +
eατM − 1

α
S2

]
Σ1

+ ΣT
2

(
−Q1i + eα(τM−τm)Q2i

)
Σ2 + ΣT

3

(
μeα(τM−τm) − 1

)
Q2iΣ3 − ΣT

4 Q3iΣ4

+ ΣT
5

(eατm − 1
α

R1 +
eατM − 1

α
R2

)
Σ5 + ΠT

3
1
τm

Ω1Π3 + sym
(
ΠT

5 MiωiΠ5
)
,

Φ̂1i = Φ̂i + ΠT
4

2
τM

Ω2Π4 +
1
τM

ΠT
6Ω2Π6, Φ̂2i = Φ̂i + ΠT

4
1
τM

Ω2Π4 +
2
τM

ΠT
6Ω2Π6,

Ψi ≜ ΠT
2
[

Pi − P1 · · · Pi − Pi−1 Pi − Pi+1 · · · Pi − PN
]
,

ϝi ≜ diag
{

Ti,1 · · · Ti,(i−1) Ti,(i+1) · · · Ti,N
}
,ωi =

[
Ai 0 Adi 0 −I

]
,

Q̄1j = eατm Q1j − eατM Q2j, Q̄2j = eατM Q2j + eατM Q3j,

Ψ1i =
[

Q̄1i − Q̄11 · · · Q̄1i − Q̄1i−1 Q̄1i − Q̄1i+1 · · · Q̄1i − Q̄1N
]
,

Ψ2i =
[

Q̄2i − Q̄21 · · · Q̄2i − Q̄2i−1 Q̄2i − Q̄2i+1 · · · Q̄2i − Q̄2N
]
,

Ψ3i = eατM
[

Q3i − Q31 · · · Q3i − Q3i−1 Q3i − Q3i+1 · · · Q3i − Q3N
]
,

ϝ1i ≜ diag
{

Ji,1 · · · Ji,(i−1) Ji,(i+1) · · · Ji,N
}
,

ϝ2i ≜ diag
{

Li,1 · · · Li,(i−1) Li,(i+1) · · · Li,N
}
,

ϝ3i ≜ diag
{

Di,1 · · · Di,(i−1) Di,(i+1) · · · Di,N
}
,

where πij < π̄ij are the lower and upper bounds of the transition rate, respectively.

Proof. According to Schur complement lemma, the inequality in (20) is equivalent to the following inequality:

Φ̄1i + ΠT
2

[ s∑
j=1

Pjπij +
s∑

j=1, j≠i

[1
4
κ2

ijTij +
(

Pj − Pi
)

T−1
ij
(

Pj − Pi
)]]

Π2 < 0.

From Lemma 2, the previous inequality holds for all ||Δπij|| ≤ κij if there exist matrices Tij(i, j ∈ ) such that

Φ1i = Φ̃1i + ΠT
2

s∑
j=1

Pj
(
πij + Δπij

)
Π2 < 0, (26)

which is the inequality in (5). Using the similar idea, we have that the inequalities in (21)-(23) and (24) can guarantee
the inequalities in (6), (7), (8), and (9). According to Theorem 1, the system in (1) is FTSS with respect to (c1, c2,R,T),
which completes the proof.

3.2 Control synthesis for time-delay semi-Markovian jump systems
In this section, we focus on the control synthesis of time-delay S-MJLSs. The state-feedback controller is given as

u(t) = Kix(t). (27)

Then, we have the following closed-loop system:

ẋ(t) = (Ai + BiKi) x(t) + Adix(t − τi(t))
x(t) = ψ(t), t ∈ [−τM , 0] , r(0) = r0.

For the controller design, we have the following theorem.

Theorem 3. For given scalars τM ≥ τm ≥ 0, there exists a state-feedback controller in the form of (27) such that the
closed loop is FTSS with respect to (c1, c2,T, R̂) and exponentially stochastically stable for any time-varying delay τi(t) if
there exists a set of matrices P̃11,i > 0,Q̃1i > 0, Q̃2i > 0,Q̃3i > 0, S̃1 > 0,S̃2 > 0, R̃1 > 0,R̃2 > 0,T̃ij,J̃ij, L̃ij, D̃ij such that the
following inequalities hold for all i ∈  : ⎡⎢⎢⎣

Φ̂1i Ψ̂i ΠT
2 W T

Θi
∗ −ϝ̂i 0
∗ ∗ −Θi

⎤⎥⎥⎦ < 0, (28)
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⎡⎢⎢⎣
Φ̂2i Ψ̂i ΠT

2 W T
Θi

∗ −ϝ̂i 0
∗ ∗ −Θi

⎤⎥⎥⎦ < 0, (29)

[∑s
j=1 πijQ̂1j + 1

4

∑s
j=1,i≠j κ2

ij J̃ij − S̃1 Ψ̂1i

∗ −ϝ̂1i

]
< 0, (30)[∑s

j=1 πijQ̂2i + 1
4

∑s
j=1,i≠j κ2

ij L̃ij − S̃2 Ψ̂2i

∗ −ϝ̂2i

]
< 0, (31)[

eατM
∑s

j=1 πijQ̃3i + 1
4

∑s
j=1,i≠j κ2

ij D̃ij − S̃2 Ψ̂3i

∗ −ϝ̂3i

]
< 0, (32)

c1Λ̂ < λ̃1e−αTc2, (33)

where

Φ̂i ≜ ΠT
2

(
αP̃i + P̃iπii +

1
4

s∑
j=1,i≠j

κ2
ijT̃ij

)
Π2 (34)

+ sym
(
ΠT

1 P̃iΠ2
)
+ ΣT

2

(
−Q̃1i + eα(τM−τm)Q̃2i

)
Σ2

+ ΣT
1

[
eατm Q̃1i + eατM Q̃3i +

eατm − 1
α

S̃1 +
eατM − 1

α
S̃2

]
Σ1

+ ΣT
3

(
μeα(τM−τm) − 1

)
Q̃2iΣ3 − ΣT

4 Q̃3iΣ4

+ ΣT
5

(eατm − 1
α

R̃1 +
eατM − 1

α
R̃2

)
Σ5 + ΠT

3
1
τm

Ω̃1Π3 + sym
(
ΠT

5 M̃iω̃iΠ5
)
,

Φ̂1i = Φ̂i + ΠT
4

2
τM

Ω̃2Π4 + ΠT
6 Ω̃2Π6, Φ̂2i = Φ̂i + ΠT

4
1
τM

Ω̃2Π4 + 2ΠT
6 Ω̃2Π6,

Ψ̂i ≜ [ P̃i − P̃1 · · · P̃i − P̃i−1 P̃i − P̃i+1 · · · P̃i − P̃N
]
,

ϝ̂i ≜ diag
{

T̃i,1 · · · T̃i,(i−1) T̃i,(i+1) · · · T̃i,N
}
,

ωi =
[

AiP̃11.i + BiYi 0 AdiP̃11,i 0 −P̃11,i
]
,

Q̆1i = eατm Q̃1i − eατM Q̃2i, Q̆2i = eατM Q̃2i + eατM Q̃3i, P̃i = diag
{

P̃11,i P̃11,i P̃11,i
}
,

M̃i = [ e1In e2In e3In e4In e5In ],

WΘi =
[ √

πi,1P̃i · · ·
√
πi,i−1P̃i

√
πi,i+1P̃i · · ·

√
πi,N P̃i

]
,

Ψ̂1i =
[

Q̆1i − Q̆11 · · · Q̆1i − Q̆1i−1 Q̆1i − Q̆1i+1 · · · Q̆1i − Q̆1N
]
,

Ψ̂2i =
[

Q̆2i − Q̆21 · · · Q̆2i − Q̆2i−1 Q̆2i − Q̆2i+1 · · · Q̆2i − Q̆2N
]
,

Ψ̂3i =
[

Q̃3i − Q̃31 · · · Q̃3i − Q̃3i−1 Q̃3i − Q̃3i+1 · · · Q̃2i − Q̃2N
]
,

ϝ̂1i ≜ diag
{

J̃i,1 · · · J̃i,(i−1) J̃i,(i+1) · · · J̃i,N
}
,

ϝ̂2i ≜ diag
{

L̃i,1 · · · L̃i,(i−1) L̃i,(i+1) · · · L̃i,N
}
,

ϝ̂3i ≜ diag
{

D̃i,1 · · · D̃i,(i−1) D̃i,(i+1) · · · D̃i,N
}
,

Θi = diag
{

P̃1 · · · P̃i−1 P̃i+1 · · · P̃N
}
,

Λ = 3max
i∈ λmax

(
P̌i
)
+ τMeατM

(
max

i∈ λmax
(

Q̌1i
)
+ max

i∈ λmax
(

Q̌2i
)
+ max

i∈ λmax
(

Q̌3i
))

+ τ2
MeατM

(
λmax

(
Ř1
)
+ λmax

(
Ř2
))
+ τ2

MeατM
(
λmax

(
Š1
)
+ λmax

(
Š2
))

,

λ̃1 = max
i∈N

λmin(P̌i), P̌i = diag
{

R̂− 1
2 R̂− 1

2 R̂− 1
2

}
P̃i diag

{
R̂− 1

2 R̂− 1
2 R̂− 1

2

}
,

Q̌ni = R̂− 1
2 Q̃niR̂− 1

2 ,n = 1, 2, 3, Řm = R̂− 1
2 R̃mR̂− 1

2 , Šm = R̂− 1
2 S̃mR̂− 1

2 ,m = 1, 2.
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The closed-loop controller gains are as follows:
Ki = YiP̃−1

11,i.

Proof. Define the following matrices:

Γi
7n×7n = diag

{
P11,i P11,i P11,i P11,i P11,i P11,i P11,i

}
,

H = diag
{
Γi

7n×7n I(N−1)n
}
, P̃11i = P−1

11i,

Q̃1i = P̃11,iQ1iP̃11,i, Q̃2i = P̃11,iQ2iP̃11,i, Q̃3i = P̃11,iQ3iP̃11,i,

R̃1 = P̃11,iR1P̃11,i, R̃2 = P̃11,iR2P̃11,i, S̃1 = P̃11,iS1P̃11,i,

S̃2 = P̃11,iS2P̃11,i, T̃ij = P̃iTT
ij P̃i, J̃ij = P̃11,iJijP̃11,i,

L̃ij = P̃11,iLijP̃11,i.

By performing a congruence transformation H to the inequality in (28), we get

Ψ1i = HT

[
Φ̃1i + ΠT

2

(∑s
j=1 P̃jπij + 1

4

∑s
j=1,i≠j κ2

ijT̃ij

)
Π2 Ψ̃i

∗ −F̃i

]
H < 0,

where Φ̃i,Ψ̃i,P̃j, F̃i, and T̃ij are defined in (34). According to Schur complement lemma, Ψi < 0 guarantees
the inequality in (20). Using the similar idea, we have that the inequalities in (29) to (32) can guarantee the
inequalities in (21) to (24). According to Theorem 2, the closed-loop system is FTSS with respect to (c1, c2,T, R̂).
The proof is completed.

Remark 5. We adopt the method by defining e1, e2,e3, e4, and e5 with the aim to obtain a tractable matrix condition.
By carefully choosing these parameters, the conservatism of the system would be further reduced.

4 ILLUSTRATIVE EXAMPLES

In this section, we use 2 examples to demonstrate the effectiveness and advantages of our methods. The first example is to
show the less conservatism of our method than any other methods, and the second one is to illustrative the effectiveness
of our controller procedure.

Example 1. We present a simple example of S-MJLSs like (1) with 2 modes borrowed from the work of Li et al29:

A1 =
[
−2 0
0 −0.9

]
,A2 =

[
−1 0
−1 −1

]
,Ad1 =

[
−1 0.5
0 −1

]
,

Ad2 =
[
−1 0
−0.1 −1

]
, Π̄ =

[
π11(h) π12(h)
π21(h) π22(h)

]
,

with initial conditions x(0) =
[

1 1
]T and r0 = 1. In the simulation, the mode r(t) jumps between 1 and 2. First, we

only consider time constant delay S-MJLSs. The comparison results with other methods6,30 are displayed in Table 1.

TABLE 1 Maximum delay bound τ via different
methods

𝛑11 −0.2 −0.5 −1

Theorem 2 of Shu et al30 0.352 0.349 0.346
Theorem 2 of Gao et al6 m=5 0.822 0.813 0.808
Corollary 2 0.848 0.843 0.841

TABLE 2 Maximum decay rate via different upper bounds τM

via different methods

𝛂 0.1 0.2 0.3 0.4

Theorem 1 of Gao et al6 m=5 1.570 1.415 1.300 1.212
Theorem 1 1.769 1.525 1.363 1.245
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Furthermore, set τm = 1, π11 = −0.2, and π22 = −0.3, and the maximum delay bound τM is listed with different α
in Table 2. In addition, to further compare with more results, set τm = 1,μ = 0.5, and α = 0, and then Theorem 2
can reduce to guarantee the exponential stochastic stability of the system. Thus, we can use Theorem 2 to compare
with results in other works17,31-33 and in the work of Yue and Han,34 which is listed in Table 3. From Tables 1 to 3,
we can conclude that our result is less conservative than those in other works6,17,30-33 and in the work of Yue and
Han.34 Second, we consider time-varying transition rates. The transition rates in the model are π11(h) ∈ (−2.2,−1.8),
π12(h) ∈ (1.8, 2.2), π21(h) ∈ (2.6, 3.4), and π22(h) ∈ (−3.4,−2.6). Then, according to Remark 1, we have π11 = −2,
π12 = 2, π21 = 3, π22 = −3, and κ1j = 0.2, κ2j = 0.4. We want to find the maximum time delay τM such that the
feasible solution still exists. The obtained maximum time delay τM is listed in Table 4 with the result in the work of
Li et al17 with partitioning number l = 6 and Theorem 2. It is worth noting that the result in the aforementioned
work17 uses the delay partitioning method to further reduce the conservatism. However, in our result, to simplify the
result complexity, we do not use it. Even though, with μ becoming bigger and bigger, our result still becomes less
conservative than that in the work of Li et al.17

Example 2. For demonstrating the effectiveness of the proposed controller design method for Theorem 3, we consider
the dynamic model of a one-area LFC system shown in Figure 1, which can be expressed as follows12:

ẋ(t) = Ax(t) + Adx(t − d(t)) + Bu(t) + FΔPd,

y(t) = Cx(t),

TABLE 3 Maximum upper delay bound τM with τm = 1
and μ = 0.5

Different Results Maximum Allowed τM

Theorem 3.1 of Boukas et al31 0.224
Theorem 1 of Xu et al33 1.471
Theorem 1 of Yue and Han34 1.660
Theorem 1 of Fei et al32 m=5 1.753
Theorem 3.1 of Li et al17 l=4 1.807
Theorem 2 2.307

TABLE 4 Maximum upper delay bound τMwith
τm = 1

μ 0.2 0.5 0.9

Theorem 3.2 of Li et al17 l=3 4.00 2.07 1.44
Theorem 3.2 of Li et al17 l=6 4.11 2.16 1.57
Theorem 2 3.545 2.307 2.014

β

FIGURE 1 Dynamic model of one-area load frequency control scheme
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where

x(t) =
[
Δf ΔPm ΔPv

]T
,B =

[
0 0 1

Tg

]T
,F =

[
− 1

M
0 0
]T

A =
⎡⎢⎢⎢⎣
− D

M
1
M

0
0 − 1

Tch

1
Tch

− 1
RTg

0 − 1
Tg

⎤⎥⎥⎥⎦ ,C =
[

1 0 0
]
,

where Δf is the deviation of frequency, ΔPm is the generator mechanical output, and ΔPv is the valve position. ΔPd is
the supply-demand mismatch disturbance. M,D,Tg, Tch, and R denote the moment of inertia of the generator, genera-
tor damping coefficient, time constant of governor, time constant of the turbine, and speed drop, respectively. Kp = 10
is the power system gain. On the other hand, the parameters of LFC system always change due to the complex environ-
ment such as temperature and load fluctuation. Thus, S-MJLSs are considered with 2 modes (see Table 5) to describe
the LFC system model accurately as follows:

A1 =

[ −0.1 0.1 0
0 −3.3 −3.3

−200 0 −10

]
,A2 =

[ −0.125 0.0833 0
0 −2.5 2.5

−117.65 0 5.88

]
,Ad1 =

[ 0 0 0
0 0 0

−2100 0 0

]
,

Ad2 =

[ 0 0 0
0 0 0

−1265 0 0

]
,B1 =

[ 0
0

10

]
,B2 =

[ 0
0

5.88

]
, Π̄ =

[
π11(h) π12(h)
π21(h) π22(h)

]
,

with initial conditions x(0) =
[

0.5 0.3 0.4
]T and r0 = 1. The transition rates in the model are π11(h) ∈ (−2.8,−3.2),

π12(h) ∈ (2.8, 3.2), π21(h) ∈ (2.6, 3.4), and π22(h) ∈ (−2.6,−3.4). Then, according to Remark 1, we have π11 = −3,
π12 = 3, π21 = 3, π22 = −3, and κ1j = 0.2, κ2j = 0.4. In the simulation, mode r(t) jumps between 1 and 2. In this
example, the stable interval of time delay can also be discussed, which guarantees the exponential stochastic stability
of the closed-loop system. We design a state feedback in the form of (27) to make the closed-loop system exponentially
stochastically stable. According to the above parameters and set α = 0.1, e1 = 10, e2 = 10, e3 = 10, e4 = 10, e5 = 10,

TABLE 5 Parameters of a load frequency control scheme

Parameter Tch(s) Tg(s) R D 𝛃 M(s)

Mode 1 0.3 0.1 0.05 1.0 21.0 10
Mode 2 0.4 0.17 0.05 1.5 21.5 12

FIGURE 2 Time-varying delay and jump mode
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FIGURE 3 State response of the open-loop system [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 State response of the closed-loop system [Colour figure can be viewed at wileyonlinelibrary.com]

we can get the state-feedback controller gains as follows:

K1 =
[
−455.1933 −18.4575 −4.7612

]
,K2 =

[
−242.4706 −18.3610 −5.8928

]
. (35)

Assume R̂ = I, we can get that Λ̂ = 0.0054, λ̂1 = 1.29 × 10−12. Set T = 5, according to the inequality in (10), we have
0.0054c1 < 7.8 × 10−13c2. Thus, set c1 = 1 and c2 = 6.9 × 109, which can guarantee the finite-time stability of the system.
Figure 2 shows the jump mode r(t) and the time delay in (1). Figure 3 shows the performance of states for the open-loop
S-MJLSs. From Figure 3, we know that the open-loop system is unstable. If the state-feedback controller obtained by using
the controller in (35), the closed-loop system becomes stable, which is shown in Figure 4. From the Figures, we conclude
that the controller design method is effective.

5 CONCLUSION

The stability analysis and stabilization for S-MJLSs with time delay have been studied in this paper. According to a new
Lyapunov-Krasovskii functional, we have discussed the finite-time stability and exponential stochastic stability of the
systems. Some new criteria about finite-time stochastic stability and exponential stochastic stability have been proposed.
Part of conditions in the new finite-time stochastic stability criterion has also been proved to guarantee the exponential

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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stochastic stability of the system. Meanwhile, the stabilization criterion has been proposed on the basis of the stability
criterion such that the closed-loop system is FTSS. Lastly, Example 1 has been given to show the advantages of the stability
criterion, and in Example 2, we have introduced the controller design process of a load frequency system and illustrate
the effectiveness of the proposed controller design method. Since the structure of LFC system in Example 2 is the simplest
one, our future work is to focus on the controller design of the more complex LFC system.
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