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Abstract
In this paper, we propose an end-to-end deep learning frame-
work to detect speech paralinguistics using perception aware
spectrum as input. Existing studies show that speech under
cold has distinct variations of energy distribution on low fre-
quency components compared with the speech under ‘healthy’
condition. This motivates us to use perception aware spectrum
as the input to an end-to-end learning framework with small
scale dataset. In this work, we try both Constant Q Transform
(CQT) spectrum and Gammatone spectrum in different end-to-
end deep learning networks, where both spectrums are able to
closely mimic the human speech perception and transform it
into 2D images. Experimental results show the effectiveness of
the proposed perception aware spectrum with end-to-end deep
learning approach on Interspeech 2017 Computational Paralin-
guistics Cold sub-Challenge. The final fusion result of our pro-
posed method is 8% better than that of the provided baseline in
terms of UAR.
Index Terms: computational paralinguistics, speech under
cold, deep learning, perception aware spectrum

1. Introduction
Speech paralinguistics study the non-verbal signals of speech
including accent, emotion, modulation, fluency and other per-
ceptible speech phenomena beyond the pure transcriptional
content of spoken speech [1]. With the advent of computational
paralinguistics, such phenomena can be analysed by machine
learning methods. The Interspeech COMPUTATIONAL PAR-
ALINGUISTICS CHALLENGE (COMPARE) is an open Chal-
lenge in the field of Computational Paralinguistics since 2009.
Interspeech 2017 ComParE Challenge addressed three new
problems within the field of Computational Paralinguistics: Ad-
dressee sub-challenge, Cold sub-challenge and Snoring sub-
challenge [2].

In this paper, we proposed an efficient deep learning archi-
tecture for Cold sub-challenge of the Interspeech 2017 Com-
putational Paralinguistics ChallengE [2]. The task aims to dif-
ferentiate the cold-affected speech from the ‘normal’ speech.
The baseline of challenge includes three independent systems.
The first two systems use traditional classification method (i.e.

This research was funded in part by the National Natural Sci-
ence Foundation of China (61401524), Natural Science Foundation of
Guangdong Province (2014A030313123), Natural Science Foundation
of Guangzhou City (201707010363), the Fundamental Research Funds
for the Central Universities (15lgjc12), National Key Research and De-
velopment Program (2016YFC0103905) and IBM Faculty Award.

SVM) with COMPARE features representation [3] and bag-of-
audio-words (BoAW) features representation [4], and achieve
unweighted average recall (UAR) of 64.0 and 64.2 respectively.
The third system employs end-to-end learning but only achieves
UAR of 59.1. Similar to [5], this system uses a convolutional
network to extract features from the raw audio and then a sub-
sequent recurrent network (i.e. LSTM) performs the final clas-
sification [2].

During the past few years, deep learning has made sig-
nificant progress. Deep learning methods outperform the tra-
ditional machine learning methods in variety of speech appli-
cations such as speech recognition [6], language recognition
[7], text-dependent speaker verification [8], emotion recogni-
tion [5], anti-spoofing tasks. This motivates us to apply deep
learning methods to computational paralinguistic tasks.

However, the end-to-end baseline system provided in [2]
did not achieve better UAR than the other two baseline systems.
One possible reason is that small scale dataset may not be able
to drive the deep neural network to learn a good feature directly
from waveform for classification, and hard to obtain a robust
feature for classification. We thus look into the frequency repre-
sentation (i.e spectrograms) to perform the end-to-end learning.
Spectrograms is a widely used audio signal feature representa-
tion in deep learning, which contain more wealth of acoustic
information.

Existing study shows that compared with speech in ‘health’
condition, the speech in cold has larger amplitude in low fre-
quency components and lower amplitude in high frequency
components. [9]. Also, from the viewpoint of a human audi-
tory perceptual system, human ears are more sensitive to small
changes in low frequencies [10]. This motivates us to use per-
ception aware spectrograms (i.e. Gammatone spectrograms and
Constant Q Transform spectrograms) as the input for end-to-
end deep learning framework when performing computational
paralinguistics tasks. Constant Q transform employs geomet-
rically spaced frequency bins and ensures a constant Q factor
across the entire spectrum. This results in a finer frequency
resolution at low frequencies while provides a higher temporal
resolution at high frequencies [11]. Gammatone spectrum em-
ploys Gammatone filters which are conceived as a simple fit to
experimental observations of the mammalian cochlea, and have
a repeated pole structure leading to an impulse response that is
the product of a gamma envelope g(t) = tne−t and a sinusoid
(tone) [12, 13].

To the best of our knowledge, deep learning framework
with CQT spectrograms input has been successfully applied to
piano music transcription [14], audio scene classification and
domestic audio tagging [15]. But the performance of deep
learning framework with Gammatone spectrograms input still
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remains to be investigated. In this work, we try different net-
work architecture with the above two perception aware spec-
trum, and find that perception aware spectrum outperforms the
conventional short-term Fourier Transform (STFT) spectrum in
the paralinguistic speech tasks of cold-affected speech. We
think that our proposed method is applicable to other compu-
tational paralinguistic speech tasks as well.

The remainder of this paper is organized as follows. In next
section, we will describe the proposed methods and background
on its major components. Section 3 presents the dataset and
experimental results. A brief conclusion is given in section 4.

2. Methods
2.1. Perception aware spectrum

2.1.1. STFT spectrograms

Traditionally, discrete-time short-term Fourier transform is used
to generate spectrograms of the time representation audio sig-
nals. Actually, the STFT is a filter bank. The Q factor defined
as the ratio between the center frequency fk and the frequency
bandwidth ∆f is a measure of the selectivity of each filter:

Q =
fk
∆f

(1)

In STFT, the Q factor increases with the frequencies since
the bandwidth ∆f related to the window function is identical
for all filters. However, human’s ears can easily perceive small
changes of low frequencies, but for high frequencies only gross
differences can be detected. Human perception system is known
to approximate a constant Q factor between 500Hz and 20kHz
[10]. As a result, STFT spectrum with varied Q may not be
good enough for speech signals analysis but perception aware
spectrum can provide more discriminant information for cold-
affected speech detection and other computational paralinguis-
tic tasks.

2.1.2. CQT spectrograms

The first perception aware spectrum we try in the end-to-end
deep learning framework is constant Q transform spectrograms.
It was introduced by Youngberg and Boll [16] in 1978 and re-
fined by Brown [17] some years later in 1991. In contrast to
the fixed time-frequency resolution of Fourier methods, CQT
ensures a constant Q factor across the entire spectrum and thus
gives a higher frequency resolution for low frequencies and a
higher temporal resolution for high frequencies.

The CQT X(k, n) of a discrete time signal x(n) can be
calculated by

X(k, n) =

n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k(j − n+Nk/2) (2)

where k is the index of the frequency bins,Nk is a variable win-
dow lengths and ak(n) are complex-valued waveforms, here
also called time-frequency atoms, which are defined as

ak(n) =
1

C
w(

n

Nk
) exp

[
i

(
2πn

fk
fs

+ Φk

)]
(3)

where fk is the center frequency of the corresponding frequency
bin, fs is the sampling rate, w(t) is a window function and Φk

is a phase offset. C is a scaling factor given by

C =

bNk/2c∑
l=−bNk/2c

w

(
l +Nk/2

Nk

)
(4)
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Figure 1: Spectrograms of ‘train 0250.wav’ in URTIC dataset.
Spectrograms computed with the short time Fourier Transform
(top), with the constant Q transform (middle) and with Gamma-
tone filters (bottom).

Since a bin spacing corresponding to the equal tempera-
ment is desired, the center frequencies fk obey

fk = f12
k−1
B (5)

where f1 is the center frequency of the lowest-frequency bin
and B is a constant determines the time-frequency resolution
trade-off. We then can write the Q factor as

Q =
fk

fk+1 − fk
=
(

21/B − 1
)−1

(6)

We can finally write the window lengths Nk which is inversely
proportional to fk to ensure a constant Q for all frequency bins
as

Nk =
fs
fk
Q (7)

2.1.3. Gammatone spectrograms

The second perception aware spectrum we try in the end-to-end
deep learning framework is Gammatone spectrograms. Gam-
matone filters are a linear approximation to the filtering per-
formed by the ear. To get a Gammatone spectrum, the audio
signal is first analysed using a multi-channel Gammatone fil-
terbank [18] and then the energy across each time frames is
summed up [12].

Figure 1 shows STFT, CQT-derived spectrogram and Gam-
matone spectrogram for an arbitrarily selected speech signal
from the dataset of the Cold sub-challenge. It is obvious that
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Figure 2: The end-to-end network architecture with perception aware spectrograms input. The deep learning network consists of 4
convolution layers, 1 GRU layer and 1 fully connected layer.

both CQT spectrum and Gammatone spectrum emphasize the
low frequencies. The major difference between CQT spectrum
and Gammatone spectrum is their low frequencies components.
CQT spectrum gives a good frequency resolution but a bad
time resolution, for it ensures a constant Q factor. Gammatone
spectrum provides a smoother frequency resolution as human
cochlea and a relatively good time resolution, for it apply Gam-
matone filters within each regular time bins. It’s hard to say
which kind of spectrogram will be better for the cold-affected
speech detection tasks as well as other computational paralin-
guistic tasks. But one thing for sure is that perception aware
spectrograms which reflect more closely the human perception
system will provide more information in low frequencies and
help the deep learning neural network to learn discriminate fea-
tures for classification.

2.2. End-to-end deep learning framework

To perform end-to-end learning in cold-affected speech detec-
tion task, we combine convolutional neural network (CNN) and
recurrent neural networks (RNN) to learn features automati-
cally.

The general combinations scheme is as follows. First, a
convolutional neural network acts as the feature extractor on the
input perception aware spectrum input. Then, the CNN’s output
is feed into a recurrent neural network. The output of the CNN
is a set of channels (i.e. feature maps). In our network, the 3-D
tensor output of CNN is interpreted as a set of 2D-tensors along
the time axis and each 2D-tensor contains the information from
every channel. We employ a single gated recurrent unit (GRU)
layer on 2D slices of that tensor and this enable the information
from different channels mix inside the GRU. Finally, a fully
connected layer with a softmax layer performs on the RNN’s
output to do classification. Figure 2 illustrates our end-to-end
network architecture.

The CNN-LSTM deep learning framework has been suc-
cessfully applied in the paralinguistic task of detecting sponta-
neous or natural emotions in a speech, except this work use a
raw time representation input [5]. This framework with some
residual connections (“shortcuts”) from input to RNN and from
CNN to fully connected layers has also been use in speech
recognition [19].

2.3. CQCC and MFCC in GMM framework

To verify the effectiveness of the end-to-end deep learning
network upon perception aware spectrum, we use CQCC and
MFCC as the perception aware features to train classifier.

CQCC is based on constant Q transform which is al-
ready perception aware. The constant Q cepstral coefficients
(CQCCs) of a discrete time signal with CQT X(k) at a particu-
lar frame can then be extracted according to:

CQCC(p) =

L∑
l=1

log |X(l)|2 cos

[
p
(
l − 1

2

)
π

L

]
(8)

where p = 0, 1, · · · , L − 1 and l are the newly resampled fre-
quency bins [11].

For MFCC, the Mel-cepstrum applies a frequency scale
based on auditory critical bands before cepstral analysis [20].
The Mel-frequency cepstral coefficients (MFCCs) of a discrete
time signal with DFT X(k) at a particular frame can then be
extracted according to:

MFCC(q)

M∑
m=1

log [MF (m)] cos

[
q
(
m− 1

2

)
π

M

]
(9)

where the MF (m) is the Mel-frequency spectrum and is de-
fined as

MF (m) =

K∑
k=1

|X(k)|2Hm(k) (10)

where k is the DFT index and Hm(k) is the triangular
weighting-shaped function for the m-th Mel-scaled bandpass
filter.

Two Gaussian mixture models (GMMs) is trained on one
kind of perception aware features and used as a 2-class classi-
fier in which the classes correspond to cold-affected and normal
speech. The final score of a given test speech is computed as
the log-likelihood ratio of the two GMMs.

3. Experiments
3.1. Dataset

We use the UPPER RESPIRATORY TRACT INFECTION COR-
PUS (URTIC) provided by the Institute of Safety Technology,
University of Wuppertal, Germany. The corpus consists of
28652 instances with a duration between 3 and 10 seconds.

3454



Table 1: End-to-end learning network architecture. FC: fully
connected layer. conv: convolutional layer.

Network Configuration

CNN+GRU+FC

conv1: 16 7×7 kernels, 1 stride
conv2: 32 5×5 kernels, 1 stride
conv3: 32 3×3 kernels, 1 stride
conv4: 32 3×3 kernels, 1 stride
pooling: 3×3 pool, 2×1 stride
GRU: 500 hidden units
FC: classification layer

CNN+FC

conv: same as above
pooling: same as above
FC1: 50 hidden units
FC2: classification layer

9505 instances were selected for training, 9596 for the devel-
opment set, and 9551 for testing.

The URTIC corpus is imbalanced: the number of cold-
affected speech for training is 970 but the number of ‘healthy’
speech is 8535 [2]. However, a neural network trained on an
imbalanced dataset may not be discriminative enough between
classes [21]. To address this issue, we employ the simplest re-
sampling technique by over-sampling the minority class with
duplication when training end-eo-end deep learning networks.

3.2. Experimental results

We first use CQCC features to model the cold-affected speech
and normal speech by employing two 512-components Gaus-
sian mixture models and calculate the log-likelihood ratio upon
these two GMMs for each test speech. We also use MFCC fea-
tures with the same setup. The UAR with CQCC and MFCC
features are 65.4% and 64.8% respectively, which is slightly
better than the challenge organizer’s SVM based results.

We then apply STFT spectrum, CQT spectrum and Gam-
matone spectrum to different end-to-end learning networks.
Firstly, the training data is cut into a series of 3 seconds
speech with an overlap of 2 seconds. We then extract different
kinds of spectrograms which are 256×186 STFT spectrograms,
863×352 CQT spectrograms and 128×298 Gammatone spec-
trograms, the column number of these three spectrums are dif-
ferent due to the different frame shift parameters. All of which
are used as input for the neural network. See table 1 for the
details of the network architecture.

During neural network training phase, we use batch nor-
malization to speed up. As the data are fed forward into a deep
network, the parameters of the current layer adjust the input
data and change the input data distribution for the next layer,
which refers to as internal covariate shift. Batch normalization
addresses the problem of internal covariate shift by normalizing
layer inputs [22]. We also employ dropout to counter overfitting
in training the neural network when labelled data is scarce [23].

Table 2 shows the experimental results of the baseline sys-
tem and our proposed systems. It is observed that both CQT
spectrum and Gammatone spectrum outperform the STFT spec-
trum in the case of UAR with the CNN+GRU+FC network
setup. The best result of our end-to-end system (CQT spec-
trum with CNN+GRU+FC) is 15.7% better than the provided
end-to-end network (raw waveforms with CNN+LATM). We
use BOSARIS toolkit[24] to fuse the system results. The fu-
sion results show that CQT and Gammatone spectrum are com-

Table 2: URTIC development set results for predicting the cold-
affected speech.

Algorithms ID Inputs UAR

SVM [2] 1 COMPARE functional 64.0%
2 COMPARE BoAW 64.2%

GMM 3 MFCC 64.8%
4 CQCC 65.4%

CNN + LSTM [2] 5 Time representation 59.1%

CNN + FC
6 STFT spectrum 64.1%
7 CQT spectrum 68.5%
8 Gammatone spectrum 65.6%

CNN + GRU
+ FC

9 STFT spectrum 66.7%
10 CQT spectrum 68.4%
11 Gammatone spectrum 67.7%

Fusion

- 1+2+5 [2] 66.1 %
- 6+7+8 68.7%
- 9+10+11 69.9%
- 7+8+10+11 70.8%
- 6+7+8+9+10+11 70.6%
- 3+4+6+7+8+9+10+11 71.4%

plementary to each other, and so does different neural network
architectures. GMM system with CQCC or MFCC also helps to
improve the system performance. The final fusion result of the
URTIC development set is 71.4% and is 8% better than that of
the provided baseline. The final fusion result of the test set,
which is 66.71%, unfortunately suffers overfitting. We fuse
it with the COMPARE functional baseline (70.2%)[2] and get
71.2% UAR of the test set.

4. Conclusion
In this paper, we propose to use perception aware spectrum in
end-to-end deep neural network to perform the computational
paralinguistic task of detecting cold-affected speech. In the
small scale datasets, perception aware spectrum such as CQT
spectrum and Gammatone spectrum outperforms the raw time
domain representation even the conventional STFT spectrum in
end-to-end learning. We also investigate the performance of
perception aware feature such as CQCC and MFCC when feed-
ing it into GMMs which serve as a classification algorithm and
verify the effectiveness of deep learning network with proper
designed architecture and perception aware spectrum input. We
have tried different spectrum input in different neural network
architectures as well as the conventional classifier, fusing the
results of these system brings a performance gain and shows
that these features and methods are significant complementary
to each other.

The computational paralinguistic task of detecting cold-
affected speech still remains many problems to be investigated.
For example, we have tried to use a phone decoder upon the
given dataset and separately model three kinds of phone set
which consist of vowel, nasal and other consonant with the split
utterance. The experimental results show little discrimination
between the three phone model mentioned above. This may due
to the inaccurate phone decoder as well as the imbalanced phone
set model training data. In the further work, we will try more
accurate phone decoder and more proper modeling algorithms.
Moreover, we will try to combine this idea with attention based
neural network.
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