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Abstract

An electrolarynx (EL) is a medical device that generates speech for people who

lost their biological larynx. However, EL speech signals are unnatural and un-

intelligible due to the monotonous pitch and the mechanical excitation of the

EL device. This paper proposes an end-to-end voice conversion method to en-

hance EL speech. We adopt a speaker-independent automatic speech recognition

model to extract bottleneck features as the intermediate phonetic features for

enhancement. Our system includes two stages: the bottleneck feature vectors of

the EL speech are mapped by a parallel non-autoregressive model to the corre-

sponding feature vectors of the normal speech in stage one. Then another voice

conversion model maps normal speech’s bottleneck feature vectors directly to

normal speech’s Mel-spectrogram in stage two, followed by a MelGAN-based

vocoder to convert the Mel-spectrogram into waveform. In addition, we incor-

porate data augmentation and transfer learning to improve conversion perfor-

mance. Experimental results show that the proposed method outperforms our

baseline methods and performs well in terms of naturalness and intelligibility.
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1. Introduction

An electrolarynx (EL) is a medical device designed for people who lose their

biological larynx. Patients with laryngeal cancer who receive full therapy have

their larynx removed by the total laryngectomy surgery, and as a result, they

lose the fundamental frequency generation mechanism of the human vocal tract

[1]. The EL is one of the speaking-aid devices they can use to rehabilitate

their speech [2]. Although laryngectomees lose their larynges, the other organs

for producing speech are usually unaffected. In this case, an EL is used to

substitute the function of the removed larynx. Typically, laryngectomees hold

the EL against their neck to produce speech. Energy signals are transmitted to

the speaker’s oral cavity through the speaker’s skin. Then energy signals are

carried through other vocal organs that filter the signals and produce various

pronunciations [3].

However, the resulting speech generated by an EL usually has several funda-

mental issues that make it dissimilar to natural speech [4]: 1. EL speech sounds

unintelligible and unnatural due to its constant fundamental frequency (F0), 2.

the continuous vibration of the EL device causes undesired noise. There are

various ways to reduce the problems and improve the speech quality. Generally,

noise reduction and fundamental frequency prediction are two main methods

for EL speech enhancement. On the hardware side, advanced EL devices are

designed with the capability to change voice intonation or pitch [1, 5, 6], while

some of the devices require laryngectomees’ additional practices on use. On the

software side, post-processing algorithms for background noise reduction have

been proposed for EL speech enhancement [7, 8]. Mathew et al. have stud-

1https://haydencaffrey.github.io/el/index.html
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ied the effectiveness of two noise reduction algorithms, dimensional amplitude

trimmed estimation (DATE) and non-negative matrix factorization (NMF) [9],

which have found that NMF algorithms outperforms DATE-based algorithms

on reducing acoustic noise in EL speech.

Nonetheless, recent works have shown that the voice conversion (VC) tech-

nique is more effective in EL speech enhancement [4, 10, 11, 12, 13]. VC-based

approaches aim to convert the EL speech to natural speech by mapping models

trained with parallel audio pairs [3, 14]. Previously, most VC-based approaches

use Gaussian Mixture Models (GMM) [3, 4, 15, 16, 17] to predict the excitation

parameters and adopt parametric vocoders, e.g., STRAIGHT [18] and WORLD

[19], to reconstruct the enhanced speech. Among those excitation parameters,

the prediction of F0 is regarded as the most important yet challenging part

[6, 20]. Accordingly, Li et al. propose a hybrid approach using NMF and G-

MM to estimate a smoothed F0 contour [17]. After considering the physical

mechanism and the constrain of vocal phonation and speech production, the F0

estimation performance is further enhanced [15, 16]. However, the F0 contour is

highly related to linguistic information [21], which motivates researchers to use

phonetic features, including phoneme labels [10], phoneme embeddings [11], and

phonetic posterior probabilities (PPP) [14], for predicting F0 contour. Further-

more, it is found that replacing the GMM with deep neural network models can

effectively improve the quality of the converted EL speech [12, 13, 22]. Specifi-

cally, the network structure CLDNN is adopted in EL speech conversion and has

shown to achieve higher naturalness and perceptual speech intelligibility than

GMM models [12, 13].

However, the aforementioned approaches rely on speech features generated

from conventional parametric vocoders where the phase information is discard-

ed. As a result, acoustic artifacts are also introduced in synthesized speech.

On the other hand, the end-to-end VC [23, 24, 25, 26] and neural vocoders

[27, 28, 29] have dominated the voice conversion field recently with their high-

fidelity synthesis performance. In addition, studies show that the bottleneck

features or phoneme posterior probability features extracted by the acoustic
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model from an automatic speech recognition system can provide sufficient pho-

netic information for the VC task [30, 31]. Specifically, Ding et al. train a

speech synthesizer to map PPP from the non-native speaker into the corre-

sponding target Mel-spectrogram [32]. Such conversion techniques relieve the

efforts of predicting multiple speech features, including F0, aperiodicity feature

and U/V (Unvoiced/Voiced) labels, in the traditional statistical approaches.

Instead, the end-to-end VC only needs to predict the spectrogram. These ad-

vancements have inspired us to investigate neural voice conversion for EL speech

enhancement.

In this paper, we propose three speech-to-speech conversion systems using

bottleneck features to enhance EL speech. The first system is the bottleneck

feature to Mel-spectrogram (BN-MEL) VC system. This system directly maps

the bottleneck features of the EL speech to the Mel-spectrogram of the normal

speech using a parallel non-autoregressive model. However, considering that the

bottleneck features of the EL speech may follow different distribution from those

of normal speech and the parallel training data is very limited, the direct map-

ping from the bottleneck feature of the EL speech to the Mel-spectrogram of the

normal speech is difficult. Therefore, we propose to add an intermediate conver-

sion step to form a two-stage framework. Specifically, we first map bottleneck

features of EL speech to bottleneck features of normal speech, then convert bot-

tleneck features of normal speech to Mel-spectrogram of normal speech, which

is our BN-BN-MEL VC system. In addition, by substituting the real F0 values

of normal speech into constant ones and generating augmented speech through

the WORLD vocoder, we generate speech signals close to EL speech. The aug-

mented speech is then used to pre-train the BN-BN-MEL model, while the EL

speech is used to finetune the model. We call this system the BN-BN-MEL-P

system. In addition to our proposed systems, we also reproduce the GMM-based

conversion system proposed in [14] as one of our baseline systems. The report-

ed state-of-the-art system, the CLDNN-based conversion enhancement system

proposed in [12], is also reproduced for comparison. By conducting objective

and subjective evaluations, we evaluate the performance of our proposed sys-
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tems. For the objective evaluation, we use an automatic speech recognition

system to evaluate the intelligibility of generated speech. The performance is

measured by Word Error Rate (WER). The lower the WER, the better the

intelligibility of generated speech. We also use the distortion between the tar-

get Mel-spectrogram and the predicted Mel-spectrogram as another objective

evaluation metric. For subjective evaluation, we ask participants to rate the

generated speech on naturalness and intelligibility; then, we calculate the Mean

Opinion Score (MOS). According to the subjective and objective evaluation re-

sults, our proposed BN-BN-MEL-P system achieves the best performance on

naturalness and intelligibility.

Our work has the following contributions. First, our model achieves state-

of-the-art performance on both naturalness and intelligibility for EL speech

enhancement. Second, our proposed system works well on data-limited scenarios

due to the two-stage learning process and the transfer learning strategies. Third,

we incorporate the transformer and a neural vocoder to electrolarynx speech

enhancement, which significantly improves the naturalness of the enhanced EL

speech.

The rest of this paper is organized as follows. Section 2 describes our pro-

posed parallel non-autoregressive VC system for EL speech enhancement. Sec-

tion 3 shows the experimental setup and results, and the conclusion is given in

Section 4.

2. Method

We propose three systems, namely BN-MEL, BN-BN-MEL and BN-BN-

MEL-P, in this paper for EL speech enhancement. All systems utilize a parallel

non-autoregressive network architecture as the conversion model, shown in Fig-

ure 1. The BN-MEL system directly adopts the conversion model to map the

bottleneck feature of EL speech to the Mel-spectrogram of the corresponding

target speech. The BN-BN-MEL system first adopts a conversion model to map

the bottleneck feature of the EL speech to the bottleneck feature of the target
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Figure 1: (a) The overall architecture of our proposed model. (b) The Encoder

and Decoder network. (c) The PreNet module. (d) The PostNet module.

speech, then use another conversion model to convert the bottleneck feature of

the target speech to the Mel-spectrogram of the target speech. The BN-BN-

MEL-P system applies a pre-training strategy to boost the performance of the

BN-BN-MEL system.

Specifically, the input bottleneck feature is extracted by a bottleneck ex-

tractor from an automatic speech recognition (ASR) model to obtain linguistic

information. The output feature of our systems is the Mel-spectrogram of target

speech, which is then converted back to waveform by a neural vocoder.

2.1. Bottleneck Feature Extractor

In our proposed system, we apply a pre-trained ASR model trained with

Kaldi [33] to extract linguistic information from EL speech. The acoustic model

used to predict phonetic probabilities in ASR is employed as the bottleneck

feature extractor. The acoustic model contains multiple time-delayed neural

network (TDNN) layers, followed by a linear layer that maps the hidden feature
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to a lower-dimensional embedding. We refer the output of the linear layer as

the speaker-independent bottleneck feature [34]. The bottleneck feature can

accentuate linguistic information well since the acoustic model is trained with

the genuine phonetic target for each acoustic frame. Therefore the bottleneck

feature can be used as the linguistic feature for voice conversion.

2.2. The Conversion Model

The overall architecture of our conversion model is shown in Figure 1 (a),

where the network structure of the Encoder and the Decoder is shown in Figure 1

(b). Basically, the architecture is used to model the mapping between input fea-

ture sequence X = [x1,x2, ...,xl] to output feature sequence Y = [y1,y2, ...,yl],

where l ∈ N is the length of the sequence. The mapping is performed by a se-

ries of neural network components with trainable parameters θ. The conversion

model is optimized according to several loss functions denoted by L.

The input acoustic feature is mapped into a high dimensional latent space

by the PreNet module, followed by an Encoder that encodes the latent rep-

resentation and a Decoder that transforms encoder outputs to target acoustic

features. The encoder and the decoder adopt the same structure: a stack of

identical layers consisting of a multi-head attention layer, residual and normal-

ization layers, and a convolutional layer. Particularly, residual connections are

extensively used in our proposed model as the residual connection has been

proven effective for deep neural networks [35]. The residual connection provides

another data flow that performs identity mapping to the input. The output of

the residual connection can be formulated by F (x) + x, where x is the identity

mapping of input and F is a network component. The decoder outputs are

then fed into linear layers to predict the target acoustic features, and finally the

PostNet module is applied to finetune the predicted features.

2.2.1. PreNet Network

The structure of the Pre-net is shown in Figure 1 (c). The PreNet contains

two fully connected hidden layers and one dropout layer. Both fully connected
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hidden layers have 256 units with ReLU as the activation function. During

training, the linear output is dropped out with a dropout rate of 0.5.

The PreNet module transforms the input feature X into a high-dimensional

representations Z as in Equation 1.

Z = PreNetθ (X) (1)

2.2.2. Positional Encoding

In order to utilize the context information of the input sequence, we apply

the positional encoding mechanism to the feature sequence as proposed in [36].

pj = [p0j , p
1
j , ...p

2i
j , p

2i+1
j , ..., pd−1j ]> is added to the input feature sequence, where

d is the dimension of the feature, j ∈ [0, l− 1] is the index for the input feature

sequence. Specifically, the positional encoding mechanism is formulated as in

Equation 2 and 3, where i ∈ [0, ..., d/2−1] is the index of the feature dimension.

The positional encoding provides explicit information of the currently processed

portion in the sequence.

p2ij = sin
(
j/100002i/d

)
, (2)

p2i+1
j = cos

(
j/100002i/d

)
(3)

2.2.3. The Encoder and Decoder Structure

The structure of the encoder and decoder are shown in Figure 1 (b). The

encoder is composed of 4 identical blocks. Each block employs a multi-head self-

attention layer and a one-dimensional convolutional layer. Normalization layers

are added after each of those two layers. At the same time, residual connections

are applied between the input and the output of those two layers. The decoder

has the same feed-forward network structure as the encoder, which significantly

speeds up the training and inference process. The output of the decoder is then

fed to a linear layer with 80 units to predict the corresponding target features.

The multi-head self-attention mechanism allows the model to jointly attend

to information from different representation subspaces at different positions.
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The outputs of the self-attention layer is obtained according to Equation 4,

where Q, K and V are attention queries, keys and values. dk is the dimension of

the key. The multi-head attention layer can be formulated as Equation 5, where

attention headi is calculated by Equation 6. In particular, WQ
i ,W

K
i ,W

V
i ,W

O

are all trainable matrices for linear transformations of queries, keys, values and

outputs, respectively. The number of attention heads is set to 4 in our experi-

ments.

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V (4)

Multihead(Q,K, V ) = concat (head1, . . . ,headh)WO (5)

headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
(6)

2.2.4. PostNet Network

The PostNet, shown in Figure 1 (d), is designed to refine the Mel-spectrogram

predicted by the decoder. The PostNet is a convolutional neural network with

a residual connection between the input and the output. It is composed of a 5

one-dimensional convolutional layers with 512 filters.

2.2.5. Loss Function

We denote the predicted Mel-spectrogram as Ŷ = [ŷ1, ŷ2, ..., ŷl] and the

ground truth Mel-spectrogram is Y = [y1,y2, ...,yl], where l ∈ N denotes the

length of the feature sequence. As shown in equation 7, the loss function for op-

timizing the neural parameters of our proposed model is composed of two recon-

struction losses, Llinear and Lpost. In particular, Llinear is the MSE loss between

the Mel-spectrogram predicted by the linear projection layer before the Post-

Net and the target Mel-spectrogram, while Lpost denotes the MSE loss between

the Mel-spectrogram finetuned by the PostNet and the target Mel-spectrogram.

The Mean Square Error (MSE) shown in Equation 8 is the loss function that we

use to evaluate the predicted result and the target Mel-spectrogram in the train-
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ing process. yj is the jth feature vector of the ground truth feature sequence,

and ŷj is the jth corresponding predicted feature vector.

L = Llinear + Lpost (7)

LMSE =
1

l

l∑
i=1

(
yj − ŷj

)2
, l ∈ N (8)

2.3. The BN-MEL System

For the BN-MEL system, the input is the bottleneck feature extracted from

the EL speech, the output is the Mel-spectrogram of the corresponding normal

speech. As shown in Figure 2, in the training stage, the system learns to convert

the given bottleneck feature of EL speech directly to the Mel-spectrogram of

normal speech with the same content. In the test stage, the system predicts

the Mel-spectrogram from the given bottleneck feature of the test EL speech,

and then the neural vocoder MelGAN is used to convert Mel-spectrogram to

waveform.

Figure 2: The overview of our proposed BN-MEL VC system

2.4. The BN-BN-MEL System

Considering that the EL speech is different from the normal speech, the

bottleneck features extracted by the ASR model trained on normal speech may

inevitably leads to some errors. As a result, the BN-MEL system may have

accumulated errors in the output due to errors in bottleneck features, which

then affects the intelligibility and naturalness of the converted speech. In order
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to address this issue, we propose the BN-BN-MEL system. The framework is

shown in Figure 3.

Figure 3: The overview of our proposed BN-BN-MEL system

In the training stage, the bottleneck feature of EL speech is mapped by a

conversion model to the corresponding bottleneck feature of the normal speech.

Let XEL, XNL denote the bottleneck features of parallel EL speech and normal

speech with the same lexical content, respectively. Then the first conversion

process can be formulated as Equation 9, where θ1 are the model parameters of

the conversion model 1. Another conversion model is followed to map normal

speech’s bottleneck feature vectors directly to normal speech’s Mel-spectrogram.

Let XNL, Y denote the bottleneck features and Mel-spectrograms of normal

speech. Likewise, the second conversion phase can be rendered by Equation 10,

where θ2 are the model parameters.

XNL = Modelθ1 (XEL) (9)

Y = Modelθ2 (XNL) (10)

In the test stage, the bottleneck feature of EL speech is first fed to Model1,

and the output refined bottleneck feature is used as the input to conversion

Model2 to obtain the predicted Mel-spectrogram. Finally, the MelGAN-based
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vocoder network is adopted to convert the Mel-spectrogram into time-domain

waveform.

2.5. The BN-BN-MEL-P System with Data Augmentation and Transfer Learn-

ing

By separating the mapping process from bottleneck feature to Mel-spectrogram

into two stages, the BN-BN-MEL system manages to utilize other datasets to

pre-train the model in each stage.

For the first model that maps the bottleneck feature of EL speech into the

bottleneck feature of normal speech, we first pre-trained it on the Data-Baker

DB4 dataset 2 with 11.84 hours of normal speech in Chinese Mandarin from a

female speaker. Instead of directly using the DB4 dataset, we use the WORLD

vocoder to decompose DB4 utterances and then substitute the F0 values with

constant ones. Simulated EL utterances are synthesized by WORLD with the

modified F0 contours. By extracting bottleneck features from the simulated

EL speech with flat F0 and the original normal speech, we pre-train the first

conversion model to map the bottleneck feature of the EL speech to that of the

normal speech. Then, we finetune the pre-trained model using our collected real

EL speech data.

We consider the second-stage model, which maps the bottleneck feature of

normal speech into the Mel-spectrogram of normal speech, as a one-to-one voice

conversion task. In this stage, we directly extract the bottleneck feature and

Mel-spectrogram from the normal speech in the DB4 dataset and pre-train the

model to map the bottleneck feature of normal speech to the Mel-spectrogram

of normal speech. Then we finetune the pre-trained model using our collected

natural speech. We denoted the system with finetuning strategy as the BN-BN-

MEL-P system.

2https://www.data-baker.com/data/index/compose/
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2.6. MelGAN Vocoder

We use the MelGAN[28] vocoder to convert the model’s output back to

speech waveform concerning its inference speed. MelGAN is a GAN-based net-

work capable of generating high-quality speech from Mel-spectrograms. Mel-

GAN, including a generator and discriminator architecture, is fully convolution-

al with significantly fewer parameters. Our MelGAN network is implemented

based on the official open-source toolkit on Github3.

3. EXPERIMENTS

3.1. The Conversion Model

The hyperparameters used in our conversion model is shown in Table 1. The

PreNet is composed of 2 linear layers. Both the encoder and decoder have 4

blocks with two-head attention mechanism. The dimension of the key, query

and value vector are set to 256. The PostNet is composed of 5 1-D CNN layers

with a channel size of 80 and kernel size of 5.

Table 1: Hyperparameters of our conversion model

Module Parameter

PreNet 2 linear layers

Encoder
block N=4, head=2

dk = dq = dv = 256

Decoder
block N=4, head=2

dk = dq = dv = 256

Linear 1 linear layer

PostNet 5 1D-CNN layers ,
channel=80

kernel size=5

3https://github.com/descriptinc/melgan-neurips
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3.2. Data Preparation

Five hours of parallel EL speech and normal speech recorded by a healthy

Chinese female speaker in [14] is used as our dataset. There are 3210 Mandarin

utterances of EL speech and 3210 corresponding normal utterances. Each ut-

terance consists of a short sentence. We randomly select 2900 utterance pairs

for training and 310 utterance pairs for evaluation. The division of the dataset

is the same as in [14]. For the vocoder, we use the AISHELL-3 dataset [37] to

train our MelGAN model. While most studies from the literature downsam-

ple audio signals to 16kHz for experiments [12, 13, 14], we also downsample

all speech utterances of aforementioned datasets to 16kHz for comparison. In

addition, we preprocess the EL speech by reducing the background noises in

EL speech using the WebRTC noise suppression algorithm4. Concerning acous-

tic feature extraction, 80-dimensional Mel-spectrograms were extracted every

12.5 ms with Hamming windowing of 50 ms frame length and 800-point Fourier

transform. Mel-spectrograms are then normalized and scaled to range [−4, 4].

Since the parallel dataset mentioned above only contains one speaker, our ex-

periments are restricted to single speaker’s EL enhancement, while subject-wise

and cross-gender scenarios are not studied in our work. However, our proposed

method is gender-independent. The input bottleneck feature is extracted by a

bottleneck extractor from a speaker-independent automatic speech recognition

model, which is to obtain linguistic representations. Thus, the bottleneck fea-

ture is gender-independent. The following conversion modules are also gender-

independent.

3.3. The Performance of the Bottleneck Extractor

In our systems, the bottleneck feature extractor is trained using the Man-

darin dataset AISHELL-2 [38], which contains 1000 hours of clean reading-

speech data for training. In addition, AISHELL-2 provides a development set

containing 2500 utterances and a test set with 5000 utterances. The receipt for

4https://github.com/cpuimage/WebRTC NS
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training Librispeech in Kaldi is adopted here. The bottleneck extractor has 17

TDNN layers, followed by a 256-dim bottleneck layer. The frame’s sub-sampling

factor is set to 1 so that the output bottleneck features have the same length as

the input acoustic features. The phoneme set we applied includes 52 Mandarin

phonemes. The performance of our trained ASR system is shown in Table 2.

The ASR model yields good performance on recognition test sets of AISHELL-

2. It achieves a WER of 6.92% on the AISHELL-2 test set, which shows that

the quality of this acoustic model is acceptable for linguistic feature extraction

for natural speech.

Table 2: The speech recognition performance of our bottleneck feature extractor

Data Set Word Error Rate (WER)

AISHELL-2 dev 6.20%

AISHELL-2 test 6.92%

The bottleneck extractor trained with natural utterances is unsuitable for EL

speech considering acoustic differences between normal speech and EL speech.

In this case, we finetune the bottleneck extractor for EL speech bottleneck ex-

traction. The finetuned extractor trained with 2900 denoised EL utterances

and 5000 randomly selected utterances from AISHELL-2. Therefore, in sys-

tems BN-BN-MEL and BN-BN-MEL-P, the bottleneck feature of EL speech is

extracted by the finetuned extractor, while the bottleneck feature of normal

speech is extracted by the one trained with AISHELL-2 only.

3.4. Objective Evaluation

We apply an automatic speech recognition (ASR) system for objective intel-

ligibility estimation as introduced in [39]. The ASR system was trained using

the Kaldi toolkit, and the acoustic model network uses the TDNN-f structure.

Eight open source Chinese mandarin speech corpora5 with a total of 2838 hours

5http://openslr.org/resources.php
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of normal speech are used for training and testing. 2000 hours of normal speech

are used for ASR training, while the remaining 838 hours of normal speech are

used for evaluation. The WER on the evaluation set is 6.7%. In addition, half

an hour of EL speech is used as an out-of-domain test set. In our experiments,

we use this ASR model to evaluate the WER of the enhanced EL speech as

an objective evaluation metric. A lower WER indicates higher intelligibility in

the perspective of the ASR system. The ASR performance on different kinds of

speech is shown in Table 3.

Table 3: The speech recognition performances of various speech utterances,

including the EL, normal, and enhanced speech from our proposed systems.

Speech ASR WER (%)

original EL speech 72.74

GMM VC enhanced speech [14] 69.85

CLDNN enhanced speech [12] 50.16

BN-MEL VC enhanced speech 84.09

BN-BN-MEL VC enhanced speech 54.39

BN-BN-MEL-P VC enhanced speech 42.62

original parallel normal speech 7.38

The enhanced EL speech obtained by the GMM conversion system achieves

a WER of 69.85%, slightly lower than the WER of the original EL speech.

However, the BN-MEL system makes the speech even more unintelligible than

the original EL speech, as the WER of enhanced speech generated by the BN-

MEL system is 84.09%. However, as we separate the conversion process into

two stages, the performance is improved significantly. The BN-BN-MEL system

achieves a WER of 54.39%. This indicates that converting bottleneck features

of EL speech to bottleneck features of natural speech first can achieve better

enhancement performance than converting to the Mel-spectrogram directly. The

reported state-of-the-art CLDNN system has better performance with a WER

of 50.16%. On the other hand, after adopting pre-training and transfer learning
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strategies, the intelligibility of the enhanced speech is further improved and the

BN-BN-MEL-P system achieves the lowest WER, which is 42.62%.

We also employ the distortion of Mel-spectrogram as an objective measure-

ment. The Mel-spectrogram Distortion (MSD) function is defined as in Equation

11, where l ∈ N denotes the sequence length, m denotes the Mel-spectrogram

feature vector of normal speech and mcov denotes the aligned Mel-spectrogram

feature vector of converted speech, D represents the dimension of the spectral

feature. The smaller the MSD value, the closer the converted speech to the

target speech.

MSD =
1

l

l∑
t=1

10
√

2
∑D
i=1 (mi −mcov

i )
2

ln 10
, l ∈ N (11)

The MSD results of different systems are shown Table 4. The GMM sys-

tem has the highest distortion. The CLDNN system gets the second-highest

distortion with a value of 16.85. Both systems rely on the traditional vocoder

WORLD for synthesizing enhanced EL speech, which introduces a certain lev-

el of acoustic artifacts. The BN-BN-MEL system achieves a lower distortion

value than the BN-MEL system. In addition, the speech synthesized by the

BN-NB-MEL-P system achieves the lowest MSD value which demonstrate the

effectiveness of data augmentation and transfer learning strategies.

Table 4: The Mel-spectrogram distortions (MSD) of various speech utterances,

including the EL and enhanced speech from our proposed systems. CI denotes

confidence interval.

Speech MSD CI (α = 0.05)

original EL speech 18.055 [15.716, 20.393]

GMM VC enhanced speech [14] 16.851 [15.210, 18.491]

CLDNN enhanced speech 13.294 [11.539, 15.048]

BN-MEL VC enhanced speech 11.777 [10.173, 13.380]

BN-BN-MEL VC enhanced speech 11.674 [10.064, 13.283]

BN-BN-MEL-P VC enhanced speech 9.809 [8.188, 11.429]
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3.5. Subjective Evaluation

To evaluate the performance of our proposed systems, we conducted subjec-

tive evaluation regarding the naturalness, speaker similarity and intelligibility of

the converted speech. We ask 21 native Mandarin speakers to rate the converted

speech based on the mean opinion score (MOS) scale:

• Naturalness, this evaluates how natural that the converted speech sound.

Listeners evaluate the given speech in scale 1-5. The higher the value, the

better the naturalness.

• Similarity, this evaluates how much the converted voice sounds like the

target voice. Listeners evaluate the given synthetic voice in scale 1-5.

• Intelligibility, this evaluates how much people can understand the meaning

of the converted speech. Listeners evaluate the given speech in scale 1-

5. The higher the score, the more content that can be understood by

evaluators.

We have 7 different systems for subjective evaluation: Source speech, GMM

system, CLDNN system, BN-MEL system, BN-BN-MEL system, BN-BN-MEL-

P system and Target speech. Each system has 33 sentences. Therefore, there

are 231 utterances in total for evaluation. Each evaluator rates every chosen

sentence regarding naturalness, similarity, and intelligibility.

Figure 4 shows the MOS results. Regarding both the naturalness and intel-

ligibility scores, the baseline systems, which are the GMM system, the CLDNN

system and the BN-MEL system, have significant improvement compared with

the source EL speech. Furthermore, our proposed BN-BN-MEL system out-

performs the GMM system and the BN-MEL system on both naturalness and

intelligibility. The CLDNN system achieves a relatively high intelligibility s-

core of around 3.51. However, its enhancement performance on naturalness is

not good as the MOS is lower than 3. On the other hand, by utilizing the

data augmentation and transfer learning strategies, our BN-BN-MEL-P system
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Figure 4: The MOS of the naturalness and intelligibility of speech samples from

systems including Source, GMM, CLDNN, BN-MEL, BN-BN-MEL, BN-BN-

MEL-P and Target, which denote the original EL speech, the enhanced speech

from the GMM-based VC, the enhanced speech from the CLDNN system, the

enhanced speech from the BN-MEL system, the enhanced speech from the BN-

BN-MEL system, the enhanced speech from BN-BN-MEL-P system and the

original parallel normal speech, respectively.

achieves further improvement concerning naturalness and intelligibility, which

outperforms all other systems.

Figure 5 shows the spectrogram and the F0 contour of EL speech and normal

speech. Figure 6 shows the spectrogram and the F0 information extracted from

different enhancement systems. For Mandarin Chinese, each syllable contains

one of four basic tones (plus a fifth, neutral one) that utilize F0 to differentiate

the meaning of words with the same sound pattern. Pitch change is mainly

determined by the fundamental frequency generated by the vibration of the

vocal cords. We use the WORLD vocoder to extract the F0 of the converted

speech and plot it with the spectrogram in the same figure.

The pinyin of the selected utterance is “zhi3 jian4 tai2 shang4 tai2 xia4 yi2

pian4 huan1 teng2”. As observed in the F0 curve, it can be seen that the F0 of
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(a) original EL speech (b) original parallel normal speech

Figure 5: The extracted spectrogram and F0 contour of the original EL speech

and the parallel target speech. Spectrogram and F0 are calculated using librosa

and pyworld packages in Python, respectively. Text pinyin: zhi3 jian4 tai2

shang4 tai2 xia4 yi2 pian4 huan1 teng2

the original EL speech cannot be extracted. The F0 of the enhanced speech from

the GMM system does not vary much, while the F0 of the enhanced speech from

the BN-BN-MEL system is closer to the F0 contour of parallel normal speech.

The F0 contour of the enhanced speech from the CLDNN system cannot be

extracted well due to its hoarse voice. We also can observe that the enhanced

speech generated by the BN-BN-MEL-P system has a very similar F0 contour

to the target one.

3.6. Experimental Results with Limited Data

Our proposed systems require a parallel dataset for training. We have a

corresponding normal utterance with the same content for each EL utterance.

However, such parallel data is difficult and costly to collect. In this case, we

conduct experiments with the BN-BN-MEL-P system finetuned by different

amounts of parallel EL speech utterances to investigate the data we need for

training. In particular, we randomly select 1000, 100, 50, and 10 utterance

pairs from the original EL speech dataset and use the selected utterances to

finetune the pre-trained BN-BN-MEL-P system. We conduct the same ASR

test, MSD test and subjective evaluation on the BN-BN-MEL-P systems trained
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(a) GMM VC enhanced speech (b) BN-MEL VC enhanced speech

(c) BN-BN-MEL VC enhanced speech (d) BN-BN-MEL-P VC enhanced speech

(e) CLDNN enhanced speech

Figure 6: The extracted spectrogram and F0 contour of the enhanced speech by

different systems. Spectrogram and F0 are calculated using librosa and pyworld

packages in Python, respectively. Text pinyin: zhi3 jian4 tai2 shang4 tai2 xia4

yi2 pian4 huan1 teng2
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with different sizes of our EL speech dataset.

3.6.1. The ASR and MSD Test

We utilize the same ASR model mentioned in Section 3.4 to evaluate the

intelligibility of the synthesized speech. The WER of the BN-BN-MEL-P system

trained with different sizes of our EL dataset is shown in Table 5. The abrupt

decrease of WER from the system trained with 10 utterances to the one trained

with 50 utterances indicates that the amount of parallel EL speech data we

need to have acceptable performance is around 50 utterances, which is about 5

minutes. In addition, the system trained with 1000 utterances achieves a WER

of 41.36%, which shows that a parallel EL dataset of around 2 hours is good

enough for training the BN-BN-MEL-P system. As shown in Table 6, the MSD

value decreases as the data used for training increases. We can observe that

the BN-BN-MEL-P system trained with only 1000 EL utterances can achieve

comparable WER and MSD as the system trained with 2900 utterances.

Table 5: The ASR performance of the enhanced speech generated by BN-BN-

MEL-P systems

Size of training data WER(%)

The whole training set (2900 utterances) 42.62

1000 utterances 41.36

100 utterances 43.29

50 utterances 50.23

10 utterances 90.55

3.6.2. The MOS Score

Figure 7 shows the MOS results for BN-BN-MEL-P systems trained with

different sizes of EL dataset. The results show that as the size of the EL speech

dataset is reduced, the naturalness scores of generated speech reduce approxi-

mately linearly but in a minimal range. The decrease in the amount used for
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Table 6: The Average MSD Values on the enhanced speech with the BN-BN-

MEL-P system. CI denotes confidence interval.

Size of Datasets MSD Value CI (α = 0.05)

2900 utterances 9.809 [8.188, 11.429]

1000 utterances 10.286 [8.696, 11.875]

100 utterances 11.031 [9.637, 12.424]

50 utterances 11.263 [9.822, 12.703]

10 utterances 12.779 [11.283, 14.274]

training will not lead to significant degradation in terms of the intelligibility

scores when the training size exceeds 100 utterances.

However, when the dataset size is smaller than 100 utterances, decreasing the

amount of data will profoundly affect the intelligibility performance. Moreover,

even for the system finetuned with only 10 utterances, the intelligibility score,

which is 2.94, is higher than the BN-MEL system, which is 2.43, as shown in

Figure 4. Such results indicate the robustness and effectiveness of the BN-BN-

MEL-P system in limited data scenarios.

4. Conclusions

This paper proposes a voice conversion-based EL speech enhancement sys-

tem, which utilizes a parallel non-autoregressive model with bottleneck features

as input. The bottleneck feature is extracted by a speaker-independent ASR

model and considered as a linguistic representation. While adopting our pro-

posed conversion model, we develop several EL enhancement systems, including

the BN-MEL system that directly converts the bottleneck feature of EL speech

to Mel-spectrogram of normal speech, the BN-BN-MEL system that uses the

bottleneck feature of normal speech as an intermediate conversion feature. We

also apply data augmentation and transfer learning strategies to enhance con-

version performance. The objective and subjective evaluation conducted on our

proposed systems and baseline systems show that our BN-BN-MEL-P system
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Figure 7: The MOS of the naturalness and intelligibility of speech samples from

BN-BN-MEL-P systems finetuned with various size of data. exp-10 denotes the

system finetuned with 10 utterances of EL speech, exp-50 is for the one with

50 utterances, exp-100 is for 100 utterances, exp-1000 is for 1000 utterances

and exp-whole is for the system finetuned with the whole EL dataset (2900

utterances).

achieves impressive performance on naturalness and intelligibility and outper-

forms all other systems. In addition, our experiments show that the two-stage

mapping method is more efficient and effective than directly converting the bot-

tleneck feature of EL speech to the Mel-Spectrogram of corresponding normal

speech. Furthermore, the augmentation by simulating EL speech from normal

speech and transfer learning help improve the performance and work well on

limited data scenarios. Even though the proposed method effectively improves

the naturalness and intelligibility of the EL speech, there is still a notable differ-

ence between the enhanced EL speech and normal speech. In future works, we

will study the zero-shot voice conversion scenario and use a multiple speakers’

EL speech dataset to train a speaker-independent voice conversion model for

EL enhancement.
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Appendix A. Abbreviation Table

Abbreviation Explanation

EL Electrolarynx

DATE dimensional amplitude trimmed estimatio

F0 fundamental frequency

NMF non-negative matrix factorization

GMM Gaussian Mixture Models

PPP phonetic posterior probabilities

VC voice conversion

BN-MEL bottleneck feature to Mel-spectrogram

EL speech’s bottleneck features to

BN-BN-MEL bottleneck features of normal speech

to Mel-spectrogram of normal speech

WER Word Error Rate

MOS Mean Opinion Score

ASR automatic speech recognition

TDNN time-delayed neural network

MSE Mean Square Error

MSD Mel-spectrogram Distortion

BN-BN-MEL-P BN-BN-MEL system with pre-training strategy
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