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Abstract—We propose an autism spectrum disorder (ASD)
prediction system based on machine learning techniques. Our
work features the novel development and application of machine
learning methods over traditional ASD evaluation protocols.
Specifically, we are interested in discovering the latent patterns
that possibly indicate the symptom of ASD underneath the
observations of eye movement. A group of subjects (either ASD
or non-ASD) are shown with a set of aligned human face images,
with eye gaze locations on each image recorded sequentially. An
image-level feature is then extracted from the recorded eye gaze
locations on each face image. Such feature extraction process is
expected to capture discriminative eye movement patterns related
to ASD. In this work, we propose a variety of feature extraction
methods, seeking to evaluate their prediction performance com-
prehensively. We further propose an ASD prediction framework
in which the prediction model is learned on the labeled features.
At testing stage, a test subject is also asked to view the face
images with eye gaze locations recorded. The learned model
predicts the image-level labels and a threshold is set to determine
whether the test subject potentially has ASD or not. Despite
the inherent difficulty of ASD prediction, experimental results
indicates statistical significance of the predicted results, showing
promising perspective of this framework.

Keywords—autism spectrum disorder; eye tracking; bag-
of-words; support vector machine

I. INTRODUCTION

Rate of autism spectrum disorder (ASD) has risen sharply
in the past several years, reaching 1 in 68 in the United
States [1]. Despite the fact that existing assessment methods
show high validity, current ASD diagnostic approaches are
both time and labour consuming. In particular, the diagnos-
tic instruments have been designed to measure impairments
mainly in: (1) language and communication; (2) reciprocal
social interactions; and (3) restricted, repetitive behaviors. The
most widely used instruments include the Autism Diagnostic
Observation Schedule-Generic (ADOS-G) [2] and the revised
version ADOS-2 [3]. These approaches require the accompany
and administration of clinically trained professionals and the
whole process can take up to 90 minutes. The interactive,
human-in-loop nature of these tests not only increase unnec-
essary costs, but also reduces the chance of early diagnosis.

Fig. 1. The proposed machine learning based ASD prediction framework.

Behavioral studies found that ASD individuals have im-
pairments in recognizing human faces, leading to atypical
face processing [4]. Although there exists considerable con-
troversy regarding whether ASD individuals also scan faces
differently, recent studies indeed indicate evidence of different
eye movement patterns from ASD individuals [5], [6]. The
way how ASD individuals scan faces has been studied by a
number of previous literatures with eye tracking techniques.
Existing studies have consistently indicated that children and
adults show reduced visual attentions to faces compared to
their typically developed (TD) counterparts [7]. While these
closely related studies form the fundamental bases of this
research, most of them are only restricted to discovering
statistical significant ASD patterns and few of them considered
prediction tasks. A major contribution of this paper is that
we propose a machine learning based framework (see Fig.
1) on face scanning pattern analysis as an alternative ASD
measurement. Compared with traditional instruments such
as ADOS-G and ADOS-2, the proposed framework requires
much less human interaction and expertise. We do not argue
that such framework can completely replace traditional ones.
Rather, it can be regarded as a supplement that benefits earlier
and more accurate ASD diagnosis. There are studies that also
use machine learning to optimize the diagnosis process [8],
[9], [10]. These studies, however, do not change the highly
interactive essence of traditional diagnosis procedure.

Another major contribution includes the improvement over
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existing approaches such as area of interest (AOI) and
iMAP[11]. The AOI approach was widely used by many to
conduct analysis on the face scanning patterns. It seeks to
measure eye fixations that fall within a predefined area of
interest, typically including the AOIs of eyes, nose and mouth.
With the defined AOIs, one is able to statistically estimate
the frequency counts of eye fixations on different face areas.
A common problem with the AOI approach is that it tends
to lump fixations to a relatively large area without further
discrimination. The boundary of AOI is often determined
empirically and is influenced by the semantic meaning of
face parsing without statistical and psychological justification,
while a subject’s visual attention could in fact be largely influ-
enced by certain sub-AOI regions highly responsive to human
brains as mid-level visual features. The iMAP approach was
proposed as an alternative method which supplements the AOI
approach regarding such issues. iMAP uses a Gaussian kernel
to spatially smooth each fixation map and operates at pixel
level to compare different conditions or groups with statistical
normalization. It is, therefore, able to reveal discriminative
spatial differences at a much finer spatial resolution.

A key feature extraction step in our work is using k-means
to cluster the eye gaze and divide the face into different sub-
regions. This step shares certain similarity with both AOI
and iMAP, in the sense that it partitions spatial face regions
like AOI, but is more data-driven and returns more flexible
partitions like iMAP. The advantage of such data-driven strat-
egy is that it generates partitions with statistical importance.
Intuitively, the cluster centroids are the most representative
face scanning “hot spots” found by k-means. Our proposed
work not only targets the eye gaze coordinates on spatial
domain, but also exploits eye movement on motion domain.
Besides coordinates, we also conduct k-means on the differ-
ence of consecutive eye gaze coordinates. The expectation is
that the magnitude and the direction of eye motion may also
reveal certain ASD evidence. To our best knowledge, very few
previous literatures have investigated from this perspective.

Following the k-means clustering is the “bag-of-words”
(BoW) histogram feature representations of both coordinates
and motion magnitudes. The cluster centroids returned by k-
means are referred to as “dictionary words” in the “bag-of-
words” model. Such histogram representation is basically an
orderless frequency encoding of both the participant’s visual
attention on each part of a face, and the motion magni-
tudes/directions. In the experiments, we will comprehensively
evaluate the prediction performance of the above features as
well as a fusion of these methods.

II. DATASET CONFIGURATION

To conduct experiments, we consider the two eye movement
datasets from [5] and [6]. For both datasets, the eye gaze of
each subject were recorded by a Tobii T60 eye tracker. The
eye tracker has sample rate of 60 Hz and a screen resolution
of 1024 × 768 pixels. A set of face images (700 × 500) are
displayed on the screen and eye gaze of each subject is au-
tomatically estimated, returning a set of projected coordinates

on the screen. While it is possible that some of the coordinates
can fall out of the 700×500 image domain, we only consider
the majority of coordinates that are within the domain.

The first dataset [5] targets the ASD behavioral analysis
on children and contains three groups of Chinese children:
20 ASD children, 21 age-matched typically developing (TD)
children, and 20 IQ-matched TD children. The second dataset
[6] on the other hand focuses on adolescents and young adults,
including 19 ASD, 22 IQ-matched intellectually disabled (ID),
and 28 age-matched TD adolescents/young adults. The readers
can kindly refer to both literatures for more details on data
collection setups1.

III. THE PROPOSED FRAMEWORK

Feature representation is an indispensable step for pre-
dictions. A feature is an individual measurable property of
a phenomenon being observed, while feature representation
refers to the numerical (such as scalars, vectors or matrices)
or structural (such as graphs or strings) description of such
measurable properties. The fundamental principle of feature
representation is choosing informative features as well as find-
ing good representations. Feature representation also shows
certain connections to past studies on ASD face scanning, as
statistical analysis in these studies more or less fall into the
domain of seeking informative features.

Our key focus in this paper lies in conducting eye movement
analysis at (face) image level. Fig. 2 illustrates the overall
dataset infrastructure from subjects to image-level features. In
particular, a single feature is extracted from the eye move-
ment data recorded per face image per subject. Each feature
is labeled either positive or negative based on the identity
(ASD/non-ASD) of the subject. Once features are extracted,
a prediction model is trained and is tested at image-level for
the new test subject.

A. Bag-of-Words Feature on Eye Gaze Coordinates

The first feature we consider is the BoW histogram repre-
sentation on the gaze coordinates. The BoW model originally
came from the linguistic community [12] and has ever since
been a very popular feature representation framework with
wide applications in Natural Language Processing, information
retrieval [13] and computer vision [14]. The reason why such
model is called “bag-of-words” is because a sentence or a
document can be represented as the bag (multi-set) of its
words, disregarding grammar and even word order but keeping
multiplicity.

Similar analogies can be made here as we treat the centers
of concentrated visual attentions as dictionary words, while
the sequence of coordinates per image per subject as one
document. An atypical frequency distribution of gaze on
different parts of a face image can be a strong evidence of
reduced visual attention. To discover important spatial regions
for eye movement patterns, we use the k-means algorithm to
cluster the recorded eye gaze coordinates from all participants

1In the following paper, we will denotes these two datasets respectively as
“Child” and “Adult” for short.
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Fig. 2. The dataset infrastructure.

in the training set, and divide the face image into different
sub-regions. The resulting output is a set of cell-like spatially
partitioned face regions indicating clusters of gazes that are
relatively more concentrated. Four partitioning examples with
dictionary numbers respectively equal to 16, 32, 48 and 64 are
shown in Fig. 3.

We consider two types of histogram representations:
Hard histogram: The generated histogram feature is a

sparse vector of occurrence counts of every cluster. That
is, a histogram indicating the frequencies of eye gaze on
different parts of a face. Upon obtaining the frequency counts,
a histogram is normalized such that the sum of elements is
equal to 1.

Soft histogram: The histogram feature is an accumulation
of soft memberships to different dictionary words. A mem-
bership is a value between (0, 1) measuring the belongingness
to certain dictionary. Let xi,j,n denote the nth eye gaze
coordinate of the ith subject on j image, The membership
to the kth dictionary is computed as:

uki,j,n =
1/‖xi,j,n − dk‖22∑K
k=1 1/‖xi,j,n − dk‖22

(1)

It is very easy to verify that
∑K

k=1 u
k
i,j,n = 1. Let ui,j,n =

[u1i,j,n, ..., u
K
i,j,n], the soft histogram can be computed as:

hi,j =
1

Nj

Nj∑
n=1

ui,j,n. (2)

The soft histogram returns a softer frequency counting than

hard histogram since it considers all dictionaries instead of
hard assigning to the closest one. Using a soft histogram may
benefit the counting of eye gazes that fall right on the border
of two regions.

We also consider a simple yet very useful technique called
the square root representation. The square root regular-
ization simply takes the square root of each entry in the
histogram: √

hi,j := [
√
h1i,j , ...,

√
hKi,j ]

s.t.
K∑

k=1

(
√
hki,j)

2 = 1
(3)

This projects every histogram onto the unit K-dimensional
hypersphere. Such square root representation implicitly leads
to the Bhattacharyya kernel when we consider the inner
product of two transformed histograms:

KS(hi,hj) =

K∑
k=1

√
hk
i h

k
j . (4)

The square root representation is very effective in suppressing
noise and boosting classification performance. In the experi-
ment we include such transform as feature preprocessing.

B. Bag-of-Word Feature on Eye Motion
The second feature we consider is the BoW representation

on eye gaze motion. The motion vector of eye gaze is
computed as:

mi,j,n = xi,j,n+1 − xi,j,n (5)
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(a) (b) (c) (d)

Fig. 3. An illustration of partitioned face regions by k-means with different cluster (dictionary) numbers. (a) K = 16. (b) K = 32. (c) K = 48. (d)
K = 64. The illustrated face is an averaged face in order to protect the privacy of test subject.

After getting the motion vectors, the BoW histogram features
are extracted in the same as described in the Section III-A.

C. Image-Level Prediction

We label all the obtained image-level BoW histogram fea-
tures by the identity (ASD or non-ASD) of subjects. A binary
classier is then trained on these labeled features. Support
vector machine (SVM) is a widely used classifier for its
excellent performance. It learns a linear decision boundary
such that the margin separating the positive data and negative
data is maximized. In our work, we adopt SVM to learn
the prediction model for the BoW features on both eye gaze
coordinates and motions.

Linear SVM only learns a linear decision boundary. The
obtained histogram features, however, are often not linearly
separable due to the complexity of face scanning behaviors.
We consider kernel SVM to introduce nonlinearity to the
decision boundary. There are many types of kernel functions.
In this study we choose the popular radial basis function (RBF)
kernel for its good performance.

D. Subject-Level Prediction

Image-level predictions are less robust due to the limitation
of information conveyed by every image-wise test. A subject
level prediction on the other hand is what one ultimately
desires. Therefore, we ensemble image-level predictions to
finalize subject-level predictions by fixing a global threshold.
We consider the following two ways of ensemble strategies:

Soft prediction: The RBF kernel SVM gives each image-
level testing feature a soft prediction score. Suppose each
feature is re-denoted as hn with a single, global index. Also let
yn ∈ {−1, 1} denotes the label of feature hn, w and b denote
the learned parameters defining the decision hyperplane. The
soft prediction score is computed as:

soft score(n) = w>Φ(hn) + b

=
∑
m

αmymK(hm,hn) + b. (6)

The top row of (6) gives an intuitive geometric interpretation of
the score. It is basically the functional margin of a kernelized

feature and the decision boundary. In practice however, the
prediction score is obtained by solving the dual problem of
SVM, resulting in the second row where αi are the introduced
lagrange multipliers and K(·, ·) is the kernel function. The
subject-level mean score is defined as:

subject score(i) =
1

|Si|
∑
n∈Si

soft score(n), (7)

where Si corresponds to the set of global indexes belonging
to the ith subject.

Hard prediction: The RBF kernel SVM gives each image-
level testing feature with a {0, 1} hard score:

hard score(n) =

{
1, if soft score(n) > 0

0, else
(8)

Again the subject-level mean score is defined as:

subject score(i) =
1

|Si|
∑
n∈Si

hard score(n), (9)

The subject level prediction for both methods is determined
with a global threshold T :

subject score(i)
ASD
≷

non−ASD
T (10)

IV. EXPERIMENT CONFIGURATION

We adopt the leave-one-out strategy to choose one subject as
testing subject each time and leave the rest of the participants
as training subjects. By doing this we divide the obtained
image-level BoW features into two portions: a training set
and a test set. Such leave-one-out strategy is repeated for every
participant. For all experiments, the parameters of SVM, which
are γ and C, were empirically optimized and fixed for every
ROC curve.

A. Baseline-1: N-Gram Model

Besides the BoW representation of eye gaze coordinates, we
also use the N-Gram modeling to consider temporal correlation
between subsequent gaze coordinates. Given a set of dictionary
words trained by k-means, each coordinate is assigned to

978-1-4799-9953-8/15/$31.00 ©2015 IEEE 652



one of the dictionary words. Therefore, the whole set of
coordinates is transformed in to a set of discrete cluster labels
indicating the dictionary membership of each coordinate.
Instead of having a single feature per image per subject,
we currently have a label sequence per image per subject.
We use SRILM [15] which respectively takes the positive
training sequences, the negative training sequences and the
testing sequences (of the one test subject) as three groups,
and outputs two log likelihood scores l pos(i) and l neg(i)
which respectively indicates how likely the test subject (the
ith subject) is belonging to the positive training group and
the negative training group. The final subject-level score is
normalized as:

subject score(i) =
|l pos(i)− l neg(i)|
|l pos(i)|+ |l pos(i)|

(11)

B. Baseline-2: BoW Feature from AOI Dictionaries

AOIs can be regarded as alternative dictionaries with seman-
tic meanings. In our experiment, AOIs are defined separately
for each face image, where we segment the face into several
semantic parts: face, nose, mouth, left eye and right eye. Like
dictionary words extracted by k-means, a BoW histogram can
also be extracted from AOI dictionaries by computing and
normalizing the frequency counts of eye gaze coordinates
falling onto each semantic part. While previous literatures
only conduct statistical significance analysis based on AOI
frequency counts and are not directly comparable, we choose
to plug it into our prediction framework as a baseline feature.

C. Evaluation Benchmarks

In the experiment, we use the following benchmarks to
quantitatively evaluate the prediction performance:

ROC curve: We vary the global threshold and calculate the
corresponding set of (subject-level) true positive rates versus
false positive rates.

Area under curve (AUC): The total area under the ROC
curve versus the whole area.

Accuracy: The number of correctly predicted subjects ver-
sus the total number of subjects

V. EXPERIMENTAL RESULTS

In this section, we report the comprehensive evaluations of
our proposed features and methods on the two datasets.

A. BoW Feature on Eye Gaze Coordinates

We first evaluate the eye coordinate BoW feature. The
image-level prediction is chosen to be soft prediction. Figure
4 shows results of the eye gaze BoW representation of eye
gaze coordinates on the Adult dataset. We vary the number
of dictionary numbers K and test both the hard and soft
histograms to comprehensively evaluate our proposed features.
In addition, we measure the AUC versus the number of
dictionaries, and select the two best ROC curves respectively
from results of hard histogram and results of soft histogram,
measuring the corresponding accuracies. One could observe
that the soft histogram in general performs better than hard

Fig. 4. Results of hard BoW feature and soft BoW feature on Eye gaze
coordinates on the Adult dataset. The top left image corresponds to hard
histograms, while the top right image corresponds to soft histograms. The
bottom left image are the AUC values from both hard histograms and soft
histograms. Finally, two best ROC curves are selected with their accuracies
measured.

Fig. 5. Results of soft BoW feature on Eye gaze coordinates on the Child
dataset. Left image: ROC curves with different dictionary numbers. Right
image: Corresponding accuracies with different dictionary numbers.

histograms, showing the benefit brought by soft counting.
In the following experiment, we will fix all the extracted
histograms as soft ones.

We also demonstrate the prediction results on Child dataset
using the soft histogram and soft prediction. Figure 5 shows
the corresponding ROC curves and AUC values. One could see
that the experiment shows very promising results, indicating
strong evidence of statistical significance of certain discrimi-
native eye movement patterns captured by the proposed feature
extraction method.

B. Soft Prediction vs. Hard Prediction

We respectively select the optimal dictionary numbers for
Adult dataset and Child dataset, from soft BoW results report-
ed in Section V-A. We then use soft BoW representation of
eye gaze coordinates, and conduct tests on the two datasets
with both soft and hard predictions. Fig. 6 shows the results
and one could see that soft prediction does boost the predic-
tion performance. In subsequent experiments, we will fix the
prediction method as soft prediction.
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Fig. 6. Results of soft BoW from eye gaze coordinates, with both prediction
methods. Left image: ROC curves of soft and hard prediction on Adult dataset.
Right image: ROC curves of soft and hard prediction on Child dataset.

Fig. 7. Results of soft BoW from Eye gaze motions on the Adult dataset.
Left image: ROC curves with different dictionary numbers. Right image:
Corresponding accuracies with different dictionary numbers.

C. Bow Feature on Eye Gaze Motions

We also test soft BoW from eye gaze motions on Adult and
Child datasets. with results shown in Fig. 7 and Fig. 8. Results
indicate that motion feature is also very discriminative.

D. Feature Fusion and Comparison with N-Gram and AOI

We finally consider feature-level fusion of both Eye gaze
coordinates motions. The ROC and accuracy curves of both
BoW features as well as fused one are shown in Fig. 9 and 10.
We also show results of two baselines: N-Gram and BoW with
AOI. The best accuracy and AUC of all comparing methods
are listed in Table I. The table indicates several aspects: 1. The
fused (concatenated) feature can further boost the performance
since two features are complementary to each other. 2. The
proposed method significantly outperforms baseline methods.

We conducted statistical significance test on subject-level
soft prediction scores, measuring p-values. The test results are
normalized and therefore eliminate the chance influence from

Fig. 8. Resutls of soft BoW from Eye gaze motions on the Child dataset.
Left image: ROC curves with different dictionary numbers. Right image:
Corresponding accuracies with different dictionary numbers..

Fig. 9. Results of different proposed methods on the Adult dataset. Left
image: ROC curves with different methods. Right image: Corresponding
accuracies with different methods.

Fig. 10. Results of different proposed methods on the Child dataset. Left
image: ROC curves with different methods. Right image: Corresponding
accuracies with different methods.

unbalanced test data. The p-value is around 0.5 on Adult and
lower than 0.001 on Child. The latter particularly shows strong
statistical significance. We believe Child dataset to some extent
is more important since early diagnosis of ASD maximizes the
gain of early intervention.

VI. CONCLUSION

In this paper, we proposed a machine learning framework
for ASD prediction based on face scanning eye movement
data. We also proposed a comprehensive set of effective
feature extraction methods, prediction frameworks, as well as
corresponding scoring frameworks. Despite the great challenge
of this problem, we have achieved promising results on two
ASD datasets, particularly on the child set. Experimental
results indicate the effectiveness and potential future value of
the proposed methods.
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TABLE I
QUANTITATIVE PREDICTION RESULTS OF DIFFERENT METHODS

Coor Motion Fusion AOI N-Gram

Adult AUC 0.7277 0.6636 0.6773 - 0.6483
Accuracy 0.7869 0.8033 0.8033 - 0.7705

Child AUC 0.8902 0.9061 0.9207 0.8208 0.5561
Accuracy 0.8197 0.8525 0.8689 0.7868 0.7213
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