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ABSTRACT

With the successful application of deep speaker embedding
networks, the performance of speaker verification systems has
significantly improved under clean and close-talking settings;
however, unsatisfactory performance persists under noisy
and far-field environments. This study aims at improving the
performance of far-field speaker verification systems with dis-
tributed microphone arrays in the smart home scenario. The
proposed learning framework consists of two modules: a deep
speaker embedding module and an aggregation module. The
former extracts a speaker embedding for each recording. The
latter, based on either averaged pooling or attentive pooling,
aggregates speaker embeddings and learns a unified represen-
tation for all recordings captured by distributed microphone
arrays. The two modules are trained in an end-to-end man-
ner. To evaluate this framework, we conduct experiments
on the real text-dependent far-field datasets Hi Mia. Results
show that our framework outperforms the naive averaged
aggregation methods by 20% in terms of equal error rate
(EER) with six distributed microphone arrays. Also, we find
that the attention-based aggregation advocates high-quality
recordings and repels low-quality ones.

Index Terms— speaker verification, deep speaker em-
bedding, far-field, distributed microphone arrays

1. INTRODUCTION

As a key technology in biometric authentication, automatic
speaker recognition analyzes a given speech and recognizes
the speaker identity using signal processing and pattern
recognition algorithms. Typically, speaker recognition can
be divided into two tasks, i.e., speaker identification and
speaker verification. The former matches a voice with a
specific speaker, while the latter determines whether a pair
of speeches belong to the same speaker. It is commonly
applied to e-commerce systems, call centers, smartphones,
smart speakers, automobiles, etc. In the past few years,
deep speaker embedding based methods have significantly
improved the performance of speaker recognition systems

under clean and close-talking settings [1, 2]. However, un-
satisfactory performance persists under far-field and complex
environmental settings due to the long-range fading, room
reverberation, and complex environmental noises. These ad-
verse effects result in the loss of speech intelligibility and
quality, imposing challenges on speaker recognition.

Various approaches have been proposed to address this is-
sue. At the signal level, dereverberation methods [3, 4], deep
neural network (DNN)-based denoising methods [5, 6, 7, 8]
and multichannel processing with beamforming [4, 9, 10] are
employed for speaker recognition under complex environ-
ments. At the modeling level, data augmentation [11, 12] and
transfer learning [13] prove to be useful for robust speaker
embedding learning with limited target domain data. To learn
a noise-invariant speaker representation, adversarial training
[14, 15, 16] and variability-invariant loss [17] have been in-
vestigated within the deep speaker framework. To minimize
the discrepancy between speech enhancement and speaker
recognition, the speech enhancement network is trained with
the guidance from a speaker network [18, 19]. The joint train-
ing of these two networks can also improve the robustness
of the speaker embedding [20, 21]. With the microphone
array, a deep speaker framework with multi-channel inputs
is used for speaker embedding extraction [22]. Moreover, in
the testing phase, enrollment data augmentation is applied
to reduce the channel-mismatch between the enrollment and
testing utterances [13].

With all these methods, far-field speaker recognition is
still challenging and attracts increasing attention from the
research community. The Voices Obscured in Complex
Environmental Settings (VOiCES) Challenge launched in
2019 aims to benchmark state-of-the-art speech processing
methods in far-field and noisy conditions [23]. A speaker
recognition benchmark derived from the publicly-available
CHiME-5 corpus, which is initially designed for far-field au-
tomatic speech recognition, is described in [24]. In addition,
the wake-up word dataset Hi Mia has been released to facil-
itate researches in far-field speaker recognition [25]. Also,
Far-Field Speaker Verification Challenge (FFSVC 2020) was
launched to boost the speaker verification research with spe-



cial focus on far-field distributed microphone arrays under
noisy conditions in real scenes [26].

This study focuses on far-field speaker verification with
distributed microphone arrays in the smart home scenario,
where recorders at different locations make multiple record-
ings of the same utterance. Several studies has investigated
automatic speech recognition (ASR) with far-field distributed
microphone arrays [27, 28, 29], yet this special topic in
speaker recognition still remains to be explored.

In this study, we propose a learning framework to learn a
unified speaker embedding from multiple recordings of a sin-
gle recognition utterance. It consists of a speaker embedding
network and an aggregation network. The former maps each
recording to a speaker embedding, and the latter aggregates
embeddings of multiple recordings to form a unified represen-
tation for recognition. Also, considering that the recordings
vary in quality due to variations in room acoustics at vari-
ous locations, an attention-based aggregation approach is put
forward to fuse the utterance-level speaker embeddings from
distributed microphone arrays adaptively. We observe that the
attention-based aggregation automatically learns to advocate
high-quality recordings and repel those of lower quality.

2. METHODS

Figure 1 shows the proposed embedding aggregation network
architecture for far-field speaker recognition with distributed
microphone arrays. It takes a set of recordings as input
and produces a unified speaker representation for recogni-
tion. The proposed network consists of a speaker embedding
network to learn speaker representation for each recording
and an attention-based aggregation network to fuse these
representations into a speaker embedding for a recognition
utterance.

2.1. Deep Speaker Embedding

The deep speaker embedding network learns a speaker em-
bedding from a single speech. It consists of a frame-level
local pattern extractor, an utterance-level encoding layer, and
a speaker classification layer. A local pattern extractor is
typically a time-delayed neural network (TDNN) or convolu-
tional neural network (CNN). It learns speaker representation
from the spectral feature sequence of varying length. This
representation, still a temporally-ordered frame-level feature
sequence, is then fed into an encoding layer to get an ut-
terance level representation known as speaker embedding.
The most common encoding method is the average pooling
layer, which aggregates the mean or (and) standard deviation
statistics from the frame-level representation [1, 2]. Other
encoding layers include self-attentive pooling layer [30, 31],
learnable dictionary encoding layer [32], and dictionary-
based NetVLAD layer [33, 34]. Once the utterance-level rep-
resentation is extracted, fully connected layer(s) are employed

to further abstract the speaker embedding and classifies the
speakers in the training set.

In this work, we train the speaker network with the
residual convolutional neural network (ResNet) [35] as
the local pattern extractor and the global statistics pool-
ing (GSP) layer as the encoding layer. Specifically, from
the ResNet’s output feature map F ∈ RC×F×T , GSP
layer calculates the mean µc and standard deviation σc of
the cth feature map to get a utterance-level representation
V = [µ1, µ2, · · · , µC ,σ1,σ2, · · · ,σC ]:
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and C,F, T denote the dimension of channels, frequency and
time axis of the ResNet’s output feature map respectively.
Then, a fully connected layer is used to map this utterance-
level representation V ∈ R2C to a low-dimensional (i.e, 128)
speaker embedding space.

2.2. Embedding Aggregation

With the setting of distributed microphone arrays, multiple
recordings are captured simultaneously for a single recogni-
tion utterance. The speaker network extracts a speaker em-
bedding for each of these recordings. The aggregation net-
work, which is either an averaged pooling or an attentive pool-
ing, gathers these embeddings and learns a speaker represen-
tation for recognition.

Specifically, for a single recognition utterance, the uni-
fied speaker representation r is a linear combination of the all
speaker embeddings {fk}Kk=1 extracted from K recordings of
the distributed microphone arrays:

r =

K!

k=1

wkfk (2)

where w is the weight and
%K

k=1 wk = 1.

2.2.1. Averaged Embedding Aggregation

Averaged pooling equally weights all of the speaker embed-
dings from different recording channels. Therefore, weights
wk in equation (2) are

wk =
1

K
, ∀k (3)

2.2.2. Attentive Embedding Aggregation

For all the recordings captured by distributed recording de-
vices, speech qualities may vary due to variations in the
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Fig. 1. The proposed embedding aggregation framework for far-field speaker recognition with distributed microphone array.

acoustic environment at different locations. Considering that
these recordings of varying qualities may contribute differ-
ently to the final speaker representation, we introduce a self-
attentive pooling layer to learn weights wk in equation (2)
and adaptively aggregate speaker embeddings from various
devices.

Specifically, speaker embeddings {fk}Kk=1 of various
recordings from various channels are firstly fed into a one-
layer perceptron to get hidden representations {hk}Kk=1:

hk = tanh(Wfk + b) (4)

where W and b are the weight matrix and bias vector of
the perceptron respectively, and tanh(·) imposes the hyper-
bolic tangent nonlinearity. Then, dot products of hidden rep-
resentations hk and the learnable parameter q are calculated,
yielding a set of corresponding significances, from which a
softmax operator is employed to generate positive attentive
weights {wk}Kk=1:

wk =
exp(qThk)%K
j=1 exp(q

Thj)
(5)

With the aggregated speaker embedding, fully connected
layers are employed to classify the speakers in the training set
as in the speaker embedding network.

2.3. Network Training

Typically, the scale of the real world far-field dataset is small
comparing to the general speaker recognition dataset. To
learn a robust feature descriptor for speaker recognition, the
speaker embedding network is firstly trained on a large-scale
general speaker recognition dataset with single-channel utter-
ances. With the converged speaker embedding network, the
aggregation network is trained on the real far-field dataset.

The aggregation network can be trained either simultane-
ously in an end-to-end manner or separately one by one. To
enable end-to-end training, the aggregation layer is plugged
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Fig. 2. Recording environment of Hi Mia dataset [25].

between the encoding layer and the speaker classifier of the
speaker embedding network. All parameters are updated si-
multaneously during training. Also, the aggregation network
can be trained separately. Specifically, we train the aggrega-
tion network on top of the speaker representations extracted
by the encoding layer. The speaker classification layers in the
aggregation network are initialized from the speaker embed-
ding network.

Both the speaker embedding network and the aggregation
network are trained with cross-entropy loss.

3. EXPERIMENTS

3.1. Dataset

3.1.1. Far-field text-dependent dataset

We conduct the experiments on the far-field text-dependent
dataset Hi Mia. The dataset is recorded in both English and
Mandarin Chinese [25]. We only choose the Mandarin Chi-
nese part. In each utterance, recordings are captured by one
close-talking microphone as well as six 16-channel circular
microphone arrays. The recording setting is shown in figure
2. The average duration of the recordings is around 1 sec-
ond. In this study, the testing set is selected as described in



[25], which contains 3,520 utterances from 44 speakers. The
remaining 23,680 utterances from 296 speakers are saved for
training.

To simulate the real-life scenario, we use the close-talking
clean data for enrollment and employ the real far-field noisy
utterances for testing, as described in [13]. During testing,
enrolling utterances are from the close-talking channel, while
testing utterances are from the far-field microphone array(s).
In each microphone array, we select six recording channels
(channel 1, 3, 6, 9, 11, and 14). Each close-talking enrolling
utterance is scored with all far-field testing utterances, yield-
ing 12,390,400 (3520 × 3520) testing trials. Among the 3,520
testing utterances, there are 2,640 and 880 utterances recorded
in quiet and noisy environments. We further split the testing
trials into clean testing part with 9,292,800 (3520 × 2640) tri-
als and noisy testing part with 3,097,600 (3520 × 880) trials.

3.1.2. Close-talking text-independent dataset

As described in section 2.3, the speaker embedding network
is trained with a general large-scale dataset. The AISHELL-
ASR00091, which is a Mandarin speech recognition dataset,
is used for this purpose. In this study, 1947 speakers with
959,902 utterances from the high-quality microphone channel
of the dataset are selected for training. The average duration
of the utterances is 3.54 seconds.

3.1.3. Data augmentation

We perform data augmentation with MUSAN dataset [36].
Either background additive noise or reverberation is added
to close-talking utterances during training. For the additive
noise, the signal-to-noise ratios (SNR) are set between 0 to
20 dB, and the noise type includes ambient noise, music, tele-
vision, and babble noise. The television noise is generated
with one music file and one speech file. The babble noise is
constructed by mixing three to eight speech files into one. For
the reverberation, the convolution operation is performed with
the simulated room impulse responses (RIR) in MUSAN. We
only use RIRs from small and medium rooms.

3.2. Experimental Setup

For the input features, speech signals are converted to 64-
dimensional log Mel-filterbank energies with a frame-length
of 25 ms. The features are mean normalized before fed into
the network. We adopt an online data preparation and aug-
mentation strategy for training [37]. A random length of du-
ration between 2 to 4 seconds is generated for each data batch
on-the-fly. Also, random background noise or reverberative
noise is added for each training sample when generating the

1More details can be found at https://aishell-asr009.os
s-cn-beijing.aliyuncs.com/AISHELL-ASR0009.pdf

Table 1. The network architecture, C(kernal size, stride) de-
notes the convolutional layer, [·] denotes the residual block;
K is the number of recordings channels and L relates to the
duration of the speech.

Layer Output Size Structure

Conv1 K × 32× 64× L C(3× 3, 1)

Residual
Layer 1 K × 32× 64× L

&
C(3× 3, 1)
C(3× 3, 1)

'
× 3

Residual
Layer 2 K × 64× 32× L

2

&
C(3× 3, 2)
C(3× 3, 1)

'

&
C(3× 3, 1)
C(3× 3, 1)

'
× 3

Residual
Layer 3 K × 128× 16× L

4

&
C(3× 3, 2)
C(3× 3, 1)

'

&
C(3× 3, 1)
C(3× 3, 1)

'
× 5

Residual
Layer 4 K × 256× 8× L

8

&
C(3× 3, 2)
C(3× 3, 1)

'

&
C(3× 3, 1)
C(3× 3, 1)

'
× 2

Utterance
Encoding K × 512

Global Statistics
Pooling Layer

Embedding
Aggregation 512

Self-Attentive
Pooling Layer

Speaker 128 Fully Connected Layer
Classifier # speakers Fully Connected Layer

data batch. With this online data preparation strategy, the net-
work never “sees” the same training sample, which helps to
improve the generalization ability of the model.

The detailed network architecture is in table 1. The front-
end local pattern extractor is based on the well known ResNet-
34 architecture [35]. ReLU activation and batch normaliza-
tion are applied to each convolutional layer. Dropout [38] is
added before the speaker classification layer to prevent over-
fitting. During the testing phase, the 128-dimensional speaker
embedding is extracted from the output of the penultimate
fully-connected layer.

Since the final verification task is conducted on the text-
dependent dataset, we train the text-dependent speaker net-
work with model fine-tuning [13] to ensure a robust text-
dependent speaker network for single-channel utterance.
Specifically, we firstly train a text-independent speaker em-
bedding model with 1947 speakers in AISHELL-ASR0009.
Network parameters are updated using stochastic gradient
descent (SGD) algorithm with a momentum of 0.95 and a
weight decay of 1e-4. The learning rate is initially set to
0.1 and is divided by ten whenever the training loss reaches



Table 2. Verification performance (DCF and EER[%]) with the setting of distributed circular microphone arrays. Each array
contains six recording channels. The boldface indicates the best results tested with the whole trials.

Aggregation Training Trials 1 Array 2 Arrays 3 Arrays 4 Arrays 5 Arrays 6 Arrays

Averaged
One
by
One

All 0.666 4.20 0.628 3.60 0.616 3.36 0.608 3.26 0.598 3.23 0.596 3.18
Clean 0.643 3.81 0.607 3.27 0.593 3.07 0.586 3.01 0.576 2.99 0.574 2.95
Noisy 0.733 5.17 0.684 4.49 0.678 4.16 0.668 3.91 0.652 3.86 0.651 3.79

Attentive
One
by
One

All 0.666 4.20 0.624 3.44 0.606 3.27 0.596 3.19 0.584 3.12 0.580 3.06
Clean 0.642 3.82 0.606 3.20 0.587 3.05 0.579 3.00 0.570 2.95 0.566 2.90
Noisy 0.732 5.17 0.673 4.07 0.658 3.86 0.642 3.70 0.616 3.59 0.611 3.50

Averaged
End
to
End

All 0.622 4.03 0.563 3.22 0.553 3.04 0.542 2.92 0.534 2.89 0.532 2.84
Clean 0.591 3.64 0.539 2.90 0.526 2.76 0.518 2.66 0.508 2.63 0.507 2.58
Noisy 0.712 5.14 0.632 4.13 0.634 3.89 0.615 3.69 0.609 3.64 0.607 3.58

Attentive
End
to
End

All 0.612 3.72 0.552 2.94 0.527 2.77 0.518 2.66 0.506 2.58 0.500 2.52
Clean 0.590 3.47 0.538 2.77 0.515 2.60 0.507 2.53 0.498 2.48 0.492 2.42
Noisy 0.673 4.37 0.586 3.40 0.555 3.28 0.536 3.03 0.513 2.87 0.506 2.77

a plateau. Then, this model is employed to initialize the
text-dependent model. Single-channel utterances from 296
speakers in Hi Mia dataset are used to fine-tune the text-
dependent speaker embedding model. The learning rate is
set to 1e-3 and is divided by ten whenever the training loss
reaches a plateau.

To train the aggregation network, N microphone arrays
are randomly selected for a training utterance. Then one
recording channel for each of the N arrays is chosen for
training, resulting in K = N recording channels from differ-
ent microphone arrays. For the close-talking utterances, N
noisy copies are generated. N is set between 1 to 6 to match
the number of microphone arrays in the dataset.

At the testing stage, cosine similarity is used for scoring.
We use equal error rate (EER) and detection cost function
(DCF) as the performance metrics. The reported DCF is the
average of two minimum DCFs when Ptarget is 0.01 and 0.001.

3.3. Experimental Results

3.3.1. Single channel results

We first show the single-channel verification results of HI
MIA dataset in table 3. For each microphone array, the verifi-
cation performance of the best and worst channels, as well
as the embedding level fusion result, are shown. We ob-
serve that the verification performance of microphone arrays
is correlated with their spatial positions (as shown in figure
2). Both microphone arrays 1 and 2 are nearest to the speaker.
However, the second one is most likely to record high-quality
speech as it is in the direction of the speaker’s talking, while
the first one may capture less signal and be influenced by re-
flections. Therefore, Array 2 achieves the best performance
among all the arrays. Although array 3, 4, and 5 are of the

Table 3. Single channel results (DCF and EER[%]). Each
microphone array (as indexed in figure 2) contains 6 record-
ing channels. For each array, the verification performance of
the best and worst channels, as well as the embedding level
fusion result, are shown. The boldface indicates the micro-
phone arrays with best and worst verification performance.

Microphone Best Worst Averaged

Closed-talking 0.519 2.59

Array 1 0.729 4.53 0.764 4.81 0.710 4.13
Array 2 0.628 3.46 0.647 3.50 0.618 3.23
Array 3 0.692 4.66 0.727 4.95 0.655 4.27
Array 4 0.744 5.49 0.774 5.81 0.720 5.22
Array 5 0.695 4.45 0.736 4.74 0.684 4.13
Array 6 0.672 4.54 0.706 4.71 0.651 4.15

same distance from the speaker, array 4 is much closer to the
noise sources. As a result, the recordings of array 4 are more
likely to have lower SNRs and worse verification performance
compared with array 3 and 5.

3.3.2. Distributed microphone arrays results

Table 2 shows the performances with distributed microphone
arrays. We investigate six testing conditions in which dif-
ferent numbers of microphone arrays are used for a testing
utterance. For the testing condition with N microphone ar-
rays, N arrays are randomly sampled for each testing utter-
ance, yielding K = N × 6 recording channels in total. With
only one microphone array and without end-to-end training,
the performances of attentive pooling and average pooling



Table 4. Verification performance (DCF and EER[%]) with the setting of distributed microphones. Each channel of the
microphone array is tested independently, resulting in 6 verification results for each experiment setting. The means of the DCF
and EER of the six results are reported. The boldface indicates the best results.

Aggregation Training 1 Mic 2 Mics 3 Mics 4 Mics 5 Mics 6 Mics

Averaged One-by-One 0.706 4.64 0.652 3.74 0.631 3.49 0.620 3.37 0.608 3.32 0.605 3.26
Attentive One-by-One 0.706 4.64 0.652 3.71 0.628 3.45 0.616 3.33 0.599 3.24 0.593 3.16
Averaged End-to-End 0.664 4.52 0.589 3.47 0.571 3.21 0.555 3.05 0.546 3.00 0.542 2.93
Attentive End-to-End 0.649 4.18 0.577 3.18 0.546 2.95 0.532 2.79 0.519 2.68 0.510 2.59

are the same, since the acoustic environments of the record-
ing channels within one microphone array have no signifi-
cant differences. When more microphone arrays are used, at-
tentive pooling outperforms over average pooling. With the
same speaker embedding, the attentive pooling, which can be
easily computed, outperforms the average pooling by 3.8%
in terms of EER when the aggregation network is separately
trained. Moreover, the aggregation model trained in end-to-
end fashion further improves performance. We argue that this
improvement is attributed to the enhanced modeling ability of
the speaker embedding network when it is trained with the ag-
gregation network. Training the attentive aggregation module
with the speaker embedding network in an end-to-end fash-
ion improves the simple embedding averaged aggregation by
20% in terms of EER with six distributed microphone arrays.

In figure 3, we visualize the means and standard devi-
ations of the attentive weights learned from the end-to-end
model. For each utterance in the Hi Mia test set, the atten-
tive weights includes six microphone arrays, each with six
selected recording channels. Attentive weights are correlative
to the position of microphone arrays, as shown in figure 2.
This observation is the same as what we found in the single-
channel experiments.

3.3.3. Distributed microphones results

Table 4 shows the results with the setting of distributed micro-
phones. The microphone is selected from one channel in the
microphone array. The microphone devices selected to con-
struct the testing trial are same as section 3.3.2. The record-
ings from the same channel index of the microphone arrays
are selected for testing, yielding six testing sets for each test-
ing condition. For each testing condition with K distributed
microphones, the EERs and DCFs of 6 testing sets are aver-
aged. We observe the same as what is found in the distributed
microphone arrays experiments. With six distributed micro-
phones, the proposed attentive aggregation method trained in
an end-to-end manner outperforms the simple embedding av-
eraged aggregation by 20.6% and 15.7% in terms EER and
DCF respectively.
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Fig. 3. Means and standard deviations of the attentive weights
of 6 microphone arrays (each with 6 channels) on Hi Mia test
set.

4. CONCLUSION

This study presents an embedding aggregation framework for
far-field speaker recognition with distributed microphone ar-
rays. We investigate the simple averaged aggregation as well
as the attentive aggregation. The attention-based method pro-
duces a set of attentive weights to adaptively fuse speaker em-
beddings of all recording channels within a recognition utter-
ance. The embedding aggregation module is simple and can
be trained with any speaker embedding network in an end-
to-end manner. Experiments conducted on the real world far-
field text-dependent datasets show that the proposed method
outperforms the simple aggregation methods.
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