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Abstract

Modeling voices for multiple speakers and multiple languages with one speech synthesis system
has been a challenge for a long time, especially in low-resource cases. This paper presents t-
wo approaches to achieve cross-lingual multi-speaker text-to-speech (TTS) and code-switching
synthesis under two scenarios: 1) cross-lingual synthesis with sufficient data, 2) cross-lingual
synthesis with limited data per speaker. Accordingly, a novel TTS synthesis model and a non-
autoregressive multi-speaker voice conversion model are proposed. The TTS model designed
for sufficient-data cases uses shared phonemic representations associated with language tokens.
As for the data-limited scenario, we adopt a framework cascading several speech modules to
achieve our goal. In particular, we proposed a parallel non-autoregressive voice conversion mod-
ule to address multi-speaker synthesis for data-insufficient cases. Both approaches use limited
bilingual data and demonstrate impressive performance in cross-lingual synthesis, where we can
generate fluent foreign speech, even code-switching speech, for monolingual speakers. More-
over, experimental results show that our proposed voice conversion module can well maintain
the voice characteristics in data-limited cases.

Keywords: Text-to-speech, Cross-lingual speech synthesis, Voice conversion, Speaker
verification

1. Introduction

In the past few years, the end-to-end text-to-speech (TTS), which consists of an encoder-
decoder-based text-to-spectrogram network and a neural vocoder, has allowed machines to syn-
thesize high-fidelity speech that is as natural as human speech [1, 2]. This type of TTS framework
outperforms traditional frameworks like statistical parametric speech synthesis (SPSS) [3], and5

concatenative speech synthesis [4]. It soon becomes the state-of-the-art framework for speech
synthesis and is widely applied in various TTS applications (e.g., audiobook reader, virtual as-
sistants, navigation systems, etc.) in our daily lives.

Nonetheless, this kind of model, like vanilla Tacotron2 [2] and Fastspeech [5, 6], keeps a cer-
tain level of limitations in controllability regarding latent speech attributes when it is proposed.10

It renders the speech attributes in an implicit way like it learns to model those attributes during
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training. In this case, the model is not robust enough to synthesize speech with specific target
characteristics, such as emotion, timbre, and prosody. Then researchers propose novel extensions
on the end-to-end framework to improve the model’s robustness in controlling speech attributes.
For example, Wang et al. model the latent speech attributes by introducing global style tokens15

(GSTs) to the Tacotron2 in an unsupervised way [7]. This allows the model to control speaking
speed or clone speaking style via GSTs. Some research works extend the Tacotron2 with condi-
tioned features extracted from a speaker verification system to achieve speaker identity cloning
for multi-speaker TTS. [8, 9].

On the other hand, language is an important attribute for multilingual speech synthesis. As20

bilinguists and multilinguists are commonly seen in today’s world, the speech communication
scenario becomes more complicated. It is essential for speech analysis tools, including speech
recognition and speech synthesis, to adapt to this change to maintain their current performance
[10]. The challenge is that languages, generally, have different grapheme sets and pronunciations
among each other. This challenge motivates researchers to find and investigate shared representa-25

tions between languages for speech analysis [11, 12, 13]. Even with appropriate representations
for multiple languages, the model architecture needs to be upgraded in order to achieve multilin-
gual processing for most speech analysis systems [13]. There are existing studies of multilingual
synthesis and cross-lingual synthesis that are based on classical statistical parametric speech
synthesis (SPSS) [14, 15]. Nevertheless, the synthesis performance is restricted by the relative30

complex pipeline and the vocoder in terms of SPSS approaches [1]. As the end-to-end TTS mod-
els can generate speech with higher fidelity compared with classical methods, extensions on the
end-to-end TTS frameworks are explored for multilingual modeling as well [16, 17, 18, 19]. As a
special case in multilingual synthesis, the cross-lingual synthesis, where we can generate speech
with foreign text for monolingual speakers, is more challenging, especially in low-resource cas-35

es. Regarding that case, Zhang et al. achieve high-quality cross-lingual synthesis among three
languages in a sufficient-data manner [17]. Liu et al. investigate cross-lingual synthesis with
limited data for each speaker, while the synthesized speech has moderate quality due to the data
sparsity issue [20].

In this paper, we aim to achieve cross-lingual multi-speaker TTS from two languages, English40

and Mandarin. While it is costly to collect a huge dataset for multi-speaker cross-lingual synthe-
sis, addressing the cross-lingual synthesis under low-resource data scenarios is essential. There-
fore we also investigate solutions to such scenario in this paper. Two synthesis frameworks are
proposed for two different scenarios, which are data-sufficient scenario and low-resource scenari-
o, respectively. In the data-sufficient scenario, we propose a Tacotron-based model conditioned45

on speaker embedding and language tokens. The relevant pronunciations between languages are
associated by shared phonetic inputs. The proposed model can generate high-fidelity speech for
all speakers with respect to their own language. In addition, we investigate cross-lingual syn-
thesis with the same model by involving a bilingual TTS dataset. Results show that linguistic
knowledge can be transferred from the bilingual speaker to monolingual speakers, which enables50

us to generate fluent, high-fidelity, and intelligible speech in both Mandarin and English using
monolingual speakers’ voices. In the data-limited case, the training dataset contains hundreds
of monolingual speakers, while total recording of each speaker is less than half an hour. Under
this scenario, we adopt a series of speech modules to accomplish the cross-lingual synthesis.
Specifically, we incorporate a linguistic feature extractor, a speaker representation extractor, and55

a multi-speaker voice conversion system. Furthermore, we propose a parallel non-autoregressive
network for the multi-speaker voice conversion module. The adversarial speaker classifier [21]
and the speaker embedding consistency loss [9] are employed in the conversion network to im-
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prove the speaker similarity. We conduct objective evaluation and subjective evaluation on the
synthesis performance. Results show that the VC system can generate high-fidelity speech with60

satisfactory speaker similarity. Both systems under two scenarios can tackle code-switching syn-
thesis. Audio samples are available online for listening 1. The contribution of our paper includes:

• We investigate multi-speaker cross-lingual speech synthesis in two multilingual data se-
tups.

• We propose a TTS framework that uses shared phonetic representations and language to-65

kens for cross-lingual synthesis.

• For the data-insufficient scenario, we adopt a synthesis framework that cascades a series of
speech modules. Within the framework, we propose a parallel non-autoregressive model
for voice conversion.

This paper is organized as follows. Section 2 introduces the related work regarding mul-70

tilingual multi-speaker TTS and voice conversion. Section 3 presents our proposed model for
data-sufficient scenario while section 4 presents the speech modules we employ for the data-
insufficient scenario. Experimental details and results are presented in section 5. Finally, we
hold a discussion in section 6, and our paper is concluded in section 7.

2. Related works75

2.1. Multilingual and Cross-lingual TTS
Developing a Multi-Lingual Multi-Speaker (MLMS) TTS model can relieve the efforts of

training multiple TTS models used for several voices with different languages. While the voice
can be controlled by a text-independent speaker embedding in a multi-speaker TTS system
[8, 22], TTS regarding multiple languages is more complicated due to different grapheme repre-80

sentations across languages.
However, similar pronunciations between different languages can help reduce the gap of

cross-lingual text-to-speech. Linguistic representation across languages has been investigated
for years in MLMS TTS. Li et al. propose an MLMS TTS approach based on conventional
statistical parametric speech synthesis (SPSS) [14]. They use the international pronunciation85

Alphabet (IPA) [23] as the input representation and applied cluster adaptive language networks
for generating the language-dependent linguistic features, followed by speaker-dependent output
layers for different voices. Ming et al. present a light-weighted bilingual synthesis system that
adopts concatenated vectors in the linguistic-feature level to manage two languages in one model.
[15] .90

More recently, Li et al. propose a novel representation for all languages [13]. This represen-
tation, called Bytes, allows speech recognition models and speech synthesis models to achieve
multilingual processing. The performance of using Bytes in TTS is conducted and evaluated
by another group of researchers [17]. Experimental results in [17] show that using phoneme
units as the input for the MLMS TTS model could achieve better synthesis performance than95

using Bytes. With sufficient training data (more than 500 hours), their proposed model is able to
achieve cross-lingual synthesis with a high naturalness rate. The shared phoneme input is one of

1https://caizexin.github.io/mlms-syn-samples/index.html
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the keys to the cross-lingual synthesis, which is also stated in [16]. The study reveals that similar
pronunciations across languages result in close linguistic embedding vectors.

We also propose a TTS framework using shared phonetic representations for cross-lingual100

multi-speaker speech synthesis, and it is archived at [24] 2. After that, there are more research
works in this field. Liu et al. also use shared phoneme representation and extend the Tacotron2
by incorporating conditional embeddings for MLMS TTS [20], which has a similar structure as
our proposed model. However, we have the language-dependent Tacotron encoder designed for
allowing the TTS model to synthesized code-switching text. Zhou et al. present a novel method105

to merge context information between languages by adopting word embedding from a pre-trained
language model. Nevertheless, The cross-lingual synthesized speech has moderate quality, as
shown in the figures from [18]. Fu et al. present a code-switching speech synthesis system based
on a language-dependent style token [25]. It applies a dynamic soft windowing mechanism on
the decoder module to implicitly improve the consistency in bilingual synthesis, which improves110

the performance concerning naturalness and intelligibility. The experiments conducted in [25]
mainly focus on the bilingual speaker, while we also look into the code-switching synthesis
performance for the monolingual speakers in this paper.

On the other hand, low-resource synthesis is a common issue in TTS due to the difficulty
of collecting data. In this case, there are studies investigating the MLMS synthesis for low-115

resource languages recently. Marlene et al. investigate phonological features that could adapt to
untrained languages with zero-shot adaptation [26]. Similarly, Korte et al. look into how different
strategies work for low-resource language synthesis with data from rich-source languages [27].
In our paper, we pay attention to the low-resource scenario when each speaker contains limited
data for training.120

2.2. Voice Conversion

Voice Conversion (VC) is a speech technique that changes the voice characteristics of an
audio signal to the desired voice while keeping the linguistic contents unchanged. Generally,
the source speaker refers to the original voice of an utterance, and the target speaker is the
expected voice the system converts to. According to whether the source speaker and the target125

speaker speak the same language, VC can be divided into intra-lingual VC and cross-lingual VC.
For intra-lingual VC, variational auto-encoder (VAE)-based methods and generative adversarial
network (GAN)-based approaches are widely used [28, 29, 30, 31].

The cross-lingual VC is nonparallel in nature. Since the source speaker and the target s-
peaker speak different languages, the speech utterances are inherently different in content. To130

achieve cross-lingual VC, we are supposed to disentangle speaker characteristics and the content
of the source-speech data in the source language and then replace the speaker characteristics with
those from the target speaker regardless of what languages the target speaker speak [32]. Vec-
tor quantization (VQ)-based method is used for cross-lingual VC between Japanese and English
[33]. However, this approach is not robust enough in preserving the speakers’ identity, where135

the feature space of the converted envelope is limited to a discrete set of envelopes. Ramani
et al. propose a GMM-based cross-lingual VC to generate polyglot speech corpus [34]. For
the GMM-based approach, phonemes from the source language are accordingly replaced by a-
coustically similar phonemes from the target language under GMM-based VC. Later, Phonetic
PosteriorGram (PPG) based methods [35, 36, 37, 38], which takes advantage of the linguistic140

2Our preliminary methods and experimental results are shared in our archived paper https://arxiv.org/abs/2005.10441
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information from a large amount of speech data, also achieves high performance in cross-lingual
VC. The PPG obtained from a speaker-independent automatic speech recognition (ASR) sys-
tem can be regarded as a bridge feature across boundaries between speakers and language [36].
Those aforementioned methods focus on one-to-one cross-lingual VC and use the conventional
vocoder WORLD [39] to reconstruct the waveform from the predicted spectrum, which leads145

to relatively lower naturalness and speaker similarity. In our paper, we aim to achieve many-
to-many voice conversion such that the model can be used for multi-speaker synthesis. Similar
to text-to-speech, speaker verification models have been incorporated in VC such that the VC
system can generalize to unseen speakers’ voices [40]. Different from [40], our voice conversion
model is non-autoregressive, and we employ two modules, adversarial speaker classifier and em-150

bedding consistency loss, during training to further improve the speaker similarity performance.

3. Data-sufficient Scenario

This section describes our proposed method for cross-lingual speech synthesis under the
data-sufficient scenario. Generally, we have more than 8-hour data per speaker for training.

3.1. Input representation155

Code-switching is defined as more than one language occurring in one sentence or between
sentences. With the world’s globalization, code-switching patterns in speech have become a
common case in many countries and regions. [41]. The language environment in globalization
inspires more and more bilinguists and multilinguists, which motivates researchers to develop
speech processing systems that can handle multilingual challenges. Furthermore, code-switching160

corpora are collected and released for research related to speech communication in the recen-
t decade [42, 43], followed with various approaches proposed to address complicated speech
analysis, including multilingual automatic speech recognition (ASR), language identification,
and language diarization with respect to multilingual scenario [44, 45, 46, 47]. Likewise, TTS
systems need to be improved for synthesizing natural speech for code-switching sentences [18].165

One of the main challenges of code-switching TTS is that the grapheme set or the phoneme
set between languages are different. However, some phonetic pronunciations between different
languages are close. Thus exploring a multilingual TTS model with minimum data requirement,
including textual and vocal data, is possible and essential. Previous approaches, which are pro-
posed for addressing multilingual issues in TTS, indicate that shared input representation across170

languages is one of the keys to realizing cross-lingual synthesis [13, 14, 16]. The shared repre-
sentations include shared phoneme set, international pronunciation alphabet (IPA), and the Bytes
coding [13], where the phoneme representation can obtain better performance [17].

In this paper, we choose to use a shared phoneme set from CMU dictionary [48] to investigate
bilingual multi-speaker TTS and cross-lingual synthesis between Mandarin and English under175

a speaker-limited data-sufficient scenario. As for Mandarin, the pronunciation representation
called pinyin can be converted to CMU phoneme by the pinyin-to-cmu mapping table [49]. Since
Mandarin is a tone-language, digits 1 to 6 are used to denote different tones, while ‘0’, ‘1’, ‘2’
are used to mark the lexical stress for English. Although the tone and stress share the same
annotations in our input, which may cause ambiguity, we have language identification tokens as180

another input stream. Moreover, language identification tokens are used to generate language-
dependent encoding features while preserving the shared information between languages, like
close pronunciations. Similarly, ‘0’, ‘1’, ‘2’ are used for language identification in our input
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Figure 1: Proposed multilingual multispeaker TTS model

representations, where ‘0’ represents the corresponding phoneme or stress annotation is from
English, ‘1’ is for Mandarin, and ‘2’ for language-unrelated symbols like punctuation marks.185

Take the phrase ‘speech 合成.’ (speech synthesis.) as an example, two input sequences are
obtained after the front-end text processing. One is the phoneme sequence ‘S P IY 1 CH HH ER
2 CH AH 2 NG 2 .’, and the other is the corresponding language identification tokens ‘0 0 0 0 0
1 1 1 1 1 1 1 1 2’, which has the same length as the phoneme sequence. We break up phonemes
with their corresponding tones, e.g., ‘AH2’ is converted to ‘AH 2’, to allow our proposed model190

to share close pronunciations between Mandarin and English.

3.2. Proposed model

Our proposed bilingual multi-speaker TTS model is illustrated in figure 1. The input text
is converted into phoneme sequence and language token sequence, as introduced in section 3.1.
The phoneme sequence is converted to a phoneme embedding sequence by a learnable lookup195

table. Correspondingly, the language tokens are converted to a 64-dimensional language em-
bedding sequence through another learnable embedding table. Two embedding sequences are
concatenated together as the input of the Tacotron encoder, which accumulates the linguistic and
context characteristics of the input vector sequence with layers of convolutional layers and a
bi-directional long short-term memory (BLSTM) layer.200

256-dimensional speaker embedding is concatenated with the encoder outputs for condition-
ing the network to synthesize expected voices. For the speaker embedding, we use the mean
embedding derived from all embeddings extracted with a pre-trained speaker verification model
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Figure 2: Synthesis pipeline for data-insufficient scenario

[50] by feeding all training utterances of each speaker. We believe that it can lead to the same
performance as using a trainable lookup table yet costs less training time. Mel-spectrogram is205

used as the predicted acoustic feature in our bilingual multi-speaker TTS model.

3.3. Vocoder

The vocoder is participated in TTS systems to transform the acoustic features back to audio
signals in the time domain. Both Griffin-Lim [51] and neural vocoders [52, 53, 54] can be
applied in our framework to reconstruct the waveform. In this work, we use MelGAN [54] as our210

vocoder for the proposed methods in both scenarios, since MelGan is much faster in spectrogram
inversion while maintaining high quality.

4. Data-insufficient Scenario

One of the low-resource cases in cross-lingual multi-speaker synthesis is the utterance-limited
scenario where we have limited data per speaker for training. However, we still have hundred-215

s of voices to model. It is difficult for the end-to-end TTS framework to model such varieties
regarding the speaker space and language characteristics with such limited data.

We have investigated the cross-lingual TTS performance in such cases using the proposed
framework in section 3. It turns out that the model performs well in multilingual multi-speaker
synthesis. However, the cross-lingual synthesis is poor. It is not easy to generate accurate speech220

with foreign text for monolingual speakers. For example, the system is unable to synthesis
English speech with Mandarin speakers’ voices. Therefore, we adopt a synthesis pipeline that
consists of several speech modules for cross-lingual synthesis. As shown in figure 2, it con-
tains a bilingual TTS system, a bottleneck feature extractor, a speaker embedding extractor, a
voice conversion (VC) system that converts the voice to the expected voice, and a vocoder for225

transforming the predicted acoustic features to audio signals.

4.1. Bottleneck Feature Extractor

The intermediate linguistic feature used in the VC system is important for synthesis perfor-
mance. Here we adopt the speaker-independent bottleneck feature extracted from a bilingual
speech recognition model trained with Kaldi [55]. Typically, speech recognition is trained on230

audio-text pairs. The recognition process can break down to acoustic feature extraction, phonetic
7



unit prediction, and decoding via maximum likelihood estimation with respect to context models
like language models. The key module that we borrow from the speech recognition system is
the acoustic model that predicts phonetic probabilities from acoustic features. Here the acoustic
model contains a bottleneck layer that we use as the linguistic feature. Therefore it is adopted as235

the bottleneck feature extractor.
In our work, the acoustic model is constructed by time-delayed neural networks (TDNN),

where the linear layer before the output layer is designed to be a low-dimensional layer, which
is also known as the bottleneck layer [56]. Since the acoustic model is trained to maximize the
probability on the true phonetic label for each acoustic frame, the output from the bottleneck240

layer in a well-trained model should contain precise linguistic information. Thus we can adopt
the output of the bottleneck layer as the linguistic feature for voice conversion. On the other
hand, to extract language-independent features that work for multilingual scenarios, the acoustic
model is trained with multilingual data.

4.2. Speaker Embedding Extractor245

The speaker embedding extractor comes from models designed for speaker verification tasks.
Speaker verification is the task of identifying persons from their voices. Recently, deep learn-
ing has revolutionized the speaker verification field. X-vector based systems [57] and its variant
frameworks [58, 59] have become the most popular architectures in speaker verification. Normal-
ly, the speaker verification contains three components: a front-end pattern extractor, an encoder250

layer, and a back-end classifier. The fully connected layer is named speaker embedding, which is
used as the discriminative fixed-length vector to represent a speaker’s identity. Here we employ
the speaker embedding in our cross-lingual voice conversion system to render the target speaker’s
voice characteristics.

4.3. Cross-lingual Voice Conversion255

We propose a non-autoregressive model for voice conversion. The framework is a variant
of the synthesis network FastSpeech [5]. The framework is shown in figure 3. We remove the
length regulator module since the input sequence and the output sequence can share the same
length in the VC task. The network is composed of a speaker encoder, encoder-decoder structure
with multi-head attention mechanism and an adversarial speaker classifier.260

Note that FastSpeech is first proposed for converting text-embedding sequence to acoustic
features, while VC is to convert linguistic features to acoustic features. We use Mel-spectrogram
as the acoustic feature. For the encoder-decoder structure, we replace the character-embedding
layer with a PreNet that contains two fully connected layers, each with 256 hidden units. We add
triangular position encoding [60] to the input sequences of the encoder and decoder to provide265

the location information. The encoder contains a stack of N = 4 identical blocks. Each block
has two multi-head self-attention modules, followed by two 1D convolutional layers. Residual
connections and layer normalization are applied in each convolutional layer. To perform multi-
speaker VC, we condition the decoder with speaker embeddings. The speaker embedding is
concatenated with the encoder output to provide speaker information. The decoder has the same270

feed-forward network structure as the encoder, which significantly speeds up the training and
inference process comparing to autoregressive models. Finally, a Post-Net module consisting
of 5-layer convolution is added to obtain the residual coefficients from the predicted feature to
improve the overall reconstruction quality.

The bottleneck feature, which is extracted from source speech, has been proven to contain275

voice characteristics from the source speaker in many-to-many VC systems [61]. To further
8



Speaker Embedding
Extractor

Prenet

Bottleneck Feature

Encoder

Linear

Decoder

Mel Linear

PostNet

Gradient
Reversal Layer

Speaker
Classifier

Adversarial
Speaker Classifier

Target Mel

Predicted
Embedding

Target
Embedding

Concatenation

Embedding
Consistency Loss

Predicted Mel

Multi-Head Attention

Add & Norm

Conv1D

Add & Norm

N ×

(a) Non-autoregressive Voice Conversion Network (b) The Encoder and Decoder Layer
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eliminate speaker information and prevent the converted voice from resembling the voice of the
source speaker, we employ an adversarial speaker classifier in our proposed framework [21, 61].
The adversarial module contains a gradient reversal layer and a speaker classifier. Both are linear
layers, while the latter one is used to produce probabilities for speakers from the training set.280

The gradient reversal layer scales the gradient flowing to the encoder reversely by an adjustable
factor λ during backward propagation. The adversarial speaker classifier is optimized to reduce
the cross-entropy loss of speaker classification during training.

We also use the embedding consistency loss [9] in our framework, which is proposed to
improve the speaker similarity between the synthesized speech and its reference voice. Simply285

concatenating the speaker embedding may not transfer enough speaker information learned by
the verification system, especially for cross-lingual VC. Therefore, we incorporate the speaker
verification model in our VC training to reinforce the voice cloning ability. We use the embed-
ding consistency loss between the ground truth speaker embedding and the one extracted from
the predicted Mel-spectrogram as one component of the loss functions for optimizing the VC290

network. Hyper-parameter α is used to control the weight of the embedding loss. During the
training stage, the parameters of the speaker encoder network are frozen.

5. Experiments and Results

5.1. Data-sufficient Scenario
For the data-sufficient scenario, our experiments are conducted with the framework illustrated295

in section 3. Three TTS datasets are used to investigate the cross-lingual synthesis performance,
including the publicly available LJ Speech (LJS) dataset [62] and two Chinese datasets, Female
DB-1 and Female DB-4, from Data Baker 3 ( LJS, DB-1 and DB-4 are notated for both speaker

3https://www.data-baker.com/en
9



Phoneme LJS DB-1 DB-4 Phoneme LJS DB-1 DB-4 Phoneme LJS DB-1 DB-4
J - 10088 12499 X - 8050 11895 Q - 5435 7489

IY 28587 54859 85601 EH 26397 3598 11791 AA 16976 11173 23205
L 32893 9420 23510 AY 12079 7479 15619 UW 15345 30630 44593

SH 7957 11456 17804 OW 10201 6921 13698 Y 4426 16540 27793
N 68392 33006 56359 T 65657 8698 26504 JH 4824 8994 13821

AE 21502 27640 42203 NG 7229 25895 36286 AH 102042 12558 33953
G 5901 6960 12298 AW 4248 9654 15397 Z 27845 5749 14135
M 23778 5967 14833 AO 16035 6970 14496 S 43700 5485 17965

UH 2856 7576 11253 W 20352 7151 15411 CH 4751 5118 7940
D 43601 14192 30390 ER 23525 15131 30264 B 15608 7577 15252
F 17018 4111 8890 R 40428 5025 16386 K 27866 3325 12650

HH 13785 7915 14745 EY 14695 4891 10838 P 20212 2496 8607
V 19628 - 4089 DH 29311 - 4716 IH 53904 - 11368

TH 3604 - 1250 OY 831 - 595 ZH 607 - 237
AX 156 - 418

Table 1: Phonemes (without tone and stress) and their corresponding frequencies in LJ-Speech, DB-1 and DB-4

identity and dataset in this section). DB-1 is an open-source dataset 4 , while DB-4 is a com-
mercial one. LJS contains approximately 24 hours of English audio-transcript pairs recorded300

by a female English native speaker. The DB-1 has approximately 12 hours of Mandarin speech
synthesis data recorded by a female Mandarin native speaker. The DB-4 is a bilingual dataset
containing 12 hours of Chinese audio-transcript pairs, 6 hours of English pairs, and 6 hours of
code-switching data from a female Mandarin speaker.

The frequencies of all phonemes in the three datasets are shown in table 1. LJS contains305

only English utterances, while DB-1 contains only Chinese utterances. Three consonants, ‘J’,
‘X’, and ‘Q’ do not exist in the English dataset when using shared phoneme representations.
However, these three phonemes frequently exist in the Mandarin dataset. On the other hand,
7 phonemes are not presented in the Mandarin dataset while frequently existed in the English
dataset, as shown in the table. The bilingual dataset DB-4 contains all phonemes. Most phonemes310

between two languages share the same representation in our experiments. This indicates that
the pronunciation of intersecting shared phonemes may be less challenging to learn by a cross-
lingual TTS system compared to those phonemes that only exist in one language. Moreover,
cross-lingual synthesis can be achieved when the model catches the pronunciation similarity of
these phonemes between English and Mandarin.315

5.1.1. Training setup
We trained two bilingual multi-speaker TTS systems with different datasets. The first sys-

tem, notated as BLMS, is the bilingual multi-speaker TTS model trained with DB-1 and LJS.
The other system, notated as CLMS, is the cross-lingual system trained with all three datasets,
including the bi-lingual dataset DB-4. Although the latter system also can be used for bilingual320

multi-speaker synthesis, we focus on its capability of cross-lingual synthesis here. All training
audios are downsampled to 16 kHz. The hyperparameters setting for acoustic feature extraction,
network components are shown in table 2. In the table, ‘Feature/’ refers to those parameters re-
lated to Mel-spectrogram extraction, ‘Encoder/’ refers to the network parameters for the encoder
part, while ‘Encoder/’ is for the decoder part. We set the output frames per decoding step to 1 in325

our model training.

4https://www.data-baker.com/open source.html
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Hyperparameter
Feature/number of Mel bands 80
Feature/FFT window length 800
Feature/hop length 200
Feature/frame window size 800
Feature/preemphasis 0.97
Feature/lowest frequency 55
Feature/highest frequency 7600
Encoder/embedding dimension 512
Encoder/number of Conv layers 3
Encoder/Conv kernel size (5, )
Encoder/Conv channel size 512
Encoder/LSTM units per direction 256
Output frames per decoding step 1
Decoder/Attention dimension 128
Decoder/Attention filters 32
Decoder/Attention kernel (31, )
Decoder/PreNet linear layers [256, 256]
Decoder/number of LSTM layers 2
Decoder/LSTM units 1024
Decoder/PostNet Conv layers 3
Decoder/PostNet Conv kernel size (5, )
Decoder/PostNet Conv channel size 512

Table 2: Hyperparameters of the phoneme-to-spectrogram model, including those start with ‘Feature/’ for Mel-
spectrogram extraction.

5.1.2. Subjective evaluations
The subjective evaluation is done by speech synthesis MOS-scale rating, a categorical score

from 1 to 5, with 0.5 increments, where score 5 is the best. We ask 17 native Mandarin speak-
ers (all evaluators speak fluent English) to rate the synthesized speech concerning naturalness,330

similarity, and intelligibility. The naturalness is related to the quality of synthesized audios re-
gardless of the content. The speaker similarity score measures how close the synthesized voice is
to the expected speaker, while the intelligibility evaluates the clarity level of the speech content.
We have three types of synthesized text for evaluating the TTS synthesis performance: Man-
darin sentences, English sentences, and code-switching sentences that contain both Mandarin335

and English content in each sentence. Each type of text has 15 sentences for synthesis.
The naturalness mean opinion scores (MOS) are shown in table 3. As shown in the table, the

quality of synthesized audios varies among different systems and different speakers. General-
ly, the quality reaches around 4 when synthesizing audio in the target speaker’s native language,
while the performance degrades when generating cross-lingual speech for monolingual speakers.340

For example, DB-1 obtains MOS with 4.14 when synthesizing Mandarin sentences, but the score
degrades to 3.12 for English sentences. In addition, as shown by the similarity scores on the table,
the speech synthesized by our proposed model can well preserve the speaker identity according
to the speaker embedding. Most speaker similarity MOS are around 4, while scores lower than
4 can be observed in cross-lingual cases. Most essentially, the code-switching performance can345

be clearly observed from the table 3. Although BLMS can achieve bilingual multi-speaker syn-
thesis, the cross-lingual synthesis performance is poor, which matches the result from [17]. The
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MOS±95%CI
The data-sufficient scenario

BLMS CLMS
DB-1 LJS ALL DB-1 LJS DB-4 ALL

Naturalness 3.41±0.07 3.21±0.07 3.31±0.05 3.89±0.06 3.41±0.06 3.99±0.05 3.76±0.04
CN 3.97±0.1 2.73±0.12 3.35±0.1 4.01±0.1 3.02±0.11 3.99±0.1 3.68±0.07
EN 2.86±0.13 3.86±0.09 3.36±0.09 3.86±0.08 3.96±0.08 4.04±0.08 3.95±0.05
CS 3.4±0.11 3.05±0.11 3.22±0.08 3.81±0.1 3.24±0.1 3.95±0.1 3.66±0.06

Intelligibility 3.27±0.1 3.16±0.09 3.21±0.07 4.37±0.05 3.86±0.07 4.47±0.04 4.23±0.03
CN 4.58±0.06 2.38±0.13 3.48±0.12 4.64±0.06 3.54±0.13 4.65±0.06 4.28±0.06
EN 1.83±0.12 4.17±0.1 3.0±0.13 4.17±0.09 4.37±0.08 4.37±0.08 4.3±0.05
CS 3.4±0.1 2.92±0.13 3.16±0.08 4.29±0.09 3.68±0.12 4.41±0.07 4.13±0.06

Similarity 3.92±0.06 3.35±0.06 3.64±0.04 4.09±0.04 3.44±0.06 4.12±0.04 3.88±0.03
CN 4.25±0.08 3.16±0.1 3.7±0.08 4.21±0.07 3.18±0.1 4.16±0.08 3.85±0.06
EN 3.37±0.11 3.64±0.09 3.51±0.07 3.91±0.07 3.84±0.09 4.08±0.08 3.94±0.05
CS 4.14±0.07 3.26±0.1 3.7±0.07 4.13±0.08 3.31±0.1 4.11±0.08 3.85±0.06

Table 3: The mean opinion scores (MOS) with 95% confidence interval (CI) for all proposed systems under the data-
sufficient scenario. BLMS is the bilingual multi-speaker TTS model trained with DB-1 and LJS, while CLMS is the
cross-lingual TTS model trained with DB-1, DB-4 and LJS. For synthesis type, CN denotes Mandarin sentences, EN
denotes English sentences, and CS denotes code-switching sentences that contains both Mandarin and English.

cross-lingual synthesized speech is barely intelligible as the cross-lingual intelligibility MOS is
pretty low. It achieves a score of 1.83 for DB-1 when synthesizing English sentences and a score
of 2.38 for LJS when synthesizing Mandarin sentences. However, when involving a bilingual350

dataset, the system CLMS is able to generate cross-lingual speech, even in code-switching cases,
with intelligible pronunciations for monolingual speakers. The cross-lingual intelligibility MOS
is significantly improved in this case, where the system achieves a score of 4.17 for DB-1 in
English sentences synthesis and a score of 3.54 for LJS in Mandarin sentence synthesis. Raters
said that the synthesized speech is exactly like a foreign speaker speak another language with355

an accent from their native language. The result indicates that using a bilingual dataset with
our proposed model can significantly improve cross-lingual speech synthesis for monolingual
speakers.

5.1.3. Alignments
In addition, the cross-lingual synthesis performance also can be seen from the attention align-360

ments in Figure 4. The synthesized content is a code-switching sentence. For system BLMS, we
can observe clear breaks when the language switches in the sentence for monolingual speakers
DB-1 and DB-4 in figure 4 (a) and (b). However, the attention alignments obtained from CLMS
are consistent even for monolingual speakers. This further implies that the cross-lingual knowl-
edge and pronunciation fluency can be transferred from the bilingual speaker to monolingual365

speakers with our proposed model.

5.2. Data-insufficient Utterance-limited Scenario

5.2.1. The bottleneck extractor
The English dataset Librispeech [63] and the Mandarin dataset AISHELL-2 [64] are used

to train our bilingual bottleneck extractor. The receipt that is used to train Librispeech in Kaldi370

is used for our model training. The acoustic model, known as the chain model in Kaldi, has
17 TDNN layers, followed by the 256-dimensional bottleneck layer. The frames’ sub-sampling
factor is set to 1 so that the frame length of output bottleneck features matches the length of
the input acoustic features. The phoneme set we used for building the recognition dictionary
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Figure 4: Attention alignments when synthesizing code-switching text ‘其实我很难判断 in my heart I think my Chinese
is better but people tell me that my English 是比较好’ (Actually, it’s hard for me to tell. In my heart, I think my
Chinese is better, but people tell me that my English is better): (a) The alignment from BLLS with speaker DB-1; (b) The
alignment from BLLS with speaker LJS; (c) The alignment from CLMS with speaker DB-1; (d) The alignment obtained
from CLMS with speaker LJS; (e) The alignment obtained from CLMS with speaker DB-4;

includes 39 English phonemes and 52 Mandarin phonemes. We use 50ms window-length and375

12.5 ms frame-shift for MFCC feature extraction, which is the same setting as in TTS. In table 2,
the hop length with 200 samples for input audios in 16k Hz is the same as 12.5 ms frame-shift.
We demonstrate the performance of our bottleneck extractor by applying the model in speech
recognition. Here the performance of English speech recognition is reported by word error rate
(WER), while those of Mandarin are reported by character error rate (CER). As shown in table380

4, our model achieves low recognition error rates on test sets from both languages. It achieves
a WER of 3.5% on the Librispeech development set and a CER of 4.29% on the AISHELL-2
development set. Hence the quality of this acoustic model is acceptable for linguistic feature
extraction.

5.2.2. Speaker embedding extractor385

The VoxCeleb2 [65] dataset is used to pre-train the speaker verification system. However,
our training dataset for the voice conversion system is from a different domain (cross-lingual
and cross-dataset). To obtain discriminative speaker embeddings for our cross-lingual setting,
we fine-tune the pre-trained speaker verification model with data from the same domain as our
voice conversion training datasets. The ECAPA-TDNN [58] model is adopted as our speaker390

verification model, which is also used during voice conversion training as we shown in section
4.3. The AISHELL-2 and VCTK dataset [66] are used to fine-tune the verification model. There
are a total of 1901 speakers with more than 900 000 utterances from the AISHELL-2 database
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Test Set WER/CER

Librispeech Dev-clean 3.5%
Librispeech Test-clean 3.9%
AIShell-2 Dev 4.29%
AIShell-2 Test 4.59%

Table 4: The ASR performance of the bottleneck extractor

MOS±95%CI
The data-insufficient scenario

Voice Conversion
VCTK AISHELL ALL

Naturalness 3.59±0.04 3.48±0.04 3.54±0.03
CN 3.38±0.07 3.4±0.07 3.39±0.05
EN 3.9±0.06 3.63±0.06 3.76±0.04
CS 3.5±0.07 3.42±0.07 3.46±0.05

Intelligibility 4.11±0.04 4.06±0.04 4.08±0.03
CN 4.1±0.07 4.12±0.07 4.11±0.05
EN 4.23±0.06 4.1±0.06 4.16±0.04
CS 4.0±0.07 3.95±0.07 3.98±0.05

Similarity 4.05±0.03 3.64±0.04 3.85±0.03
CN 3.95±0.06 3.6±0.07 3.78±0.04
EN 4.16±0.05 3.66±0.07 3.91±0.05
CS 4.05±0.05 3.68±0.07 3.86±0.04

Table 5: The mean opinion scores (MOS) with 95% confidence interval (CI) for all proposed systems under the data-
insufficient scenario. VCTK is evaluated from voices chosen from the VCTK dataset, and AISHELL is from voices
chosen from the AISHELL3 dataset. For synthesis type, CN denotes Mandarin sentences, EN denotes English sentences,
and CS denotes code-switching sentences that contains both Mandarin and English.

for fine-tuning. Another subset with 100 speakers from AISHELL-2 is randomly chosen and
used as the test set to evaluate the verification performance. Normally, the speaker verification395

performance is measured by the equal error rate (EER) and the minimum detection cost function
(mDCF). The speaker verification system fine-tuned on the in-domain datasets achieves an EER
with 2.18% on the test set, and the mDCF on the test set is about 0.4. The result shows that more
than 99% utterance-pairs we constructed from the test set are correctly verified. Therefore, the
verification system we trained is able to extract discriminative representations.400

5.2.3. Multilingual multi-speaker voice conversion
Three public available datasets is used in our experiments, including the LJ Speech (LJS)

dataset [62] introduced in section 5.1, the VCTK English dataset [66] and the AISHELL-3 Man-
darin dataset [67]. The VCTK English corpus contains 109 speakers with various accents. 100
speakers are randomly chosen for training, while the rest speakers are used during the test phase.405

For AISHELL-3, we select 174 speakers for training. Each speaker from the two datasets con-
tains approximately 400 utterances for training. All audios are downsampled to 16 kHz. Settings
for extracting Mel-spectrogram are the same as the one used in the utterance-limited scenario
(Table 2). Hyper-parameters λ, α are set to 1.0 and 5.0, respectively. For the synthesis pipeline
using VC, we first use the CLMS model from the data-sufficient scenario to generate speech with410

DB-4’s voice. Then we use the voice conversion system to convert the synthesized speech to our
target voice. Two voices from VCTK and two from AISHELL-3 are randomly chosen from the
training set for voice conversion evaluation.
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MOS w/o ECL with ECL

seen 3.73 ± 0.075 3.75 ± 0.078
unseen 3.65 ± 0.088 3.75 ± 0.086

Table 6: Speaker similarity MOS results on systems with and without ECL

Results are shown in table 5. Regarding naturalness, the voice conversion performance is
not as good as the systems from the data-sufficient scenario. Comparing to the CLMS system,415

the overall MOS degrades from 3.76 to 3.54. However, the intelligibility remains outstanding.
Speaker similarity is the most significant criterion for voice conversion. As shown in the table,
the overall speaker similarity MOS is around 3.85, which indicates that the converted voice is
highly close to the original voice.

5.2.4. Ablation study420

The performance on speaker similarity is essential for multi-speaker voice conversion. As we
adopt the VC for the data-insufficient scenario, the performance of cross-lingual multi-speaker
synthesis is affected by the performance of the VC model. Therefore we provide an ablation
study on the speaker embedding consistency loss (ECL) to investigate the improvement regarding
speaker similarity.425

We train another voice conversion system without using the embedding consistency loss. By
conditioning speaker representations from embedding extractors, our proposed model enables
zero-shot conversion even for unseen voices. In our experiments, we convert utterances from
test sets to speech with voices from both seen and unseen speakers for the system trained with
ECL and the one trained without ECL. The unseen voices come from the test set of VCTK, Lib-430

rispeech, and LJS. Then for both seen and unseen cases, we synthesize around 10 000 utterances
for each scenario list below:

• Monolingual scenario: convert voices between monolingual speakers with the same lan-
guage; for example, convert an English speaker voice to another English speaker’s voice.

• Cross-lingual scenario: convert voices across monolingual speakers that speak different435

languages; for example, convert the voice of a Mandarin speaker to an English speaker’s.

• Code-switching scenario: convert code-switching utterances (from DB4) to monolingual
speakers’ voices.

In terms of voice conversion between seen speakers, 48 utterances are randomly selected,
with 16 from each scenario, for subjective evaluation. Similarly, 24 utterances, with 8 from440

each scenario, are chosen for evaluation regarding unseen voice conversion. The similarity MOS
results are shown in table 6. The similarity performances of systems with and without ECL
are close. Both systems obtain 3.7 on speaker similarity. Likewise, there are no significant
differences between seen speakers and unseen speakers on voice cloning performance.

We do not observe significant improvement in speaker similarity from the subjective eval-445

uation. However, the system with ECL demonstrates better spoofing capability from objective
evaluation. Since the ECAPA-TDNN model is incorporated in the voice conversion model dur-
ing training, we surely achieve a higher similarity score between the converted speech and the
reference speech when we use the same model for verification. Nevertheless, we use a different
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Figure 5: The distribution of cosine similarity scores between speaker embeddings from the reference speech and the
converted speech in our experiments

model for objective evaluation. A ResNet-based speaker verification model [59] is trained to450

evaluate the verification performance between ground-truth voices and converted voices in this
experiment. The verification model is trained on the VoxCeleb2 dataset and achieves an EER
with 1.64% on the AISHELL-2 test set.

For each synthesized utterance in this experiment, we extract the speaker embedding of the
converted result and the one of its corresponding reference utterance using the ResNet-based455

verification model. Then we evaluate the speaker similarity based on cosine similarity scores.
The objective verification performance is presented in figure 5. The score distribution shows that
voice conversion system with ECL achieves higher similarity comparing to the one without ECL.
For all scenarios, the mean of similarity scores of system with ECL is larger than the mean of
scores from the system without ECL. For the system with ECL, the mean of similarity scores460

is larger than 0.6. This indicates that system trained with ECL has improvement on speaker
similarity from the verification model’s perspective. Thus adopting ECL may boost our proposed
voice conversion system on spoofing speaker verification systems.

6. Discussion

While the performance of our proposed systems works well on the cross-lingual synthesis and465

code-switching synthesis, there are several limits that need further study. For the data-sufficient
scenario, we require a bilingual dataset to accomplish the knowledge transfer between languages
and speakers. Thus the shared phonemes we used for two languages can be bridged and we
are able to synthesize foreign text with monolingual speakers’ voices. However, there is still a
noticeable performance gap between cross-lingual synthesis and intra-lingual synthesis concern-470

ing naturalness and intelligibility. Besides, the absence of the bilingual dataset leads to unclear
pronunciations and unintelligible results on cross-lingual synthesis. This phenomenon is also
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commonly existed in many prior studies [17, 20], even when there is a large amount of data for
training. In today’s world, multilingual speakers are only a small part of the world population,
especially for minority languages. Besides, some languages do not share many similar pronun-475

ciation units as we do in our experiments. Regarding those issues, developing a cross-lingual
system for those challenging languages becomes an arduous task. As future work, the study
towards a universal speech synthesis system is vital, which has already started [68].

For the utterance-limited scenario, cascading several speech modules is one of the ways that
achieves high-quality synthesis [69, 70]. Such a synthesis pipeline requires more computation480

resources and time. In addition, the robustness of the pipeline is poor as we need per-system
adaptation for almost all speech models from the pipeline to adapt to novel languages or speak-
ers. To address those issues, universal speech recognition and zero-shot multi-speaker voice
conversion are essential. However, as we shown in Section 5.2.4, although synthetic voice may
spoof machines, human can distinguish synthetic voices from the true voices. One of the reason485

is that the voice conversion model is trained in a low-resource data setup. Thus we still need
future studies on improving the speaker similarity under the low-resource scenario.

7. Conclusion

We present two bilingual multi-speaker TTS approaches and investigate the cross-lingual
performance with limited bilingual data for two data setups. One is a Tacotron-based model490

for the data-sufficient scenario. The model takes shared phonemic representations along with
language tokens as input. When trained with monolingual data from Mandarin and English, the
model is able to achieve high-fidelity bilingual multi-speaker TTS. In addition, by involving a
bilingual dataset, the model allows monolingual voices to synthesize cross-lingual speech and
even code-switching speech. The other approach is proposed for realizing cross-lingual synthe-495

sis in low-resource scenarios. Several speech modules, including a bottleneck feature extractor,
a speaker embedding extractor, and a voice conversion system, are applied for this approach.
In particular, we proposed a parallel non-autoregressive network for cross-lingual voice conver-
sion. Experimental results show that our proposed conversion model can synthesize high-quality
converted speech with good speaker similarity. Furthermore, we adopt embedding consistency500

loss during model training and evaluate its effectiveness on speaker similarity. From objective
and subjective evaluations, we observe that the adding of embedding consistency loss does not
achieve much improvement from the human perspective, while it significantly improves speaker
similarity from the speaker verification system’s perspective.
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