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a b s t r a c t 

The increasing advancement of mobile technology explosively popularizes the mobile devices (e.g. iPhone, 

iPad). A large number of mobile devices provide great convenience and cost effectiveness for the speaker 

recognition based applications. However, the compromise of speech template stored in mobile devices 

highly likely lead to the severe security and privacy breaches while the existing proposals for speech 

template protection do not completely guarantee the required properties such as unlinkability and non- 

invertibility. In this paper, we propose a cancellable transform, namely Random Binary Orthogonal Ma- 

trices Projection (RBOMP) hashing, to protect a well-known speech representation (i.e. i-vector). RBOMP 

hashing is inspired from Winner-Takes-All hash and further strengthened by the integration of the prime 

factorization (PF) function. Briefly, RBOMP hashing projects the i-vector using random binary orthogo- 

nal matrices and records the discrete value. Due to the strong non-linearity of RBOMP, the resultant 

hashed code withstands the template invertibility attack. Further, the experimental results suggest that 

the speech template generated using RBOMP hashing can still be verified with reasonable accuracy. Be- 

sides that, rigorous analysis shows that the proposed cancellable technique for speech resists several ma- 

jor attacks while the other criteria of biometric template protection can be justified simultaneously. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Given the advancement of technologies and the increase in the

opularity of mobile devices, speaker recognition system is emerg-

ng into a rapid growing field of research. In [1] , Unar et al. stated

he possibilities of using voice biometric modalities in different

pplications involving mobile commerce and transactions. Voice,

onsisting of unique features of different speakers, is often used to

dentify and verify the legitimate user in numerous applications.

ypically, speaker recognition can be categorized as speaker iden-

ification and speaker verification. Speaker identification classifies

 given voice to a specific speaker, while speaker verification

ecides a pair of voices as from the same speaker. State-of-the-art

peaker recognition systems widely use i-vector modeling as a

rontend technique to jointly model speaker and channel variabil-

ties in a speech utterance due to its favorable performance as

ell as its condensed representation [2] . Moreover, Probabilistic
∗ Corresponding author. 

E-mail address: yapws@utar.edu.my (W.-S. Yap). 
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031-3203/© 2017 Elsevier Ltd. All rights reserved. 
inear Discriminative Analysis (PLDA) is commonly adopted as

 supervised backend modeling approach to strengthen speaker

nformation while restraining channel variability and other sources

f undesired variabilities [3–5] . Instances of speaker recognition

ystems that use both i-vector and PLDA can refer to [6,7] . It is

orth mentioning that two general methods applying Deep Neural

etwork (DNN) to speaker recognition system brought impressive

ains in performance. The first method trained a DNN acoustic

odel to produce frame alignments by the standard Gaussian Mix-

ure Model (GMM) in the conventional framework [8] . The second

ethod used the DNN acoustic model to extract phonetic features

9,10] . The phonetic features are the outputs of the bottleneck

ayer of a DNN or the low dimensional features after applying

CA to DNN’s outputs of tied triphone state phoneme posterior

robabilities. The phonetic features were then concatenated to Mel

requency Cepstral Coefficient (MFCC) to generate tandem feature. 

In i-vector/PLDA framework, a speaker recognition system can

etermine the authenticity of a user by matching the voice refer-

nce (i.e. i-vector) stored in the database. However, this raises the

oncern on the protection of the voice reference (also known as

https://doi.org/10.1016/j.patcog.2017.10.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.10.041&domain=pdf
mailto:yapws@utar.edu.my
https://doi.org/10.1016/j.patcog.2017.10.041
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template) stored in the database to prevent security and privacy

threats. In [11,12] , it has shown that biometric template leakage

is considered as one of the most harmful attacks in the biomet-

ric security system. The compromised biometric template can lead

the impostor to create physical spoof from the stolen template,

replace the template and gain illegitimate access to the system

[12–14] . It is further complicated by the fact that biometric traits

are irreplaceable once compromised. Therefore, a biometric-based

application equipped with template protection capability is ur-

gently needed. 

In the literature, a number of proposals have been reported to

secure the biometric templates. The existing proposals in protect-

ing biometric template can be divided into three types: biomet-

ric cryptosystems (or helper data methods), feature transforma-

tion (or cancellable biometrics) and hybrid biometric cryptosystem

[12] . Biometric cryptosystems require the usage of helper data, a

biometric-dependent public information which does not reveal the

original biometric template, to retrieve or generate keys. Instance

of biometric cryptosystem can refer to [15] . The authentication

process for this approach is to perform biometric comparison to

determine the validity of the key retrieved or generated. Depend-

ing on how the helper data is derived, this approach can further

be divided into key-binding or key-generation systems [16] . On the

other hand, cancellable biometrics transforms the original biomet-

ric feature in such a way that it is computationally difficult to re-

construct the original biometric feature [16,17] . The advantages of

using this approach is that the adversary is computationally hard

to recover the original biometric feature even if the transformed

feature vector had been compromised. However, the transforma-

tion of feature often leads to the loss of accuracy and this will

likely degrade the performance of the biometric recognition system

[17] . Instances of cancellable biometric can refer to [18,19] . Lastly,

the hybrid biometric cryptosystem is the combination of biomet-

ric cryptosystems and cancellable biometrics to enjoy the strength

from each type of method. An ideal template protection scheme is

required and must fulfill all of the following requirements [20] : 

1. Irreversibility. It should always be computationally hard for

the adversary to invert the protected biometric template. 

2. Unlinkability. It should always be computationally hard for

the adversary to distinguish whether multiple protected bio-

metric templates were generated using the same biometric

trait of a user. 

3. Revocability. The protected biometric template should be

able to be revoked or renewed to replace the old template

while the original template should be computationally hard

to be inverted from multiple protected biometric templates

derived from the same biometric trait of a user. 

4. Performance. The performance of the biometric recognition

rate should not be seriously degraded. 

1.1. Related works 

In this section, the previous works on the speech template pro-

tection are discussed and summarized. Generally, the revisit of the

speech template protection schemes follows the categories of bio-

metric template protection, i.e. cancellable biometrics, biometric

cryptosystems and hybrid biometric cryptosystem [12] . 

1.1.1. Cancellable biometrics 

Cancellable biometrics, the intentional distortion of the biomet-

ric feature, was formalized by Ratha et al. [21] to protect the pri-

vacy of the user. In the event that the cancellable feature is com-

promised, the same biometric feature can be mapped into another

new distinct template using the pre-designed distortion character-

istics. Cancellable biometrics can further be divided into biometric

salting and non-invertible transformation. 
Biometric salting [22] blends an auxiliary data (e.g. a user

pecific key or password) with the biometric feature. A concrete

xample of biometric salting for speech template protection is

robabilistic random projection proposed by Chong and Teoh [23] .

wo-dimensional principal component analysis was applied on the

eature matrix before going through a random projection process

ia an externally derived pseudo random-number. The projected

atrix was then fed into a Gaussian Mixture Model (GMM) to

btain probabilistic speaker models. The presented scheme was

hown to be resisted from the stolen-token attacks where even if

he token had been compromised, the recognition performance of

he system was still able to retain at the feature vector level. How-

ver, the scheme was vulnerable to attack via record multiplicity

ARM) as the adversary can recover the original feature template

y exploiting multiple templates generated using different random

rojection matrices [24] . 

Cancellable biometrics also often refers to the use of one-way

ransformation function that converts the voice feature to a pro-

ected template that is computationally hard to be inverted [22] .

n 2008, Xu and Cheng [25] proposed a cancellable voice tem-

late protection method based on fuzzy vault scheme [26] . Chaff

oints were added to the unordered Mel-Frequency Cepstral Co-

fficient matrix to create a vault and a prime accumulator was

sed to separate the genuine points from chaff points. Besides, a

on-invertible function was used to conceal the raw features while

olynomial reconstruction was used for authentication. However,

hang et al. [27] revealed that the selection of the chaff points is

ot independent as the selection of new chaff point depends on

he location of the previous selected point. It was observed that

he latecomers, referring to the points added later, will likely to

ave more nearby points. Hence, increasing the number of chaff

oints will likely lead the adversary to correctly guess the genuine

oints. In addition to that, if the prime accumulator had been com-

romised, the adversary will be able to easily determine the gen-

ine points. 

Recently, Pandev et al. [28,29] proposed a new technique called

eep secure encoding for protecting face template. The face fea-

ures were first extracted and trained using deep convolutional

eural networks to generate an unprotected binary template. The

nprotected binary template was divided into n k -bit blocks. Each

 -bit block was then fed as an input of a cryptographic hash func-

ion (e.g. SHA-256). Finally, the n outputs of hash function were

tored in the database for matching purposes. During the match-

ng phase, the face image is first queried. Subsequently, similar

raining and feature extraction processes will be carried out us-

ng the queried face image to generate an unprotected binary tem-

late. The unprotected template is then divided into n k -bit blocks

s the inputs of the underlying hash function. The n outputs of

he hash will then be compared with the hashed codes stored

n the database. The matching is successful if i out of n outputs

f the hash are matched where i must be greater than the pre-

efined threshold value. The proposed scheme is interesting as

 random key is chosen and is embedded during face extraction

nd training processes to generate an unprotected binary template

hile no key is needed to secure the unprotected binary template.

f the template is compromised, a new key will be selected and

he training process must be carried out again to re-generate a

ew unprotected binary template. Thus, Pandev et al. claimed that

heir scheme offers the property of cancellability without using key

where no key is needed after the feature extraction and training

rocesses). This idea is different with typical template protection

chemes where key is needed in securing the unprotected tem-

late to offer the property of cancellability. The size of protected

emplate is of n × k bits. In the experiment performed by Pandev

t al. using two different datasets (i.e. CMU PIE and Extended Yale

), the size of a protected template is of 64 × 1024 = 65536 bits.
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ince a typical feature extraction method does not involve any key,

e propose a template protection scheme involving a key after the

eature extraction method. Our proposed scheme enjoys the ben-

fit that one does not need to focus on the training and feature

xtraction processes of the underlying biometrics and our scheme

an be generalised to other biometric modalities with real value

epresentation. Other than the brute-force attack examined by Pan-

ev et al. on their proposed method, we also provide extensive

nalysis on different security concerns of our proposed template

rotection scheme. 

.1.2. Biometric cryptosystems 

Biometric cryptosystems [30] can broadly be divided into key-

inding and key-generation. The representative instances of key-

inding schemes are fuzzy commitment [31] and fuzzy vault [26] .

uzzy commitment scheme was first proposed by Juels and Wat-

enburg. Fuzzy commitment is a two-steps algorithm consisting of

ommitment and decommitment. The fuzzy commitment scheme

 commits a random codeword c using a one-way hash function

 and a template x , where both c and x can be expressed as n -

it strings. Mathematically, we have F (c, x ) = (h (c) , x − c) and the

utput is stored in the database. To decommit a query, x ′ de-

oted as the witness is used such that the extracted commitment

 

′ = f (x ′ − (x − c)) where f is the decommit function. Decommit-

ent is successful if h (c) = h (c ′ ) .The decommitment can always

ucceed if the distance between the query and the template is

ess than approximate half the minimum distance. In this case,

he minimum distance is considered as the minimum Hamming

istance between two codewords encoded by an error-correcting

ode. 

The fuzzy commitment scheme was first realized by Inthava-

is and Lopresti [32] who proposed password based cryptographic

ey regeneration. They utilized Dynamic Time Warping (DTW) on

he extracted feature vector and mapped DTW features to a binary

tring called feature descriptor. Subsequently, the feature descrip-

or was used to define distinguishing features. The template was

ardened by perturbing the template many times and one of the

table features is extracted each time. The extracted feature will be

he key in DTW. The process continued until the distinguishing de-

criptor had less than or equal to half of the feature vector length.

inally, the harden template was fed through the transformation,

ermutation and key binding processes using fuzzy commitment

ramework. It was shown that the security of this scheme is dom-

nated by the password instead of the biometric feature [32] . 

Billeb et al. [33] proposed to construct a voice protection

cheme based on the Universal Background Model (UBM). The pro-

osed scheme binarized the supervector derived from UBM and an

dapted fuzzy commitment scheme was used as the basis for the

emplate protection scheme. Even though security analysis against

nlinkability and privacy protection was provided, the proposed

cheme still suffers from ARM when both key and the differ-

nce vectors are compromised. The adversary can exploit the com-

romised information to reconstruct the template stored in the

atabase. 

Paulini et al. [34] proposed the use of multi-bit allocation in-

tead of single bit allocation. Different to Billeb’s work, the pro-

osed scheme divided the feature space into 2 k intervals and en-

odes each interval with k bits. A modified fuzzy commitment

cheme was then applied on the binarized features. Their work

utperformed the single bit allocation approach and preserved the

erformance of the recognition system with lesser degradation in

he recognition ability. However, similar to Billeb’s work, the pre-

ented scheme was vulnerable to ARM. 

On the other hand, fuzzy vault scheme was proposed by Juels

nd Sudan [26] . The general idea of the proposed fuzzy vault

cheme is to lock the secret key k under an unordered set A . A
olynomial p was selected in such a way that it is able to encode

 into variable x . Random chaff points that do not lie on p were

hen added to set A , creating a vault which consists of collection

f points which lie on p and chaff points. To unlock the key k by

he means of set B , if B overlaps substantially with A , the collec-

ion of points that lie on polynomial p can be determined. Using

hese points, with error correction ability, the polynomial p can be

econstructed and thereby key k . 

Johnson et al. [35] proposed a vaulted verification protocol,

here a challenge-respond protocol and fuzzy vault were used in

heir security scheme. This work used the same database as the

ork [32] and the results had shown that it was able to achieve

 better performance as compared to [32] under the scenario that

ll the keys had been compromised. The user voice feature was

rst separated into several blocklets and a chaff/fake blocklet was

dded to each real blocklet, forming many pairs of real and chaff

lockets. These pairs were then encrypted by password and stored

n the template. During the authentication phase, the template was

rst decrypted and a challenging bitstring was generated such that

eal block represents “0” and chaff block represents “1”. The pairs

ere then randomly swapped. The score computation was carried

ut by matching the bitstring response given by the user with the

emplate. However, limited biometric information such as limited

oice samples will not be able to vary the data in the challenge-

esponse process due to lesser pairs of real and chaff blocks and

hus the adversary will have higher probability in guessing the cor-

ect response [35] . 

.1.3. Hybrid biometric cryptosystem 

As biometric cryptosystems have limitations such as unable

o generate multiple unlinkable templates, a hybrid approach of

ombining cancellable biometrics with biometric cryptosystems 

s proposed to overcome such limitation [12] . As the name im-

lied, hybrid biometric cryptosystem is a combination of two or

ore template protection schemes such as bio-hashing with fuzzy

ault scheme and key-binding scheme with non-invertible trans-

ormation [36] . Hybrid biometric cryptosystem reaps the benefit of

ancellable properties from cancellable biometric while providing

tronger security and privacy protection inherited from biometric

ryptosystem. An instance of hybrid biometric cryptosystem is the

ancellable speech template based on chaff point mixture method

roposed by Zhu et al. [37] where a two-step hybrid approach (i.e.

andom projection and fuzzy vault) was used. The voice feature

atrix was first randomly projected into another feature space and

haff points were added to the projected space instead of directly

o the original feature matrix. Binary indices were used to bind

he points and accumulator of genuine indices (key) were calcu-

ated using OR operator. The key will be sent to the matcher to

lter out the genuine points from query using AND operator. The

roposed work had shown that it was able to preserve the per-

ormance of the recognition system, however the security of the

roposed work is not analyzed in detail as ARM analysis and lost

ey scenario were not considered. In the event that the binary in-

ices and the key are compromised, the adversary will be able to

ifferentiate the genuine points from randomly added chaff points.

Feng et al. [38] proposed a three-step hybrid framework for

ace template protection. A random projection matrix was first ap-

lied to the original biometric template to provide cancellability.

o strike the balance between the security and the recognition per-

ormance, a class distribution preserving transform was then used

o enhance the discriminatory power of the template and at the

ame time convert the template from real value to binary space. A

istance function and thresholding were used in such a way that if

he distance measured between the distinguishing points and the

emplate is lower than the threshold, a “0” bit is generated, other-

ise “1” bit is generated. The final step of the proposed framework
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Fig. 1. The overview of the i-vector extraction. 
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was to hash the generated binary template using MD5 hashing al-

gorithm. The proposed work had shown a significant improvement

on the recognition performance; however the proposed work was

vulnerable to several security attacks. Wang and Yu [39] had out-

lined several drawbacks of using MD5 hash and concluded that

finding a collision for MD5 is feasible. 

1.2. Motivation and contribution 

From the existing voice template protection schemes, we have

observed that there are several issues that need to be addressed as

follows: 

1. Robustness to attacks: It is observed that most of the speech

template protection schemes were vulnerable to different at-

tacks such as attack-via multiplicity (ARM) and stolen-token

attacks. The vulnerability of the scheme is most likely due

to the high correlation between the templates generated us-

ing the same biometric feature. Hence, the adversary is able

to derive the original template by analyzing multiple com-

promised templates. Thus there is an urgent need to ensure

that the generated templates are independent to each an-

other, fulfilling the unlinkability and revocability criteria. 

2. Performance degradation: It can be seen from [32] and

[36] that the transformation of the biometric feature from

one space to another will cause the loss of the discrimina-

tive features. Thus, it will result in the increase of the intra-

class variation and eventually lead to the drop of accuracy in

the performance. Therefore, the template protection scheme

should be able to preserve the performance of the system as

much as possible while providing sufficient security protec-

tion. 

In this paper, we propose a cancellable transform named

Random Binary Orthogonal Matrices Projection (RBOMP) hash-

ing, for the well-known voice representation, namely i-vector

[2] to address the aforementioned security and privacy issues.

Our proposed method is inspired from a hashing method, i.e.

Winner Takes All [40] which is designed for the task of fast

similarity search initially. Our main contributions are listed as

follow: 

• We proposed a cancellable transform e.g. RBOMP hashing to

project the biometric feature to ordinal space using binary or-

thogonal matrices which will induce a strong non-invertible

property and is resilient to small intra-class variation simulta-

neously. 
• Prime Factorization (PF) feature is proposed to further enhance

the security and privacy, more specifically, a many-to-one func-

tion, namely prime factorization approach together with a user-

specific key, are incorporated. 
• Security and Performance analysis. Through analysis on the se-

curity and performance of the proposed method are given to

justify the common tradeoff of security and performance. 
• Attack-via-Multiplicity (ARM) analysis. Extensive theoretical and

simulation analyses on ARM are conducted to boost confidence

towards the security against this major attack. 

For the rest of the paper, a brief introduction to the generation

of i-vector is provided in Section 2 . Section 3 presents the pro-

posed RBOMP hashing in detail. Section 4 demonstrates the experi-

mental results and general security analysis. Besides, Section 5 pro-

vides detailed ARM analysis. Finally, an outline of the conclusion

for this work is given in Section 6 . 
. Preliminaries 

.1. Generation of i-vector 

The state-of-art feature extraction technique through i-vector

rovides a fixed-length low dimensional representation of speech

tterances that preserves the speaker-specific information of each

peaker. The Mel Frequency Cepstral Coefficient (MFCC), repre-

ented in a form of vectors and derived from a given utterance

4] , was fed into a Universal Background Model (UBM). UBM is

 K-component Gaussian Mixture Model (GMM), λ = (w k , m k , �k ) ,

here each of the symbols represents weight, mean and covari-

nce respectively. Next, the Baum-Welch statistics is accumulated

rom each utterances. Hence the speaker utterances represented

y a supervector ( θ ) that consists of additive components from

peaker and channel subspace can be written in the form below,

= m + T x (1)

here m represents the speaker- and channel- independent super-

ector (derived from the UBM), T represents the total variability

atrix that spans the subspace that consist of most of the speaker-

pecific information and x is a standard normally distributed ran-

om vector that we refer as i-vectors [2] . 

The i-vector framework is greatly improved by applying senone

NNs to the speaker recognition system. In our system, tied tri-

hone state phoneme posterior probabilities are first extracted by

NN acoustic model. Then, after performing logarithm to the pos-

erior probabilities, principal component analysis is applied on top

f it to get lower dimensional phonetic feature which is concate-

ated to MFCC to generate tandem feature. The tandem feature

nstead of MFCC is fed into to UBM to accumulate Baum-Welch

tatistics in i-vector framework. Tandem feature provides discrim-

nant phoneme information and thus achieves better performance

n the speaker recognition system. Fig. 1 is the flowchart of the

eneration of i-vector with DNN. 

.2. Winner-Takes-All Hash 

Winner-Takes-All Hash (WTA) is a method used for fast similar-

ty search and was implemented by Google in their image search

ngine [40,41] . WTA used rank correlation measures and recorded

he index of the maximum value of the biometric feature after ap-

lying random permutations. Different index vectors can be gener-

ted using different permutation sequences. 

The procedure for deriving the index vector for Winner-Takes-

ll Hash is described as follows: 

1. Random Permutation . Randomly permute the feature vector,

X to generate X 

P where X 

P denotes the permuted feature

vector. 

2. Select the first K-items . The first K -items are selected from X 

P 

for 2 ≤ K ≤ n − 1 . This step reduces the length of the feature

vector and hence there will be information loss during this

stage. 

3. Record index of the highest value . The index of the highest

value from the first K -items is recorded and denoted as C . 

4. Repeat Step 1 to Step 3 using H different permutation se-

quences. A series of indexes, C will be generated, where
i 
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Fig. 2. An Example of the WTA Computation. 
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i ∈ [1, H ] and let S be the set consisting the generated C i (i.e.

S = { C 1 , C 2 , . . . , C H } ). 
Fig. 2 shows an example of the WTA computation. 

. RBOMP hash 

.1. Baseline system 

In this section, Gaussian Probabilistic Linear Discriminant Anal-

sis (GPLDA) is used as the baseline system. The detailed explana-

ion and the matching protocol are discussed in Sections 3.1.1 and

.1.2 respectively. 

.1.1. Gaussian Probabilistic Linear Discriminant Analysis (GPLDA) 

Probabilistic linear discriminant analysis is widely adopted and

onsidered as the state-of-the-art back-end modeling approach.

enerally, we model the i-vectors with a Gaussian distribution as-

umption (GPLDA). We assume that the training data consists of j

tterances from i speakers and denote the j th i-vector of the i th

peaker by ηij . We assume that the data are generated in the fol-

owing way [42] : 

i j = φβi + εi j (2) 

The speaker term φβ i is dependent on the speaker. The noise

erm ε ij is used to model the within-speaker variabilities and as-

umed to be Gaussian distributed with zero mean and diagonal co-

ariance �. Suppose there are M i i-vectors from the i th speaker,

e have 

 i = 

1 

M i 

M i ∑ 

j=1 

ηi j (3) 

or the i th speaker, the prior and conditional distribution is de-

ned as following multivariate Gaussian distributions: 

 (F i | βi ) = N 

(
φβi , 

�

M i 

)
, P (βi ) = N (0 , 1) (4)

he Expectation Maximization (EM) algorithm is employed in the

odeling training. In the E -step, the posterior distribution of the

idden variable β i given the observed F i is: 

 (βi | F i ) = N ((I+φT M i �
−1 φ) −1 φT M i �

−1 F i , I+φT M i �
−1 φ) (5)

n M -step, to maximize the conditional expectation of the log-

ikelihood 

og 

{ ∏ 

i =1 

M i ∑ 

j=1 

P (ηi j , βi ) 

} 

, (6) 

he updated φ and � are calculated as follows: 

= 

( ∑ 

i 

M i F i E(βT 
i ) 

) ( ∑ 

i 

M i E(βi β
T 
i ) 

) −1 

(7) 
= 

�i � j ηi j [ η
T 
i j 

− E(βi ) 
T φT ] 

�i M i 

(8) 

.1.2. Verification score 

In the speaker verification task, given a trial with two i-vectors

i and ηj , we are interested in testing two alternative hypotheses,

.e. H 1 : both ηi and ηj are from the same speaker and they share

he same speaker identity latent variable βi = β j ; H 0 : they come

rom different speakers and the underlying hidden variables β i and

j are different [4,42] . The verification score can now be computed

s the log likelihood ratio of these two hypotheses. 

core = log 
P (ηi , η j | H 1 ) 

P (ηi | H 0 ) P (η j | H 0 ) 
(9) 

ince the corresponding distribution is all multivariate Gaussians,

he score can be denoted in quadratic terms [8] as follows: 

core = logN 

([
ηi 

η j 

]
;
[

0 

0 

]
, 

[
�tot �ac 

�ac �tot 

])

− logN 

([
ηi 

η j 

]
;
[

0 

0 

]
, 

[
�tot 0 

0 �tot 

])
= ηT 

i Qηi + ηT 
j Qη j + 2 ηi P η j + c (10) 

here c is a constant and �tot , �ac , Q and P are denoted as fol-

ows: 

tot = φφT + � (11) 

ac = φφT (12) 

 = �−1 
tot − (�tot − �ac �

−1 
tot �ac ) 

−1 (13) 

 = �−1 
tot �ac − (�tot − �ac �

−1 
tot �ac ) 

−1 (14) 

.2. Random Binary Orthogonal Matrices Projection (RBOMP) hashing 

Inspired from WTA, we propose a new speech template pro-

ection scheme, coined as RBOMP hashing. As projection of the

eatures from linear space to ordinal space yields a strong non-

nvertible property, it is computationally hard for the adversary

o recover the original feature value from the protected template.

owever, as WTA only focuses on the rank of the features instead

f the value of the features itself, the adversary may obtain the or-

er of the features through ARM and reconstruct the original tem-

late. Hence, motivated by the fact that the returned index may be

xploited by the adversary, a non-invertible function namely prime

actorization is used to conceal the returned index with the help of

 user-specific random token. 

RBOMP is a hashing scheme consisting of k rounds of func-

ion h for k > 1. For ease of understanding, let i denotes the round

umber for i = 1 to k . Each round function h i takes an i-vector X

hat consists of n real numbers and a random positive integer Z i ,

here 1 ≤ Z i ≤ 10 0 0 0, as input and generates an index S i as output.

he concatenation of indexes S i generated in each round function

 i is denoted as the hashed code S = S 1 || S 2 || . . . || S k where || de-

otes the concatenation. Mathematically, we have S = RBOMP (X, Z)

here Z = { Z 1 , Z 2 , . . . , Z k } and S i = h i (X, Z i ) . More precisely, h i con-

ists of the following steps: 

1. Projection, P : Given a random binary orthogonal matrix M i 

with a dimension of n × n , where n is the length of the

i-vector, compute the feature vector X F = P (X, M i ) = X · M i 

where · is the matrix multiplication. 
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Fig. 3. Example of one-round RBOMP hash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: RBOMP hashing. 

Input : Window length ω, number of binary orthogonal 

matrices k , feature vector X ∈ R , random token 

Z i ∈ { 1 , 10 0 0 0 } 
for i = 1 : k do 

Step 1: Compute X F = P (X, M i ) = X · M i . 

Step 2: Compute X w = W (X F ) by constructing 

ω-window. 

Step 3: Compute C i = F I(X F ) as the index/position of 

the highest value of the windowed feature X w . 

Step 4: Compute S i as the number of prime factors of 

(C i + 2) ∗ Z i . 

end 

Output : Hashed Code, S = { S i | i = 1 , . . . , k } and S ∈ Z 
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2. Window, W : Given the feature vector X 

F and the window ω
(the exact range of ω will be determined through experi-

ments later), compute the windowed feature X w = W (X F )

by taking first ω real numbers of X 

F . Since the length of the

feature vector is reduced, certain information of the feature

vector is lost. 

3. Find Intermediate Index, FI : Given the windowed feature

X 

W , compute the intermediate index C i = F I(X F ) as the in-

dex/position of the highest value of the windowed feature

X 

w . 

4. Prime Factorisation, PF : Given the intermediate index C i and

a positive integer Z i , compute the index S i as the number of

prime numbers of (C i + 2) ∗ Z i where ∗ is the integer multi-

plication. The addition of 2 with C i is performed as 1 is not

a prime number and to lower the false acceptance rate (due

to the fact that 2 and 3 are prime numbers). 

Notice that different random binary orthogonal matrices M i 

will be selected in different rounds of h function. In real world

scenario, the selection of binary orthogonal matrices and random

token (i.e. Z ) is user-specific. In the event of the template being

compromised, the user can revoke and reissue a new template by

generating different binary orthogonal matrices and/or token to

replace the compromised template. In our work, we will focus on

lost-token scenario to evaluate the recognition performance and

perform the security analysis for RBOMP hashing. In the lost-token

scenario, the binary orthogonal matrices as well as the random

token are assumed to be known to the adversary, therefore in the

experiments, all the users are assumed to share the same binary

orthogonal matrix and the random token. The pseudocode of the

proposed scheme is shown in Algorithm 1 while the one-round

graphical implementation of RBOMP hash is shown in Fig. 3 for

illustration purposes. 

3.2.1. Determining the range of ω 

As the range of value of the intermediate index, C i , is closely

related to the value of ω, where 1 ≤ C i ≤ω. The range of ω is set

in such a way that there will be at least two mappings of distinct

value C i to P F (C i + 2) , where PF ( x ) is a function that denotes the

number of prime factors of x . Hence, the range of ω is set to be

(2 q −1 ∗ 3) − 2 ≤ ω < 2 q +1 − 1 < 500 , where q is an integer in the

range of [2, 8]. The motivation is to prevent the adversary from

reconstructing the order of the i-vector through ARM practically

(more details are discussed in Section 5 ). 
.2.2. Matching 

Transforming the feature to ordinal space which is not sensitive

o the value of the feature dimension shifts the focus to the im-

licit ordering implied by the values [40] . As rank correlation refers

o the measure of the degree of correlation between the ranks of

he members within a set, the similarity measurement of the fea-

ure representation can be defined as the degree to which the rank

f their feature dimension agrees [40] . 

Let c refers to the maximum value of a given ω-sized window.

he similarity score is defined as the probability of both hashed

ode S and S ′ having c at the same position (i.e. S x = S ′ x for x =
 , · · · , k ) . The higher the probability implies that the hashed code

 and S ′ have a high similarity. In our experiments, the number of

ollisions will be calculated by counting the number of zeros after

erforming element-wise subtraction between two hashed codes. 

The procedure of the similarity score calculation is described as

ollows. Besides, Fig. 4 shows an example of similarity score com-

utation. 

1. Taking the difference of two hashed codes . Given an enrolled

hashed code, S x and a query hashed code, S ′ x , the difference

of S x and S ′ x is computed by taking S x − S ′ x . 
2. Count the number of zeros . The number of “0” is counted af-

ter taking the difference of S x and S ′ x . The “0” in this case in-

dicates a match between the hashed codes and by counting

the number of “0”, the total matches of two hashed codes

can be determined. 
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Fig. 4. Example of Similarity Score computation. 
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1 In real-world and ideal scenario, all users will have different sets of binary or- 

thogonal matrix and token. Throughout our experiments, we assume the worst case 

scenario where all users use the same set of binary orthogonal matrix and token to 

evaluate the recognition and security performances of our proposed scheme under 

worst case scenario. 
3. Compute Similarity Score . Similarity Score is computed by

taking the total number of “0” over the length of the hashed

code. 

. Experiment and analysis 

The training set in this experiment is the database released

hrough the Linguistic Data Consortium (LDC) for the NIST Speaker

ecognition Evaluation (SRE) 2004–2010, as well as Switchboard-

 Phase II corpora. The Gaussian PLDA model with a full covari-

nce residual noise term is trained on i-vectors extracted from all

raining data which amounted to 2790 speakers and 30,600 speech

les. The eigenvoice subspace in the PLDA model is assumed to

e full-rank. Besides that, there are 2391 enrolled models and 379

est segments in the evaluation set which is for NIST SRE 2010

xtended condition 5 (tel-to-tel) female part task. The speakers

n training set are different from the evaluation set to avoid cor-

elation between them. The accuracy performance of the system

s evaluated based on equal error rate (EER). The EER is the rate

hen false acceptance rate (FAR) equals to the false rejection rate

FRR). 

Tandem features used in this experiment is extracted as follows.

irst, each utterance is processed by a Czech phoneme recognizer

o perform the voice activity detection (VAD) and then converted

nto a sequence of 36-dimensional MFCC features consisting of 18

el frequency cepstral coefficients and their derivatives. Next, to

xtract high dimensional phonetic features, each utterance with

igh resolution MFCC is fed into an DNN acoustic model which is

rained by Kaldi’s time delay deep neural network (TDNN) [43] us-

ng 1800 h of the English portion of Fisher corpora [44] . After ap-

lying PCA, 52-dimensional features as the result are concatenated

o MFCC at feature level to generate 88-dimensional hybrid tandem

eature. 

A gender-dependent 1024-component UBM is trained with the

xtracted 88-dimensional tandem features using NIST SRE 2004

nd 2005 corpora. For each utterance, the corresponding tan-

em features are fed into UBM to compute zero-order and first-

rder Baum-Welch statistics. The resulting high dimensional Baum-

elch statistics are then projected on the 500-dimensional total

ariability subspace, which is trained with Switchboard-2 Phase II

nd NIST SRE 20 04, 20 05, 20 06 and 20 08 corpora, to extract i-

ectors. 

Since our proposed method is training-free (the training set

entioned earlier is for i-vector generation purpose), only the
peakers with five or more speech utterances are selected. After

he selection process, the first five samples from each 2001 speak-

rs are selected and used in the experiments. Such selection en-

ures that the total number of samples and number of impostors

re balanced for the computation of genuine scores during the

atching phase. 

For intra-class comparison, there are a total of 20,010 genuine

atches whereas for inter-class comparison, there are 2,0 01,0 0 0

mpostor matches. To avoid biasness of the results obtained from a

ingle random binary orthogonal matrix and random token, 1 the

xperiment for each parameter is repeated for five times and the

verage EER is obtained. 

.1. Effect of ω and k on the recognition performance of the proposed

ethod 

In this section, the effect of ω and k on the EER is investi-

ated. The number of binary orthogonal matrices, k is set to vary

rom 10 0 0, 20 0 0, 50 0 0 and 10,0 0 0 for different ω settings (i.e.

 = 4 , 5 , 10 , 11 , 12 ). Fig. 5 shows the effect of different numbers of

andom binary orthogonal matrices and different lengths of win-

ow on the EER. The recognition performance of the system im-

roves (indicated by lower EER) with the decrease in the value

f ω and the increase in the value of k due to more information

vailable for the verification process to distinguish the speakers.

maller values of ω (i.e. lesser than 4) are not considered for se-

urity reasons as we need to ensure that the adversary will not

e able to reconstruct the order of the i-vector through attack-

ia-multiplicity (ARM) practically (more details can be found in

ection 3.2.1 ). As k increases, the EER slowly converges to a certain

oint as there will be no significant changes in the value of EER

hereafter. More details of the security analysis will be discussed

n Section 5 . 

.2. Comparison of the recognition performances for different 

ethods 

Using the baseline system as the benchmark for fair compari-

on, the recognition performance of the proposed method is com-

ared with other methods by selecting the lowest EER achieved

rom the experiments. The comparison results are summarized in

ables 1 and 2 . 

Compared with other methods, the proposed method can of-

er strong security while preserving the recognition performance of

he system with acceptable degradation (approximately 1.76% more

n EER as compared to the baseline system). The loss in accuracy

s mainly due to the fact that there is less information used for

erification as compared to the baseline system since additional

ser-specific helper data is used in the baseline system. The lack of

nformation has caused the loss of some discriminatory properties

f the voice feature, hence degrades the recognition performance

f the proposed method. 

From Table 2 , it shows that the proposed method is able to pro-

uce satisfactory recognition results. It is worth mentioning that

he database used in this work consists of larger number of peo-

le, i.e. 2001 people, as compared to other work. More impor-

antly, NIST SRE series are widely used to measure the state-of-the-

rt speaker recognition systems. Different with other work, exten-

ive analysis is conducted on the security of the proposed method

gainst ARM (refer Section 5 for the details). Furthermore, inspired
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Fig. 5. EER versus number of random binary orthogonal matrices for different lengths of window. 

Table 1 

Comparison of the recognition performance without template protection methods. 

Method Lowest EER (%) 

Baseline: GPLDA [4] 1.67 

Cosine Similarity 2.41 

Euclidean Distance 10.14 
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from the current trend of “parallelizable” (multi-core, pipeline, su-

perscalar and vector), the proposed method can be parallelized

given that each round function h is independent. 

4.3. Comparison of the recognition performance for different 

databases 

To further justify the recognition ability of the proposed

scheme, the experiment is carried out on two other databases,

namely Chinese Mandarin Speech Recognition Corpus – Digital

String and Chinese Mandarin Speech Recognition Corpus – Con-

versation. To extract the speech feature in the form of i-vectors,
Table 2 

Comparison of different speech template protection methods. 

Method Database Number of 

Speakers 

Baselinew EER 

Protection (%) 

Universal 

Background Model 

[33] 

Text- Independent Digit 

Corpus 

701 3.40 

Multi-bit Allocation 

[34] 

Text- Independent Digit 

Corpus 

701 3.40 

Vaulted Voice 

Verification [35] 

MIT Mobile Device Speaker 

Verification Corpus 

48 11.00 

Random Projection 

+ Fuzzy Vault [37] 

Mandarin Continous 

Speech Recognition 

40 2.22 

Proposed Method NIST SRE 2004 –2010 2001 1.67 

a Johnson et al. [35] claimed that the attacker may gain access to the recognition syste

encryption. Under the lost key scenario, the encryption can be decrypted easily by the a
b Zhu et al. [37] claimed that the time complexity in launching a brute force attack to

binary indices and key are kept secret. However, under the lost key scenario, the attac

genuine points out of total 332 points easily with negligible time complexity (i.e. O (1)). 
c We performed an experiment using all the utterances (30,600 utterances from 2790

using the same parameter ( ω = 4 and k = 10 , 0 0 0 ). It can be observed that the EER i

biometrics like voice contain more human factors, e.g. emotional states [1,45] . This lead

fingerprint. It is expected that behavioral biometrics provide lower level of robustness as
imilar training and testing procedures are applied on both of the

atasets. 

The training set of Chinese Mandarin Speech Recognition Cor-

us – Digital String compromised of Chinese Mandarin Speech

ecognition Corpus – Digital String (Mobile), Chinese Mandarin

peech Recognition Corpus – Digital String (Telephone) and Chi-

ese Dialectal Mandarin Speech Recognition Corpus – Digital String

Telephone) which consists of 647 different speakers with a total of

9,478 utterances. For testing set, Chinese Mandarin Speech Recog-

ition Corpus – Digital String (Desktop) with 120 speakers with a

otal of 3600 utterances are used. 

On the other hand, Chinese Mandarin Speech Recognition Cor-

us - Conversation consists of 10 0 0 speakers with 7130 speech ut-

erances. After Voice Activity Detection (VAD) procedure, only 943

peakers remain where out of the remaining speakers, 200 speak-

rs with 1380 utterances are selected as the testing set while the

est 743 speakers with 4400 utterances are selected as the training

et. 

Setting ω = 4 and k = 80 0 0 , the EER are as shown in Table 3 .

he results of the datasets suggest that the accuracy performance

s well preserved for Chinese Mandarin Speech Recognition Corpus
Before Lowest EER After 

Protection (%) 

Brute Force Attack 

Complexity (bits) 

Parallelizable ARM 

Analysis 

5.42 N.A. × ×

3.56 N.A. × ×

6.00 8 ∼ 12 a × ×

2.22 O (1) b × ×

3.43 c 40.24 
√ √ 

m with a probability of 2 −8 to 2 −12 in addition to the n -bit of security offered by 

ttacker and thus the security offered by encryption can be ignored. 

 differentiate 32 genuine points out of total 332 points is 
(

332 
32 

)
≈ 2 148 . 11 assuming 

ker can obtain the binary indices and key, thus the attacker can differentiate 32 

 users) to observe the robustness of the system and we obtained an EER of 7.32% 

ncreases with the increase of testing samples. This is not surprise as behavioral 

s to more noise from sample to sample as compared to physical biometrics e.g. 

 we can observe from the experiment. 
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Table 3 

Comparison of recognition performance for different databases. 

Database Baseline EER (%) 

before template 

protection 

Lowest EER (%) 

after template 

protection 

NIST SRE 2004 ∼ 2010 1.67 3.43 

Chinese Mandarin Speech Recognition 

Corpus – Digital String 

3.81 7.01 

Chinese Mandarin Speech Recognition 

Corpus – Conversation 

0.60 0.89 

–  

S

2  

p  

e

4

 

n  

t  

t  

t  

m  

o  

1  

t  

s  

t

 

m  

c  

b  

t  

k  

2  

s  

t

 

a  

a  

o  

i  

b  

a

P

 

c  

a  

t  

t

4

 

c  

b  

f  

t  

Fig. 6. Distribution of genuine, impostor and pseudo-impostor scores. 
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2 We generate 100 hashed codes for the first two samples of each user only to 

save the computational time of our experiments. 
Conversation and not large deterioration for Chinese Mandarin

peech Recognition Corpus – Digital String and NIST SRE 2004 ∼
010. Hence it is evident that the recognition performance of the

roposed scheme is dependent on the quality of the voice feature

xtracted. 

.4. Brute force attack 

As RBOMP projects the voice feature from linear space to ordi-

al space, it imposes strong non-invertible properties to the sys-

em as it is computationally difficult for the adversary to recover

he original feature value in linear space. From the distribution of

he feature value ranging from a minimum of −7.0 0 0 0 to a maxi-

um of +7.0 0 0 0, if the adversary wants to guess the correct value

f an i-vector with a length of 500, the guessing complexity is of

40 0 0 0 50 0 0 ≈ 2 8547 attempts. Even if the adversary wants to guess

he rank of the biometric feature instead of the feature value it-

elf, it would still require a guessing complexity of 500! ≈ 2 3768 at-

empts. 

The similarity score is computed based on the number of

atches between the query hashed code and the enrolled hashed

ode. If the similarity score exceeds the threshold, the user will

e deemed as the legitimate user. The threshold needed for a user

o gain access to the system is approximately 0.55. Hence, using

 = 50 0 0 , the adversary will require a minimum of 50 0 0 × 0 . 55 =
750 correct matches in order to gain illegitimate access to the

ystem. Thus, it requires an average time complexity of 2 2750 at-

empts to gain access to the recognition system. 

Consider the scenario that the adversary does not compromise

ny templates, since there are only two possible outcomes for S i ,

nd each binary matrix is independent and uniformly distributed,

ne can assume that S follows binomial distribution with probabil-

ty of 0.5. Let X denotes the number of correct guesses, the proba-

ility of obtaining 2750 or more correct guesses can be computed

s follows: 

 (X ≥ 2750) = P 

(
z ≥ 2750 − 2500 √ 

1250 

)
= P (z ≥ 7 . 071) 

= 2 

−40 . 24 (15) 

From Eq. (15) , the number of guesses required is of 2 40.24 . This

an be referred as the average time complexity required to gain

ccess to the system without compromising any templates. To fur-

her improve the security of the recognition system, one can limit

he number of login attempts. 

.5. Revocability analysis 

The revocability is evaluated by matching a particular hashed

ode with the other hashed codes generated from distinct random

inary orthogonal matrices. A total of 100 hashed codes is derived

rom an i-vector with 100 different binary orthogonal matrices and

he first hashed code is matched with the other hashed codes to
ompute the pseudo-impostor scores. The process is repeated us-

ng the same random token for different users to produce a total

f 99 × 2 × 2001 = 396 , 198 scores. 2 The distribution of the gen-

ine scores, impostor scores and the pseudo-impostor scores are

omputed using ω = 4 and k = 50 0 0 as shown in Fig. 6 . The differ-

nce in the number of scores computed for impostor and pseudo-

mpostor matching is because that in pseudo-impostor matching,

e only focus on matching the first generated hashed code with

ther generated hashed code for each i-vector. From Fig. 6 , we can

otice that the pseudo-impostor scores distribution resembles the

mpostor scores distribution. This vindicates that the newly gener-

ted hashed codes are indistinguishable to each another although

hey are generated from the same i-vector. Since the newly gen-

rated hashed code is uncorrelated to the old hashed code, this

ustifies that RBOMP hashing has fulfilled the revocability criteria. 

.6. Unlinkability analysis 

The unlinkability is evaluated by introducing the pseudo-

enuine scores. The pseudo-genuine score is computed by match-

ng the hashed codes generated from different i-vector of the same

ser with different binary orthogonal projection matrices. Simi-

ar to the genuine matching, the pseudo-genuine match produces

0,010 scores. The overlapping of pseudo-impostor scores (from

ection 4.4 ) and pseudo-genuine scores will indicate whether the

BOMP hashed codes generated from the same user or from an-

ther are indistinctive. The hashed codes are considered to be un-

inkable when it is difficult to differentiate them. As shown in

ig. 7 , there is a large overlapping between the pseudo-genuine

cores distribution and the pseudo-impostor scores distribution.

ence this suggests that the RBOMP hashed is able to fulfill the

nlinkability property. 

. Security analysis against Attack-Via-Record Multiplicity 

ARM) 

ARM refers to a privacy attack whereby the attacker uses mul-

iple compromised templates with or without the associated infor-

ation such as the parameters and algorithms to recover the origi-

al biometric template [46] . In our work, our main concern will be
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Fig. 7. Distribution of pseudo-genuine scores and pseudo-impostor scores. 
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on whether the adversary is able to guess the rank of the biomet-

ric feature. This is mainly due to the fact that guessing the rank of

the biometric feature is relatively easier as there are lesser possi-

bilities as compared to recovering the original feature value which
Fig. 8. Mapping of intermediate index, C
s in real number domain. If the random token Z i and the hashed

ode S are compromised, the adversary might be able to obtain the

ntermediate index, C i , by observing the number of prime factors

n Z i and S . This is because the value of S is computed by taking

he sum of the prime factors of Z i ∗ (C i + 2) . If one has the knowl-

dge of C i , he can reconstruct the order of the biometric feature.

ence for security purposes, it is important to set the range of

he window length, ω, in such a way that there will be at least

wo possible values of intermediate indices, C mapped to each S .

or instance, setting ω = 4 will allow C to have 4 possible values,

hich are 1, 2, 3 and 4. Therefore, the number of prime factors of

 + 2 will be 1, 2, 1 and 2 respectively. In this case, it can be seen

hat if S has the value of 1 then the possible value of C would be

ither 1 or 3. Meanwhile, if S has the value of 2 then the possi-

le value of C would be either 2 or 4. Here the value of Z i is not

aken into account since the value of Z i will not affect the analysis.

 clear graphical representation on the mapping of C to S is shown

n Fig. 8 using different setting of ω. 

As stated earlier, by observing the number of prime factors in

 i and S , the adversary might be able to recover the value of C + 2 .

owever, since there are two or more mappings to each value of S ,

i.e. many-to-one mapping), there will be an increase in complexity

or the adversary to obtain the correct value of C . Fig. 9 illustrates

ow the adversary might be able to recover the value of C . 

In our work, using ω = 4 and the minimum number of ran-

om binary matrices, k is set to 50 0 0, the naïve approach for

he adversary to recover the correct value of C would be 2 50 0 0 as
 , at ω = 4 and ω = 6 respectively. 
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Fig. 9. Guessing the index, C , at ω = 6 when both hashed code and random token are compromised. 
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or each round, there will be two possibilities of C . However, in

eal world scenario, the adversary would require much lesser than

 

50 0 0 attempts. Given the threshold of acceptance is 0.55 (as given

n Section 4.3 ), using false accept attack, the adversary only needs

o guess 2750 bits correctly. Since the probability of guessing a bit

orrectly is 0.5, one would expect the adversary to obtain 2500

orrect guesses (out of 50 0 0 guesses) on average. In other words,

he adversary would only require another 250 correct guesses to

ain access to the system. Given that the S i follows binomial dis-

ribution, the average time complexity to access the system will be

 

40.24 as stated in Section 4.3 . 

Given the worst case scenario that the adversary will always

btain the binary matrices he desired, the adversary may require

esser number of binary matrices to derive the order of the i-

ector. Fig. 10 shows how the adversary is able to obtain the order

f i-vector using the desired binary matrices. 

Using Fig. 10 as an example, given that the adversary has com-

romised one binary matrix and the number of prime factor of

(C + 2) is 1, the adversary will be able to recover the windowed

ector, X w 

1 , after applying the compromised binary matrix. By us-

ng the information of X w 

1 
and number of prime factor of (C + 2) ,

he adversary will conclude that the possible position for the

argest value among the four elements in X w 

1 will be at position

 or 3. In other words, the elements in position 1 or 3 are the can-

idates for the largest value of among these four elements. Next,

n order to determine the correct position of the largest value, he

ill need to compare with another windowed vector, X w 

2 
, where

 

w 

2 
can be obtained after applying a different binary matrix, or

ere we define as the desired binary matrix. The desired binary

atrix is determined in such a way that it will result in X w 

2 having

he same four elements as X w 

1 
and there will be only one common

lement between the candidates for the largest value of X w 

1 
and

 

w 

2 (i.e. the candidates for largest value of X w 

1 are {“a”, “b”} and

he candidates for largest value of X w 

2 
are {“d”, “a”}. The common

lement between this two sets is “a” and hence “a” can be deter-

ined as having largest value among these four elements). For any
ompromised binary matrix, there will be a total of 16 desired bi-

ary matrices that can be used to derive the largest value of the el-

ments. As the length of i-vector is 500, there will be 
(

500 
4 

)
≈ 2 31 . 26 

nique binary matrices. Under the situation where the adversary

ill always obtain the desired binary matrices, it will only require

im 

2 31 . 26 

50 0 0 ≈ 2 18 . 97 minimum number of templates to reconstruct

he full order of the i-vector. 

However, in real-world scenario the adversary will not always

btain the binary matrices that he wants. Hence if given the

nowledge of all the possible binary matrices that can be gener-

ted, or here we refer as the distinct binary matrices, the adversary

ill be able to find a suitable pairing of the distinct binary matri-

es he needs and derives the order of the i-vector. Therefore, the

ocus of the issue will be on how many attempts are required for

he adversary to obtain all the distinct binary matrices. This sce-

ario can be reduced to the coupon collector’s problem [47] . The

oupon collector’s problem is a probability problem where it de-

cribes the probability or the expected trials required to collect all

ifferent coupons from a finite set with replacement. In our case,

he distinct binary matrices that provide useful information can be

iewed as the coupon as the adversary are required to obtain all

ifferent useful binary matrices to reconstruct the ordering of i-

ector. As each of the binary matrices are uniformly generated, one

an say that each binary matrix is equally likely to be obtained at

ny time with a probability of 1 
m 

, where m is the total number

f distinct matrices, 2 31.26 . Let X i be the random variable for the

umber of trials required to complete the order of i-vector, and the

robability of obtaining a new distinct binary matrix will be m −i +1 
m 

here m is the total number of distinct matrices and i is with the

ange from [1, m ]. By the independence assumption, X i , i ∈ {1, m }, is

ndependent to each other and it follows a geometric distribution

ith the parameter, p = 

m −i +1 
m 

. The expected number of trials of

 particular distinct matrix, E ( X i ), can be computed using the for-

ula 1 
p and hence taking the sum of all the number of expected

rials of distinct matrices, the total expected number of trials, E ( X ),
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Fig. 10. Deriving the order of i-vector by comparing two desired windowed vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Expected number of trials needed to collect m distinct coupons. 
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needed to obtain m distinct matrices will be as follows: 

X = X 1 + X 2 + X 3 + . . . + X m −1 + X m 

(16)

E(X ) = E(X 1 ) + E(X 2 ) + E(X 3 ) + . . . + E(X m −1 ) + E(X m 

) 

= 

m 

m 

+ 

m 

m − 1 

+ 

m 

m − 2 

+ . . . + 

m 

2 

+ m 

= m 

m ∑ 

i =1 

1 

i 
(17)

Subsequently, using approximation formula, we obtain 

E(X ) = m ( log m + σ + 

1 

2 m 

+ O ( 
1 

m 

2 
)) (18)

where σ ≈ 0.5772156649 is the Euler-Mascheroni constant. From

Eq. (18) , given m = 2 31 . 26 , the expected number of trials needed

to obtain m distinct binary matrices is around 2 35.70 . Fig. 11 shows

the expected number of trials needed to collect m distinct binary

matrix. 

Hence, the expected number of templates required for the ad-

versary to obtain all the distinct coupons will be 2 35 . 70 

50 0 0 ≈ 2 23 . 41 .

However, it is impractical for an adversary to compromise 2 23.41 

templates. This can be referred as the data complexity required to

gain access to the system with probability of one where the time

complexity is negligible. 

To relax the data complexity and the time complexity, we con-

sider the scenario where the adversary only requires to compro-

mise a small number of templates to gain access to the system

with smaller time complexity. Given that the adversary is able to

compromise some number of templates, the adversary will be able

to deduce some correct number of S i , from the compromised tem-

plates and guess the remaining number of S i to gain access to

the system. Thus, the adversary can launch the false accept attack
i.e. described in Section 4.3 ) with lesser time complexity. Table 4

hows the relationship of the number of intermediate indices from

he templates with the corresponding time complexity required to

ccess to the system. 

In our work, the intermediate indices, C , used is 50 0 0 and the

hreshold to access the system is 0.55. In other words, the adver-

ary will require 2750 correct guesses to access the system. Hence

he remaining number of intermediate indices, C , required to ac-

ess the system will be referring to how many guesses are needed

n order to exceed the threshold (2750 correct guesses) after cer-

ain number of C s have been compromised. Assuming the remain-

ng number of intermediate indices required to access the system

ollows binomial distribution with the parameter, p = . 5 , the re-

aining number of intermediate indices required to guess is de-

oted as N and the number of correct guesses is denoted with X .
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Table 4 

Comparison between number of intermediate indices compromised versus time complexity required to access the system. 

Number of Intermediate Indices 

Compromised from Template 

Remaining Number of Intermediate 

Indices Required to Guess 

Remaining Number of Intermediate 

Indices Required to Acces the System 

Mean Standard 

Deviation 

Time Complexity 

(bits) 

100 4900 2650 2450 35.00 27.436 

200 4800 2550 2400 34.64 17.435 

300 4700 2450 2350 34.28 9.146 

400 4600 2350 2300 33.91 3.833 

500 4500 2250 2250 33.54 1 

600 4400 2150 2200 33.17 Negligible 

700 4300 2050 2150 32.79 Negligible 

800 4200 1950 2100 32.40 Negligible 

900 4100 1850 2050 32.02 Negligible 
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Fig. 12. Minimum number of templates required to compromise to access the sys- 

tem for different data sizes. 
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he time complexity is calculated by taking the reciprocal of the

robability of X greater than or equal to the remaining number of

ntermediate indices, C , required to access the system, with mean

f N × p and standard deviation of 
√ 

N × p × (1 − p) . From Table 4 ,

t can be seen that the time complexity is negligible if the num-

er of intermediate indices, C , compromised is at least 500. Hence

ne can expect the adversary will gain access to the system with

robability of one once he/she has compromised at least 500 in-

ermediate indices. 

In order to obtain the minimum number of templates required

o compromise at least 500 intermediate indices (as the time com-

lexity is negligible after 500 intermediate indices are compro-

ised), an experiment is carried out to determine the minimum

umber of templates required to compromise for different data

ize. Experiment is performed on a system consisting of 48GB RAM

unning on Ubuntu OS. The procedure of the experiment is as fol-

ows: 

1. An empty array is created consisting of m rows and 24

columns (as there are a total of 24 possible binary matrices

that will result in the windowed vector consisting the same

four elements), where m is the data size. 

2. Mersenne Twister pseudorandom number generator [48] is

used to generate a psuedorandom number and the occur-

rence of the random number is marked on the empty array. 

3. The 24 columns of the empty array are divided into three

groups consisting of eight columns each, namely P, Q and R

in such a way that a collision is only considered when there

is at least a pairing of occurrences of different groups of the

same row (i.e. elements in group Q and R can be referred

as the desired binary matrices for the elements in group P ).

As explained previously, for any compromised binary matrix,

there will be a total of 16 desired matrices that can be used

to derive the largest value of the four elements. Here, the

pseudorandom number symbolizes that a particular binary

matrix is compromised and along with a desired matrix (an-

other random number in a different group), the adversary

will be able to derive the largest value (referred as collision

in this experiment). 

4. Step 2 to Step 3 are repeated and number of runs are

recorded when the number of collisions reached 500. 

5. The experiment is repeated for five times to obtain the av-

erage number of runs needed to obtain 500 collisions. 

6. The minimum number of templates required to be compro-

mised is computed by dividing the number of runs with

50 0 0 (as a template consists of 50 0 0 runs). 

7. The experiment is repeated for different data sizes, d , and

the minimum number of templates needed is recorded. 

As we have m = 2 31 . 26 unique matrices (i.e. obtained from
500 

4 

)
), the minimum number of templates required to be compro-

ised is approximately 600 as shown in Fig. 12 . Thus, it is imprac-
ical to compromise 600 templates from different database systems

n the real world. 

. Conclusion 

In this paper, we have proposed a cancellable speech template

rotection scheme namely RBOMP hashing. Extensive experimental

esults and theoretical analysis have vindicated that RBOMP is able

o survive major security and privacy attacks at the same time able

o preserve the verification performance. We also have demon-

trated that the scheme is able to satisfy the evaluation criteria of

he biometric scheme, for instance cancellability and revocability,

nd the user is not required to keep the binary orthogonal matrix

r random token in secret. The scheme reaps the benefit of the

ast similarity search from WTA and able to achieve a strong non-

nvertible property with the addition of the non-invertible func-

ion, prime factorization and a user-specific random token. In addi-

ion to that, a detailed theoretical and experimental analysis on the

ecurity against ARM is well-demonstrated to justify that the pro-

osed scheme is able to resist against ARM practically. Lastly, we

elieve that the proposed method is not limited to voice biomet-

ic modality but other popular biometric modalities such as finger-

rint and face with real-value representation. 
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