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Audio-Based Piano Performance Evaluation for
Beginners With Convolutional Neural Network and

Attention Mechanism
Weiqing Wang , Jin Pan, Hua Yi, Zhanmei Song, and Ming Li , Senior Member, IEEE

Abstract—In this paper, we propose two different audio-based
piano performance evaluation systems for beginners. The first is a
sequential and modularized system, including three steps: Convo-
lutional Neural Network (CNN)-based acoustic feature extraction,
matching via dynamic time warping (DTW), and performance
score regression. The second system is an end-to-end system with
CNNs and the attention mechanism. It takes two acoustic feature
sequences as input and directly predicts a performance score. We
evaluate two proposed methods with our new open-access Yingcai
Piano Performance Evaluation Phase III Dataset (YCU-PPE-III)
that contains more than 2000 piano audio pieces recorded in mul-
tiple real test sessions. Experimental results show that the modu-
larized system achieves a mean absolute error (MAE) of 3.79 in
a 0-100-point range. Another end-to-end system also achieves an
MAE of 4.40, which shows that it is possible to train a robust
end-to-end piano performance evaluation system with only two
thousand audio pieces.

Index Terms—Attention, computer assisted piano learning,
convolutional neural network, dynamic time warping, piano
performance evaluation.

I. INTRODUCTION

L EARNING to play piano is essential for college students
in the preschool education department. They need to gain

a certain level of piano playing skills from courses before
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graduating and becoming teachers in kindergartens. However,
it is challenging for these students who are also piano begin-
ners to perform well in such studies. Beginners need frequent
practices, immediate and personalized feedback when learning
a melody in the classroom. Moreover, it is both time-consuming
and labor-intensive for the instructors to manually grade each
student’s performance in the mid-term and final exams which
are all live playing examinations. It is also nearly impossible to
manually check each student’s performance at the beginning of
each class for a big course roster. Hence, we propose a system
to automatically assess piano performances for beginners.

There are several works related to music performance assess-
ment and music tutoring. Russell [1] hypothesizes that there are
some commonalities between the musical performance assess-
ments of different instruments. They indicate that technique,
musical expression, and overall perception are the most impor-
tant factors in musical performance assessments. Since all of
these factors are relatively subjective, Vidwans et al. [2] provide
several objective measurements that can be used in automatic
music tutoring systems. They extract both musical score depen-
dent and independent features, then assess the performance using
regression with these features. Huanhuan et al. [3] introduce
a violin tutoring framework, which compares the transcription
results with the reference and provide the evaluation of the
performance. Deep neural network (DNN) is also a powerful tool
for music performance assessment. Pati et al. [4] propose two
DNNs for this task. One is a 1D convolutional neural network
(CNN) with pitch contours as the input features, while the other
is a 2D CNN with the input of Mel spectrograms. Finally, these
two CNNs are combined and jointly trained to obtain better
performance. For DNN based methods, a well-collected large
scale dataset is important for network training. Bozkurt et al. [5]
present a dataset for singing performance assessment. Along
with the dataset, they also propose a logistic regression model
that directly compares two fundamental frequency sequences to
assess the singing performance.

For the task of piano performance evaluation, the common
approach is also to compare the input sequence with a standard
template and then measure their similarity with some alignment
methods. Therefore, a good representation of the template and
input is very important.

Some of the previous research focused on the comparison be-
tween Musical Instrument Digital Interface (MIDI) sequences.
MIDI is a digital interface that carries event messages like
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notation, pitch, and velocity. Morita et al. [6] introduce a spline
curve to a piano performance evaluation system and achieved
0.65 average correlation coefficients between system-estimated
scores and expert-evaluated scores. Akinaga et al. [7] employed
a set of three regression curves for onset time, MIDI velocity,
and duration. They also apply Karhunen-Loeve expansion (KL
expansion) and a k-Nearest Neighbor (KNN) algorithm using
the MIDI sequence as input to predict the performance score.

In general, the MIDI stream automatically generated from
the musical score is a good template for comparison since the
musical score contains a more precise onset and duration than
the audio signal does. However, the audio piece performed by
an instructor may have additional information, such as timbre,
dynamics, emotion, or instructor’s personal style. Also, many
pianos can generate only audio signals rather than MIDI se-
quences, and MIDI data requires special capture equipment.

Since MIDI data requires some specific hardware, the audio
signal is a better choice as the template for the purpose of
being widely used, but an additional step is needed to transform
the audio signal into a MIDI-like sequence, called Automatic
Music Transcription (AMT) [8]–[10]. It can be considered that
the AMT system replaces the MIDI capture equipment. Many
related works focus on how to transcribe an audio signal to the
musical score like piano roll notations [11], which is a simplified
representation of the piano MIDI sequence.

There are several statistical methods for AMT tasks. Raphael
presented a hidden Markov model approach and a likelihood
model for piano music transcription [12]. Marolt presented
a connectionist approach to automatic transcription of poly-
phonic piano music and proposed a partial tracking method
based on a combination of an auditory model and adaptive
oscillator networks [13]. Other than piano-music transcription,
a probabilistic model for multiple-instrument automatic music
transcription is proposed in [14]. Non-negative matrix factor-
ization (NMF) has also been applied to AMT [15]. Others have
proposed an unsupervised AMT system for non-negative, sparse,
linear decomposition of power spectra [16], [17]. However,
this unsupervised decomposition usually reduces the transcrip-
tion’s correspondence among the pitches, resulting in difficulties
when interpreting the transcription results. The incorporation of
harmonic constraints in the training algorithm addresses these
problems [18], [19].

Deep learning methods have also been investigated for AMT
tasks. Bock et al. [20] presented a piano transcription system
using a recurrent neural network (RNN). Boulanger et al. [21]
applied a combination of an RNN and a restricted Boltzmann
machine (RBM) to generate a piano-roll. Convolutional neural
networks (CNNs) have also been used for AMT tasks [22]–[24].
Kelz et al. [22] proposed a convolutional neural network acoustic
model with an F1-score of 70.60% on the MAPS dataset [25].
Sigtia et al. [23] and Hawthorne et al. [24] proposed an end-
to-end hybrid neural network with a combined CNN and RNN
framework. Moreover, by integrating a separate onset detection
module with the acoustic model, the performance can be further
enhanced [24].

After extracting the piano transcription using AMT, we need
a robust audio alignment approach to measure the similarity

between the template and the input and estimate the performance
score. Ewert et al. [26] introduced several different audio fea-
tures and three types of cost matrix to improve the accuracy
of alignment and synchronization. Li et al. [27] proposed an
onset based method to align the audio and musical score. Since
the sustained note can cause the audio-score mismatch, they
reduce the sustained spectral components after detecting an on-
set, improving the alignment accuracy. Both of these alignment
methods only compare one recording with another. In [28], a
technique that aligns multiple audio segments is proposed, called
joint alignment.

Recently, many sequence-to-sequence models with attention
mechanisms are proposed for machine translation [29], speech
recognition [30], and image captioning [31]. Since it can ad-
dress the problems of long sequences, attention mechanism has
become an essential part of most sequence-to-sequence models
and transduction models [32]. Therefore, attention mechanism
is a good alignment method for many end-to-end models.

In this paper, we first propose a modularized piano perfor-
mance evaluation system, which can be considered as a se-
quential pipeline. This system contains three parts: high-level
acoustic feature extraction, alignment, and regression. Since
audio may suffer from various kinds of noise brought by the
recording process, we adopt the piano key posterior proba-
bilities (PKPP) [33] as the acoustic features generated by the
CNN-based acoustic model. PKPP is a frame-level acoustic
feature that can represent the probability of each piano key being
pressed in a frame. PKPP is also a relatively high-level feature
that describes a better approximation of what the performer
plays. After extracting the PKPP feature sequences, we align
these sequence pairs by the dynamic time warping (DTW) [34]
algorithm to measure the similarity between two audio pieces.
Then, we extract the global matching features from the DTW
results, which can represent the quality of a student’s perfor-
mance. Finally, a regression model is adopted to predict an
overall performance score using these global matching features.
Figure 1 shows the architecture of our proposed modularized
piano performance evaluation systems.

We also proposed an end-to-end neural network, which em-
ploys the attention mechanism to align the feature sequences.
The network contains two convolutional layers, followed by a
gated recurrent unit (GRU) [35] layer. Then we automatically
extract the attention map and obtain a weighted feature sequence.
Finally, two fully-connected layers take the mean of the feature
sequences as input to predict a performance score. Figure 5
shows the architecture of our proposed end-to-end deep neural
network-based approach. In addition to the network structure,
we also use a data augmentation method with pitch shifting and
time stretching similar to [36]. A correlation coefficient related
loss function and the transfer learning strategy are employed to
further enhance the performance.

This paper is an extended work of our conference paper [33].
The major new novelty of this journal paper is the end-to-end
neural network-based approach. Furthermore, the experimental
data is extended from 200 to over 2000 pieces. For the modu-
larized system, we refine both the CNN network structure and
global feature extractor to further enhance the performance. We
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Fig. 1. The architecture of the proposed modularized system.

TABLE I
THE DETAILS OF ALL SONGS. THE SCORES OF THESE SONGS CAN BE ACCESSED AT https://github.com/spwb/PianoScore.git

also add more experiments for the modularized system under
different evaluation setups.

The rest of our paper is organized as follows. Section 2
introduces the YCU-PPE-III dataset. Section 3 describes the
modularized system. Section 4 introduces the end-to-end frame-
work. Experimental results are provided in Section 5. Section 6
presents the conclusions.

II. DATASET DESCRIPTION

A. Dataset for Piano Performance Evaluation

To measure the performance of piano audio from actual
environments, we collected over 2000 audio files recorded in
different examination sessions at Shandong Yingcai University
in 2017 and 2018. From this collection, we constructed a dataset
called the Yingcai Piano Performance Evaluation phase III
dataset (YCU-PPE-III).1 We divided these recordings into 12
different categories according to the song title, and each category

1Please contact the corresponding author for accessing this dataset, available
for non-commercial academic research purposes.

contains hundreds of recordings. Because these song titles are
not in English, we have labeled each song with a number from
1 to 12 in this work, as shown in Table I.

The piano audio was recorded by connecting the line-out
or earphone interface on an electronic piano to the mic-in or
line-in interface on a smartphone. We use voice activity detection
(VAD) [37] to detect and cut non-audio segments at the begin-
ning and the end of each recording. In addition to this, we did not
remove other silent audio segments since these silent segments
provide information about rhythm and speed. For each song,
there are around 200 audio recordings played by students and an
audio template played by instructors. We manually convert the
musical scores to MIDI. All of the musical scores in Table I can
be found at Github (https://github.com/spwb/PianoScore.git).
These musical scores are relatively simple since all of these mu-
sical scores come from a textbook for beginners. The instructors
played an audio template for each song.

Additionally, three different instructors independently graded
each audio piece, making sure that the grade (range from 0
to 100) labels are relatively objective. We take the average
of the performance scores from these three annotators as the
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Fig. 2. The architecture of our acoustic model. This figure shows one of our three acoustic models, and the dimension of input and output is 229 and 88. The
setups of the other two models are 229-d input to 12-d output and 88-d input to 12-d output, respectively. These three acoustic models have similar architectures.

label of each recording. Since these audio files were recorded
in examination sessions and most of the performance scores
are passing (greater than 60), which means that most of the
students pass the examination according to the teacher’s criteria,
as Table I shows.

B. Dataset for Acoustic Model Training

We trained our proposed acoustic model using the MAPS
dataset [25], which consists of 270 pieces of piano sound and
corresponding MIDI annotations. In our experiment, we train
the acoustic model on the 210 synthesized recordings and test
it with 60 real recordings. In the training step, 180 synthesized
recordings are used for training, and the remaining recordings
are used for validation, which is the same as configuration 2
in [23].

III. THE MODULARIZED SYSTEM

In this section, we discuss the modularized system with three
submodules. This system can be considered as a sequential
pipeline, including acoustic model, alignment, and regression,
as shown in Figure 1.

A. Acoustic Model Design

1) Audio Preprocessing: We train the CNN-based acoustic
model using the MAPS dataset, as mentioned in Section 2. We
choose constant-Q transform as the input of our acoustic model.

A constant-Q transform (CQT) is a kind of time-frequency
representation proven to have better performance for musical
signal analysis than Fourier Transform by holding the ratio of
successive pitches at the constant value 2

1
12 [38]. Furthermore,

the CQT frequency axis is a linear note distribution that cor-
responds to most instruments, including the piano. Although

similar to the short-time Fourier transform, CQT requires fewer
frequency bins at high frequencies because of its exponential
frequency resolution. Given a minimum frequency f0 and the
number of bins per octave b, the constant-Q transform C[k] is
defined according to the following equations.

K =

⌈
b ∗ log2

(
fmax

f0

)⌉
(1)

Q = (2
1
b − 1)−1 (2)

where b determines the number of bins per octave, then:

Nk =

⌈
Q
fs
fk

⌉
(3)

where k < K, fk = (21/b)kf0 and fs =
1
T , then C[k] can be

calculated as:

C[k] =
1

Nk

∑
n<Nk

x[n]wNk
[n]e−2πQ/Nk (4)

Preprocessing is done using librosa [39]. After downsampling
the audio to 16 kHz, we apply CQT to each clip with 128 ms
frame size and 32 ms frameshift and produce a 229-d and 88-
d CQT spectrum. For 229-d spectrums, the bins per octave is
36, and for 88-d spectrums, the bins per octave is 12. Figure 2
shows one of our three acoustic models, which takes 229-d CQT
spectrum as input. These three acoustic models have the same
basic architecture and are only different in the dimension of
inputs and outputs. We also apply the z-score normalization to
each dimension of the CQT spectrum at a per audio piece level.
For CNN training, we set the window size to 11, with the outputs
corresponding to the targets of the central frame.

Since there are 88 keys on a piano, we convert the MIDI
annotation to an 88-d binary piano key vector as the target of the
acoustic model. We also generate a 12-d binary piano key vector
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TABLE II
ACOUSTIC MODEL PERFORMANCE ON THE MAPS DATASET COMPARED

WITH OTHER CNN MODELS

according to the pitch chroma. The pitch chroma means that
each octave contains 12 semitones, and the ratio of frequencies
between successive semitones is constant. The binary piano key
vector contains only 0 and 1, representing the status of piano
keys, whereas the output of the CNN-based acoustic model is
a posterior probability between 0 and 1. Note that the binary
vector contains more than one nonzero value as multiple keys
can be pressed at the same time.

2) Architecture: Convolutional neural networks have been
widely employed on signal processing tasks, and researchers
have demonstrated the effectiveness of CNNs with AMT
tasks [23]. The spectral context contains patterns that describe
chord, rhythm, and harmonic features. Our acoustic model is
based on CNN.

The acoustic model consists of two convolutional layers and
one fully-connected layer as depicted in Figure 2. The model
takes a context window of 11 frames as input and produces a
PKPP vector of the central frame as output. There are 64 kernels
in each convolutional layer, with a kernel size of 3× 3. The two
convolutional layers are both activated by a hyperbolic tangent
function. They are followed by a max-pooling layer of size2 × 2.
Then we use a fully connected layer to predict the PKPP, and the
output size is 12 or 88. A sigmoid function is set on the last layer
to scale the output in the range of 0 to 1. We set dropout with a
rate of 0.5 to each convolutional layer to avoid overfitting. We
have mentioned that there are three acoustic models which are
only different at the dimensions of inputs and outputs. The setups
of these acoustic models are 229-d input to 88-d output, 229-d
input to 12-d output, 88-d input to 12-d output, respectively, as
shown in Table II.

3) Training and Results: We trained the network with 1.5
million frames and tested with 50 000 frames. The output is a
posterior probability vector with values between 0 and 1, which
is directly used for the subsequent modeling. In order to evaluate
the accuracy of this acoustic model, we separately employ a
threshold of 0.5 to obtain a standard output containing only 0
and 1 as values just for calculating the F1-score.

Since the target is a sparse matrix and contains numerous
zeros, we measure the performance of the acoustic model with
F1-score. The F1-score is calculated as follows:

precision =
1

T

T∑
t=1

TP [t]

TP [t] + FP [t]
, (5)

recall =
1

T

T∑
t=1

TP [t]

TP [t] + FN [t]
, (6)

f1 score =
2× P ×R

P +R
, (7)

where T is the number of frames, P is the precision, R denotes
the recall, and TP , FP , and FN denote true positive, false
positive, and false negative, respectively.

Table II shows the results of three different acoustic model
configurations. For example, “88-d to 12-d” means that we use
the 88-d CQT spectrum as the input and set the network output
size to 12 according to pitch chroma. In addition to the potential
of extracting robust features, the acoustic model also diminishes
the dimension of the acoustic feature. This reduction in output
data accelerates the DTW algorithm considerably, making our
system more efficient.

Our network achieves 74% F1-score with 229-d input and
88-d output, as shown in Table II. Compared with the ConvNet
in [22] and the hybrid ConvNet in [23], our acoustic model
achieves comparable performance.

B. DTW Based Alignment

Since we assume that the piano performance is based on the
similarity between the input and template audio, we must first
measure that similarity. There are various methods to solve this
problem. One traditional approach uses hidden Markov models
and applies the Viterbi algorithm to calculate the most likely
path [40], [41].

In this paper, we employ Dynamic Time Warping (DTW) [34]
as our solution for alignment. DTW can measure the similarity
between two sequences that may vary in duration and speed, but
it is also difficult to be used on long sequences due to its space
complexity and quadratic time. To reduce both time and space
complexity, Salvador et al. [42] proposed a DTW algorithm in
linear time and space, called FastDTW.

Given two sequences S1 and S2, DTW defines a cost matrix
D ∈ RM×N , where M and N are the dimensions of S1 and
S2, respectively. We use cosine similarity as the cost measure
to compute the cost matrix D. The accumulated cost matrix
A ∈ RM×N can be derived from matrix D with the optimal
transition for node ni,j in A given by

Ai,j = min{Ax,y + di,j},
(x, y) ∈ {(i, j − 1), (i− 1, j), (i− 1, j − 1)}, (8)

where di,j is the cost of ni,j given by the cosine similarity
between frame i in S1 and frame j in S2.

After calculating the matrix A, we obtain a global alignment
cost at the final entry in the accumulated cost matrix. We also
extract an optimal warping by applying a backtracking algorithm
to matrix A, as shown in Figure 3.

C. Global Feature Extraction

The global cost of the accumulated cost matrix reveals the
overall similarity between the two sequences, but we are inter-
ested in more details. The optimal path further describes the
similarity. As Figure 3 shows, the warping path for the better
performance (i.e., receiving a higher grade according to the
annotators) is smoother and closer to the ideal diagonal path
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Fig. 3. Examples of DTW optimal paths. The DTW optimal path with 88 points (the grades annotated by instructor) is more towards a diagonal line.

Fig. 4. Some features extracted from path. The length of template is n and the
length of input is m.

than the lower-scoring one. Therefore, the optimal warping path
presents us with additional features, as shown in Figure 4. In our
system, motivated by [43], we extract several features:
∗ frame ratio. The ‘frame ratio’ reflects the overall differ-

ence between templates and inputs in terms of tempo and
speed. For a template sequence with n frames and an input
sequence with m frames, the frame ratio = |mn − 1|.

∗ average cost. The ‘average cost’ reflects the average differ-
ence between the template and input audio. The average dif-
ference describes the average distance between each frame
of input audio and the corresponding frame of template
audio. It is calculated as Cavg = C

l , where C is the overall
cost and l is the length of the warping path. Note that we
do not adopt the overall cost because the average cost has
more robustness against duration differences.

∗ ratio of skips in the path. The ‘number of skips’ shows
how many template frames are skipped in the input audio,
which occurs, for example, when the performer forgets part
of the piece. It is defined as the transition from nodei,j−1 to
nodei,j . The ratio of skips is calculated as ratio of skips =
number of skips

n .
∗ ratio of halts in the path. The term ‘halt’ is defined as

the transition from nodei−1,j to nodei,j , as it reflects a

pause in the performance at that point compared to the tem-
plate. The ratio of skips is calculated as ratio of halts =
number of halts

m .
∗ the standard deviation of the angle sequence. We first

calculate the φ = 2θ
π , where θ is the angle in each cell of

the grid. We can then extract both the mean and standard
deviation of this sequence. Only the standard deviation
contributes to our experiments.

∗ the standard deviation of the cost sequence along the
warping path. The warping path of the DTW result shows
how the frame-level cost change from one point to another.
We calculate the standard deviation of the frame-wise cost
sequence along the optimum alignment path.

∗ the ratio of the overlapping area between the idealized path
and the warping path. The idealized path is the diagonal of
the cost matrix. When the student plays slowly or misses
some notes, the slope of the alignment path can be different
from the slope of the optimal path. We can calculate the
ratio of the overlapping area between these two paths and
the total area of the cost matrix.

We believe these seven features can represent the overall
performance of each template-input audio pair, but they also
may contain some redundant information. For example, the 3 rd
and 4th feature may account for the general difference in the
length between the performance and the reference recording.
We use the frame ratio to compensate for this factor since the
frame ratio can capture the general length difference. These joint
multi-dimensional feature vectors can become more informative
to capture the cases when the performer forgets part of the piece
or makes a pause in the performance.

D. Song-Dependent and Song-Independent Modeling

Since there are 12 songs in our dataset, both song-dependent
and song-independent evaluations are necessary. For the song-
dependent model, we employ the leave-one-out (LOO) cross-
validation for the modularized system on each song. However,
these evaluation systems have limitations because each song
requires a separate regression model, although the acoustic
feature extraction, DTW alignment and global feature extraction
steps are the same. To obtain a more robust and simple system
which can be tested with unseen songs, we utilize a strategy
called leave-one-song-out (LOSO) cross-validation, or song-
independent method. This method requires normalized features
for all songs. We globally normalize the features using min-max
normalization where the min and max values are calculated by
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all training data. Then, for a specific song, we test only with
data from that song while training the evaluation model with
data from all other songs.

For song-dependent modeling, we employ linear least-squares
minimization to predict the estimated performance score. For
the song-independent modeling, we employ the support vector
machine (SVM) as our regression method since we have more
samples by pooling data from multiple songs together.

E. Template Selection

There are two kinds of templates in our dataset: audio template
and MIDI template. The audio templates are performed by some
instructors who also grade students’ recordings. For each audio
template, we extract the CQT spectrum and PKPP features.
In order to consider MIDI as templates, we first transcribe
all picture-format scores to MusicXML, a universal format for
describing musical information. Then MIDI files are generated
from MusicXML using the MuseScore2 software. For the MIDI
files, we extract the MIDI event and produce binary piano key
(BPK) vectors as the template. Here the BPK is in frame level,
and the frame size is 64 ms, which is the same as the window size
of the acoustic model. We use these BPK features as the template
in the DTW matching as a contrastive system and compare it with
PKPP features based ones.

IV. THE END-TO-END FRAMEWORK

In this section, we propose an end-to-end deep neural network
framework with CNN and the attention mechanism. Similar ar-
chitecture has been used for machine translation [44] and speaker
verification [45], and both of these networks work well on short
sequences. However, the CQT sequences of the piano audio
recordings usually contain thousands of frames, and the original
architecture cannot handle such long sequences. Moreover, since
our dataset contains only about 2000 audio pieces, we need a
robust data augmentation method to expand the size of training
samples and reduce overfitting. In this section, we introduce our
proposed end-to-end model and its detailed implementations.

A. Data Augmentation and Preprocessing

Due to the size limitation of our dataset, we cannot directly
train the model with only about 2000 audio pieces. Considering
that the audio sequences may be too long for the attention
mechanism to learn the internal information, we can accelerate
the audio signals from both the template and the input by several
times to reduce the length. However, if the speed-up audio is too
short after acceleration, it will lose much temporal-level detailed
information. We find that the performance does not change a
great deal if the audio pieces are accelerated by less than five
times. By changing the speed of the original audio piece, we
can obtain more data for training. Another approach is that we
can change the pitch of the audio pieces by raising or lowering
the pitch/key. Note that the two audio pieces to be compared
should be in the same condition, which means that they should
have the same speed-up and pitch-shift levels. Therefore, we can

Fig. 5. Architecture of the proposed end-to-end system.

believe that speed-up and pitch-shift do not change the similarity
between the template and the input audio pieces.

We use the 88-d CQT spectrum as the input of this neural
network. Each audio feature sequence is first normalized to zero-
mean along the time axis and zero-padded in the end to maintain
a fixed length in a batch. Since the performance score is in the
range of 0 to 100, we can directly divide the score by 100 as the
normalized target.

B. Architecture

Figure 5 shows the architecture of our end-to-end system.
The kernel size of each conv layer is 5× 5, followed by a 2× 5
max-pooling layer. The number of channels is 4 and 16 for each
conv layer. The hidden size and the number of layers of GRU
are 128 and 2, respectively. Then we can calculate the attention
map and the mean of the weighted feature maps. The size of two
fully-connected layers is 512 and 128, respectively.

Two convolutional layers and a gated recurrent unit (GRU)
extract the frame-level hidden state h, and then calculate the
attention map. We multiply the attention map by the student’s
hidden state, producing a weighted feature. Then we average
both students’ weighted features and the instructor’s hidden state
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Fig. 6. The R-squared values of modularized systems with LOO and LOSO
configurations.

along the time axis and concatenate these two features. Finally, a
fully-connected layer with an ReLU and a fully-connected layer
with a sigmoid function predict a score between 0 and 1.

Although we accelerate the audio and reduce the length,
the input feature sequences are still too long for the attention
calculation to process. After zero-padding, the features contains
thousands of frames. Therefore, we employ two conv layers with
a large pooling size to reduce the dimensions of the features.
Second, the acoustic features are zero-padded since the matrix
operation requires the same dimension in each batch. If the
original features are long, there are only a few zeros at the end
of the features. If the original features are short, many zeros will
change the mean value of these features, and the neural network
cannot predict an accurate score. To solve this problem, we use
a mask matrix to ignore all zeros. Then we can calculate the sum
of the features and divide them by their original length.

C. Attention Mechanism

We employ the dot product attention described in [29].
Assume that the student’s acoustic feature sequence is
{s1, . . ., sm} with m frames and instructor’s acoustic feature
sequence is {u1, . . .,un} with n frames.

Then, GRU extracts hi, which is the student’s hidden state
at position i, and h̄t, which is the instructor’s hidden state at
position t. All hidden states has the same dimension, which is
the hidden size. The alignment scores can be calculated using
softmax:

at,i =
exp(score(hi, h̄t))∑m
i′ exp(score(hi′ , h̄t))

(9)

where the ‘score’ function is dot product between hi and h̄t.
Hence, at,i is a scalar, and all at,i forms an attention map M
with size of n×m, where Mt,i = at,i, as shown in Figure 7.

Finally, the weighted context vector ct at position t can be
calculated as:

ct = MtH
T (10)

where Mt = [at,1, . . ., at,m], and H = [h1, . . .,hm]. By aver-
aging both ct and h̄t over all time steps t, we can obtain two

fixed-length context vectors which contain the information of
the audio pieces. Then we can concatenate these two vectors
and get a joint vector as the input of the fully-connected layer.

D. Training, Fine-Tuning, and Testing

As Table I shows, our dataset contains 12 songs. For each
particular test song, we first pre-train the model on 11 songs
(song independent modeling). Once the model converges, we
will fine-tune and test the model on the remaining test song.
Therefore, there will be 12 models if we pick different songs as
the fine-tuning dataset (song dependent modeling).

1) Pre-Training and Testing: Since we have to train 12 dif-
ferent models, each time we select 11 songs as the pre-training
dataset. For the 11 songs, we split the original data into a training
set and a validation set, and then perform data augmentation on
both the training set and the validation set. But the dataset is still
unbalanced after augmentation. During the training process, we
select balanced data in each batch to avoid overfitting.

2) Fine-Tuning and Testing: After the pre-trained model con-
verges on the 11 songs, we can fine-tune and test this model on
data from the remaining test song using 2-fold cross-validation.
We equally split the original data of this test song into a training
set and a testing set, and perform data augmentation for each
audio recording. Therefore we can make sure that the augmented
audio pieces derived from the same original pieces are in only
one of the two sets. Then we fine-tune the pre-trained model
using this test song’s training set with a small learning rate.

E. Loss Function

We first employ the mean square error (MSE) loss during the
training process, but the output always converges to the mean
performance score of the entire dataset even though this dataset
is balanced. To solve this problem, we use a Concordance Cor-
relation Coefficient loss [46], [47] Lcoef to constrain the output.
The Concordance Correlation Coefficient can be calculated as:

coef =
2ρσxσy

σ2
x + σ2

y + (μx − μy)2
(11)

where μx and μy are the means for the output and target, σ2
x and

σ2
y are the corresponding variances, and ρ is the correlation co-

efficient between output and target. To maximize the coefficient,
we can minimize the loss Lcoef :

Lcoef = 1− coef (12)

The total loss L should be:

L = Lmse + λLcoef (13)

where the Lmse is the MSE loss, and the λ is a constant.

V. EXPERIMENTAL RESULTS

A. System Setup

1) The Modularized System: For the modularized system,
the PKPP feature sequences are extracted at first. The acoustic
model performed 88-d CQT to 12-d PKPP, 229-d CQT to 12-d
PKPP, and 229-d CQT to 88-d PKPP, respectively. We compare
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Fig. 7. Examples of attention maps. The attention map with a higher score also shows a better aligned path. The data for attention map is same as the data for
DTW example in Figure 3.

the modularized methods with several baseline systems, which
have the same basic architectures as the modularized system
without the CNN-based acoustic model. The baseline system
takes 88-d and 229-d CQT spectrum as input. After the alignment
and the global feature extraction, we applied both leave-one-out
(LOO) cross-validation and leave-one-song-out (LOSO) cross-
validation in our experiments.

For LOO setup, we apply the linear regression, which can be
easily solved by pseudo inverse ŵ = (XTX)−1XT y, where ŵ
is the weight, X = [x1, x2, . . ., x7, 1] is the feature matrix, and
y is the performance score vector. For LOSO setup, we employ
SVM as the regressor with rbf kernel using sklearn scikit-learn.
The regularization parameter is 10, and the kernel coefficient
(gamma) is set to “auto”.

2) The End-to-End System: In the end-to-end framework, for
each test song, we first pick the other 11 songs for pre-training
and split these audio pieces into the training set and validation
set. Then we can perform data augmentation on both the training
set and the validation set. All of the audio pieces are accelerated
by 2, 2.5, 3, 3.5, 4, and 4.5 times. Then we shift the pitch of the
audio by raising or lowering 1∼8 semitones using the function
pitch_shift in librosa [39]. After the data augmentation, we can
obtain over 200000 audio pieces, which is 96 times more than
the original data. We extract the 88-d CQT spectrum and perform
z-score normalization along the time axis. Each feature is zero-
padded to a fixed length, and two corresponding features should
have the same speed and same pitch. We train the model for 200
epochs with a batch size of 96. The learning rate of stochastic
gradient descent (SGD) optimization is 0.01, with a momentum
of 0.9. The learning rate is divided by 10 every 50 epochs. The
λ of the loss function mentioned in Section IV is set to 0.01.
The validation data is 10 percent of the original data, and it is
randomly selected. In addition, we set a dropout at the end of
the penultimate fully-connected layer to reduce overfitting.

After obtaining 12 pre-trained models, we can fine-tune each
model with 2-fold cross-validation on the data of the remaining
test song. The fine-tuning process is similar to the pre-training
process. The only difference is that we only fine-tune the model
for 50 epochs, and the learning rate is set to 0.0001.

During the testing process, we first predict the score for all
data in the testing set of the test song. Since an original audio
piece can be augmented to several pieces with different speeds
and pitches, we will calculate the mean score of these audio
pieces as the final score of the original audio.

B. Results and Discussions

1) The Modularized System: Table III shows the mean abso-
lute error (MAE) and standard deviation (STD) of the baseline
system compared to the modularized system. The input to the
baseline system is 88-d CQT and 229-d CQT. Because of the dif-
ferent inputs and outputs of the acoustic model, our modularized
system has three different setups. The results demonstrate that
the proposed modularized systems are better than the baseline
system. Table III also shows the results when given chroma as an
acoustic feature as a label, which does not match the performance
of the baseline and the modularized systems. Table VII shows
the correlation coefficients (CCs) of all systems. Table III and
Table VII show that the CNN based acoustic model can improve
the performance of the baselines system via the proposed PKPP
features.

In Table VII, we also include human performance (one vs.
mean), human performance (one vs. another), and 229-88 PKPP
vs. one human annotator, these three columns. The inter-rater
agreement or disagreement is described as the correlation coef-
ficient of human performance (one vs. another). From the results,
we can observe that, the inter-rater agreement between any two
annotators is relatively lower than the inter-rater agreement be-
tween one annotator and our 229-88 PKPP modularized system,
which certainly is not a fair comparison since the system is
being trained on the mean-ratings of these annotators. However,
in this song dependent LOO setup, the output of the proposed
system is able to regress to the mean of the individual human
annotators which is shown in Table VII by the low MAE and
the high correlation scores with the average. Figure 6 shows
the R-squared values of each system with LOO and LOSO
configuration, where we can find that the performance of the
PKPP-based system is better than the CQT-based system.

Table V presents the MAE and STD of the song independent
LOSO method. Each time we use the audio pieces from 11
songs as training data and test on the remaining song. The song
ID indicates which song is selected as testing data. This setup
does not require song dependent training data and also achieves
promising performance.

To check if the improvement of the modularized system is
statistically significant, we perform a t-test between the result
of the baseline system and the modularized system by using
the ttest_ind function in scipy [48]. The null hypothesis is that
the MAE of the modularized system is not smaller than the
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TABLE III
MAE AND STD OF THE MODULARIZED SYSTEM (AUDIO AS TEMPLATE, SONG DEPENDENT (LOO))

TABLE IV
MAE AND STD OF THE MODULARIZED SYSTEM (BPK AS TEMPLATE AND

PKPP AS INPUT, SONG DEPENDENT (LOO))

MAE of the baseline system. Table VIII shows that the p-value
of this t-test is smaller than 0.001, which indicates that the
aforementioned null hypothesis is beaten and our modularized
method achieves significant performance improvement against
the baseline.

Table IV and VI present the MAE results of the systems
using the musical scores as the templates. The dimension of
BPK features is the same as the dimension of PKPP features.
Compared with the baseline and the modularized systems taking
audio recordings as templates, the musical score method does
not achieve better performance for measuring the similarities.
Instructors may have different playing styles, such as temporal
variations or dynamics, which are not reflected in the musical
score. Furthermore, PKPP sequences are the posterior probabil-
ities of whether piano keys are pressed down, whereas the BPK
sequences only contain 0 and 1. Therefore, we intend to use
PKPP features from audio rather than the musical score as the
template.

Table IX shows a comparison between our modularized sys-
tem and the system in our previous conference paper [33].
Here we designed more comprehensive global matching features
based on the DTW alignment and the CQT/PKPP features (7
dimensions in this work vs. 3 dimensions in [33]). Results in
Table IX show that adding new similarity measurement features
would help improve the performance.

C. Results and Discussions

1) The Modularized System: Figure 11 shows an audio piece
whose annotated performance score is 88, but our systems
predict that the performance score is around 46. After checking
the DTW warping path and the song piece, we found that this
student played the piece twice. As Figure 11 shows, the DTW
algorithm can only align the second part of the student’s audio
with the instructor’s audio. Therefore, our system cannot give
the student a high score since we assume that the students
only played this song once. However, the student played this
song well, so the instructor gave a high score. The right part
of the DTW warping path can also demonstrate his excellent
performance.

2) The End-to-End Model: Table XI shows the MAE and
STD of the end-to-end system. Each time we select one song
as the fine-tuning and test set and the rest 11 songs as the
pre-training set. We first train the model on the training part of
the pre-training set and evaluate on the validation part of this set.
There is not much difference between these 12 models. However,
if we directly test the pre-trained model on the unseen test set,
the performance is unsatisfactory compared with the LOSO
configuration. The results of the model before the fine-tuning
show that the end-to-end system may not generalize well on
unseen testing data.

Therefore, we fine-tune the model with 2-fold cross-
validation on data from the test song. Results show that all
of the MAE improved after fine-tuning. Compared with the
results of LOO in table III, the MAE of the end-to-end model
is higher. It may be inappropriate to directly compare these two
songs dependent systems, as the modularized system with LOO
configuration did not use information from other songs, and
the end-to-end system did not use all the information from the
testing song (only half). However, the results of the modularized
systems can provide a benchmark reference for us when we
evaluate the end-to-end system, which shows that it is possible
to train an end-to-end performance evaluation model with very
limited data.

We also test the modularized system on the augmented dataset
and find that no matter how we change the speed and pitch,
the MAE of the modularized system is always greater than the
MAE of the end-to-end model. Therefore, we believe that the
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TABLE V
MAE AND STD OF THE MODULARIZED SYSTEM (AUDIO AS TEMPLATE, SONG INDEPENDENT (LOSO))

TABLE VI
MAE AND STD OF THE MODULARIZED SYSTEM (BPK AS TEMPLATE AND

PKPP AS INPUT, SONG INDEPENDENT (LOSO))

end-to-end model has much potential to outperform the modu-
larized system if we collect much more data in the future.

Figure 7 shows three attention maps during the fine-tuning
process. Similar to the DTW alignment map, the attention map
with a higher performance score also shows a better aligned
path.

D. Discussion About the Role of the Alignment Path

Figure 3 and 7 show that the alignment path plays a very
important role for the final score prediction. The alignment path
of a high-performance recording is almost diagonal, whereas the
alignment path of a recording with a lower performance score
might have an irregular curve.

To investigate the influence of the alignment path on the final
score prediction, we manually label the alignment paths of some
audio pieces in our dataset. For convenience, we only label the
12th song, including about 200 audio pieces. We first convert
these audio pieces to spectrograms and find the notes based on
the amplitude. The onset can be easily labeled, but it is not easy
to label the offset since the note may last for an unexpectedly
long time. Hence, we can only estimate the offset intuitively.
Figure 8 shows an example of the manually labeled alignment
path. More alignment paths can be found at GitHub (https://
github.com/spwb/PianoScore.git). Most of the manually labeled

Fig. 8. An example of manually labeled alignment path.

paths are very similar to our DTW estimated path in shape,
which means that the DTW is quite effective for note alignment.
Table X shows the average time deviation between the DTW
estimated path and the corresponding manually aligned path for
all 200 recordings of the 12th song with different systems under
the LOO configuration. From the results we can observe that,
there are only moderate differences between those systems on
the accuracy of alignment.

Then we extract the global matching features from these
ground-truth and DTW estimated alignment paths, which is the
same as mentioned in Section 3. There are two types of global
matching features. One category is the path feature, including
the frame ratio, skip, halt, angle, and overlapping area. The other
group is the cost feature, including the average cost and standard
deviation of the cost sequence.

For path features, we can directly extract them from the
alignment path. For cost features, we extract them from the DTW
cost matrix with the ground-truth or DTW-estimated alignment
path. Then we can evaluate how the alignment path affects
the final score prediction using both the path features and cost
features. The results of different feature combinations with LOO
configuration are shown in Figure 9. We can observe that the
ground-truth paths show better performance than the estimated
paths with only path features. Besides, the ground-truth path
based path features and cost features together achieve the best
performance. Moreover, we can find that a good alignment path
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TABLE VII
THE CORRELATION COEFFICIENTS (CC) OF THE DIFFERENT SYSTEMS WITH LOO AND LOSO CONFIGURATIONS

TABLE VIII
THE P-VALUE OF A ONE-TAILED T TEST WITH A NULL HYPOTHESIS THAT THE

MAE OF THE MODULARIZED SYSTEM IS NOT SMALLER THAN THE

MAE OF THE BASELINE SYSTEM

TABLE IX
MAE AND STD OF THE PROPOSED MODULARIZED SYSTEM AND THE METHOD

USED IN [33] UNDER THE LOO CONFIGURATIONS

TABLE X
AVERAGE TIME DEVIATION (S) BETWEEN THE DTW ESTIMATED PATH AND

THE MANUALLY ALIGNED PATH FOR THE 12th SONG WITH DIFFERENT

SYSTEMS UNDER THE LOO CONFIGURATION

TABLE XI
MAE AND STD OF THE END-TO-END SYSTEM

is very important, because it not only generate path-based global
matching features, but also provide a better cost along this path
and produce a better performance. In addition, we can observe
that the performance of cost features is sensitive to the quality

Fig. 9. R-squared values of different feature combinations with LOO configu-
ration. The estimated path-based and estimated cost-based features are extracted
from the DTW cost matrix with DTW alignment path.

Fig. 10. The R-squared values of the manually labeled path with random
perturbations. We also add an orange line to show result of the DTW path
without random perturbation for comparison.

of the alignment path, as the PKPP features show a much better
performance than the CQT features with the same ground-truth
path, but it is not the case when the estimated DTW path is
adopted. Therefore, our future works will focus on other ad-
vanced methods to further improve the accuracy of the estimated
alignment path. In this work, although the DTW estimated path
is not as good as the manually labeled one, combining both
path-based and cost-based features together achieves significant
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Fig. 11. An outlier whose annotated performance score is 88, but the predicted score is 46. The reason is that we assume that all students completely played a
song once, but this student played this song twice.

improvement which show that they are complementary to each
other.

To further investigate the influence of the alignment path qual-
ity to the final score prediction, we add some random perturba-
tions to the manually labeled paths to evaluate the performance
with path features only. We set a fixed small probability p such
that for each point in an alignment path, the next n points will be
replaced with the worst path with a probability of p = 0.05. This
probability is quite large since we check this random perturba-
tion for each point in the alignment path and each alignment path
contains thousands of points. As Figure 10 shows, with average
time deviation increases (as n increases), the final R-squared
values decrease rapidly even with a small average time deviation.
This means that the overall regression performance is quite
sensitive to the quality of alignment. Furthermore, although our
DTW based alignment also achieves around 0.13 average time
deviation, the corresponding R-squared values is much higher
than the one using the ground-truth alignment with random
perturbation.

VI. CONCLUSION

In this paper, we present a modularized system and an end-
to-end framework for the piano performance assessment task.
For the modularized system, we use a CNN acoustic model to
extract the PKPP, align the PKPP sequences using the DTW
algorithm, extract the global similarity features, and finally pre-
dict a performance score. Our acoustic model extracts a robust

PKPP vector for each frame, replacing the relatively low-level
CQT spectrum feature, and applying the DTW algorithm to
produce an accumulated matrix and a warping path. For the
end-to-end model, we use an end-to-end attention-based deep
neural network approach to predict the performance score. We
proposed a speed-up and pitch-shift data augmentation strategy,
which is proved to be useful in our experiments. We first train the
model on 11 songs, then fine-tune the model on the remaining
unseen test song. After fine-tuning, the performance of the
end-to-end method is comparable to the modularized system
under the song-dependent setup.

One of our significant contributions is that we propose a robust
acoustic model and apply this model to the baseline system.
Our results show that our modularized system with the acoustic
model provides better performance than the baseline system. We
also explore the leave-one-song-out cross-validation method in
our song-independent system. Another contribution is that we
propose an end-to-end model with a well-designed training strat-
egy. Besides, we employ a data augmentation method, which is
also important for this evaluation task since we only have very
limited data. We believe that the end-to-end method has good
potential in the future when large scale training data is available.

Limitations of our system do exist. The quality of the align-
ment path is crucial for both path features and cost features in
the modularized system. The current DTW estimated path is
not accurate enough and our future works will focus on other
advanced methods to further improve the accuracy of the esti-
mated alignment path. Moreover, we plan to manually annotate
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the ground truth alignment paths for all the recordings, and study
the relation and contribution of alignment path accuracy and
different selection of cost features towards the overall system
performance.

Another limitation is that the end-to-end model cannot learn
song-independent information well. Without fine-tuning, the
model does not give satisfactory results. In the future, we
plan to collect more data and propose a more robust deep
neural network-based approach to solve the problem of song-
independent prediction.
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