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Abstract

In this paper, we propose robust features for the problem of

voice activity detection (VAD). In particular, we extend the

long term signal variability (LTSV) feature to accommodate

multiple spectral bands. The motivation of the multi-band ap-

proach stems from the non-uniform frequency scale of speech

phonemes and noise characteristics. Our analysis shows that

the multi-band approach offers advantages over the single band

LTSV for voice activity detection. In terms of classification

accuracy, we show 0.3%-61.2% relative improvement over the

best accuracy of the baselines considered for 7 out 8 different

noisy channels. Experimental results, and error analysis, are

reported on the DARPA RATS corpora of noisy speech.

Index Terms: noisy speech data, voice activity detection, ro-

bust feature extraction

1. Introduction

Voice activity detection (VAD) is the task of classifying an

acoustic signal stream into speech and non-speech segments.

We define a speech segment as a part of the input signal that

contains the speech of interest, regardless of the language that

is used, possibly along with some environment or transmission

channel noise. Non-speech segments are the signal segments

containing noise but where the target speech is not present.

Manual or automatic speech segment boundaries are necessary

for many speech processing systems. In large-scale or real-

time systems, it is neither economical nor feasible to employ

human labor (including crowd-sourcing techniques) to obtain

the speech boundaries as a key first step. Thus, the fundamental

nature of the problem has positioned VAD as a crucial prepro-

cessing tool to a wide range of speech applications, including

automatic speech recognition, language identification, spoken

dialog systems and emotion recognition.

Due to the critical role of VAD in numerous applications,

researchers have focused on the problem since the early days of

speech processing. While some VAD approaches have shown

robust results using advanced back-end techniques and multiple

system fusion [1], the nature of VAD and diversity of environ-

mental sounds suggests the need of robust VAD front-ends. Var-

ious signal features have been proposed for separating speech

and non-speech segments in the literature. Taking into account

short-term information ranging from 10ms to 40ms, various re-

searchers [2, 3, 4] have proposed energy-based features. In ad-

dition to energy features, researchers have used zero-crossing

rate [5], wavelet-based features [6], correlation coefficients [7]

and negentropy [8, 9] which has been shown to perform well

in low SNR environments. Other works have used long-term

features in the range of 50-100ms [10] and above 150ms [11].

Long-term features have been shown to perform well on noisy

speech conditions under a variety of environmental noises. No-

tably, they offer theoretical advantages for stationary noise [11]

and capture information that short-term features lack.

The long-term features proposed in the past focus on

extracting information from a two-dimensional (2-D) time-

frequency window. Limiting the extracted feature information

from 2-D spectro-temporal windows fails to capture some use-

ful auditory spectrum properties of speech. It is well known

that the human auditory system utilizes a multi-resolution fre-

quency analysis with non-linear frequency tiling reflected in the

Mel-scale [12] representation of audio signals. Mel-scale pro-

vides an empirical frequency resolution that approximates the

frequency resolution of the human auditory system. Inspired

by this property of the human auditory system and the fact that

the discrimination of various noise types can be enhanced at

certain different frequency levels, we expand the LTSV feature

proposed in [11] to use multiple spectral resolution.

We compare the proposed approach with two baselines:

the MFCC [13] features and the single-band (1-band) long-

term signal variability (LTSV) [11] and show significant perfor-

mance gains. Unlike [14] where standard MFCC features have

been used for this task and experimented with various back-

end systems, we use a fixed back-end and focus only on com-

paring features for the VAD task using a K-Nearest Neighbor

(K-NN) [15] classifier. We perform our experiments on the

DARPA RATS data [16] for which an off-line batch processing

is required.

2. Proposed VAD Features

In this section, we describe the proposed multi-band extension

of the LTSV feature introduced in [11]. LTSV has been shown

to have good discriminative properties for the VAD task es-

pecially in high SNR noise conditions. We try to exploit this

property by capturing dynamic information of various spectral

bands. For example, impulsive noise which degrades the perfor-

mance of LTSV features is often limited to certain band regions

in the spectrum. The aim of this work is to investigate the use
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of a multi-band approach to capture speech variability across

different bands. Also, speech variability might be exemplified

in different regions for different phonemes. Thus, a multi-band

approach could have advantages over the 1-band LTSV.

2.1. Frequency smoothing

The low pass filtering process is important for the LTSV family

of features because it removes the high frequency noise on the

spectrogram. Also, it was shown that it improves robustness in

stationary noise [11], such as white noise.

Let S(f̂ , j) represent the spectrogram, where f̂ is the fre-

quency bin of interest and j is jth frame. As in [11], we smooth

S using a simple moving average of window of size M (as-

sumed to contain even number of samples for our notation) as

follows:

SM

(
f̂ , j

)
=

1

M

j+M

2
−1∑

k=j−M

2

S
(
f̂ , k

)
(1)

2.2. Multi-Band LTSV

In order to define multiple bands, we need a parameterization to

set the warping of the spectral bands. For this purpose, we use

the warping function from the warped discrete Fourier trans-

form [17] which is defined as:

FW (f, α) =
1

π
arctan

(
1 + α

1− α
tan(2πf)

)
(2)

where f represents the frequency to be warped starting from

uniform bands and α is the warping factor and takes values in

the range [−1, 1]. A warping factor of -1 implies a high reso-

lution for high frequencies and, of 1 implies a high resolution

for low frequencies. A warping factor of 0 results in uniform

bands.

To define the multi-resolution LTSV, we first define the nor-

malized spectrogram across time over an analysis window of R

frames as:

SR

(
f̂ , j

)
=

SM

(
f̂ , j

)
∑j+R

2
−1

k=j−R

2

SM

(
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) (3)

Hence, we define the multi-band LTSV feature of window

size R and warping factor α at the ith frequency band and jth

frame as:

Li(α,R, j) = Vf̂∈Fi

⎛
⎜⎝

j+R

2
−1∑

k=j−R

2

SR

(
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)
log

(
SR

(
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V is the variance function defined as:

Vf∈F (a(f)) = 1
|F |

∑
f∈F

(
a(f)− 1

|F |

∑
f∈F a(f)

)2

where |F | is the cardinality of set F . The set Fi includes the

frequencies FW (f, α) for f ∈
[
Ns∗(i−1)

2N
· · · Ns∗i

2N

]
, N is the

number of bands to be included and Ns denotes the sampling

frequency.

3. Experimental setup

To compare across the various features, we used a K-NN clas-

sifier for all the experiments. We used 70 hours of data from the

RATS1 corpus (dev1 v2 set) for training and 11 hours for test-

ing for each channel; the RATS data comprises of speech data

transmitted through eight different channels (A through H), re-

sulting in varying signal qualities and SNRs. To optimize the

parameters, we used a small set of 1 hour for training and a 1

hour development set for each channel. As a post-processing

step, we applied a median filter to the output of the classifier

to impose continuity on the local detection based output. For

each experiment, we searched for the optimal K-NN neighbor-

hood size K ∈ [1 · · · 100] and the optimal median filter length

for various windows sizes ([100, 300, 500, 700, 900]ms). This

optimization procedure was performed for each channel sepa-

rately. We set as baselines the MFCC and 1-band LTSV fea-

tures and compare against the proposed multi-band LTSV. We

experimented with all A-H channels included in the RATS data

set.

The test set results have been generated using the DARPA

speech activity detection evaluation scheme [18] which com-

putes the error at the frame level and considers the following:

• Does not score 200ms from the start/end speech annota-

tion towards the speech frames.

• Does not score 500ms from the start/end speech annota-

tion towards the non-speech frames.

• Converts to non-speech, speech segments less than

300ms.

• Converts to speech, non-speech segments less than

700ms.

4. Emprical selection of algorithm
parameters

In this section, we describe the pilot experiments we performed

to choose the optimal parameters for the LTSV-based features.

Fig. 1 shows the accuracy for channel A for all the parame-

ters used to fine-tune the optimal LTSV features. To select

the set of parameters, we run a grid search over a range of pa-

rameters for each channel separately. In particular, we experi-

mented with 15 different warping factors uniformly in the range

[−0.95 · · · 0.95]. We also computed the spectrogram smooth-

ing parameter M as defined in Sec. 2.1. M = 1 corresponds to

no smoothing whereas M = [100, 200] correspond to smooth-

ing of 100 and 200ms, respectively. In addition, we searched

different analysis window sizes R = [100, 300, 500]ms. The

final parameter we experimented with was the number of bands

N = [1, 2, 4, 6, 8]. Fig. 1 shows that for channel A the optimal

number of filters is 6. The optimal values consist of warping

factor α = 0.3 with smoothing M = 200ms and analysis win-

dow R = 300ms. Channel A contains bandpass speech in the

range 400-4000Hz. This might be one of the reasons a warp-

ing factor of 0.3 has been chosen for this channel. Smoothing

M and analysis window R depend on how fast the noise varies

with time. Very slow varying noise types, i.e. stationary noises

can afford to have high values for M and R. However, if im-

pulsive noises are of interest, smaller windows are preferable.

The warping factor α depends on which frequency bands have

prominent formants. For instance, if strong formants appear

1
www.darpa.mil/Our Work/I2O/Programs/Robust Automatic Transcription of Speech (RATS).aspx
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Figure 1: This figure shows the VAD frame accuracy for the development set of channel A for various parameters of the multi-band

LTSV. R represents the analysis window length, M the frequency smoothing, α the warping factor and N the number of filters. The

bar on the right represents the frame accuracy. This figure indicates that for channel A increasing the number of bands (N ) improves

the accuracy. Also, indicates that smoothing (M ≥ 100) and analysis window (R) are crucial parameters for the multi-band LTSV as

observed in the original LTSV [11].

in low frequency ranges, values around 0.6 are preferable (i.e.

close to Mel-scale).

For all pilot experiments, we have optimized K of K-

NN using the Mahalanobis distance [19] and the median filter

length. We have observed that a median filter of 700-900ms is

best for most of the experiments. This suggests that extracting

features with longer window lengths can further improve the

accuracy.

5. Results and discussion

Fig. 2 shows the Receiver Operating Characteristics (ROC)

curve between false alarm probability (Pfa) and miss probabil-

ity (Pmiss) for the eight different channels of noisy speech and

noise data considered. Channels A-D contain stationary chan-

nel noise but non-stationary environmental noise which imposes

challenges for the 1-band LTSV. Channels G-H consist of vary-

ing channel and environmental noise, causing poor performance

for the 1-band LTSV features with equal error rate (EER) ex-

ceeding 12%.

Poor classification results due to the non-stationarity of the

noise can be improved using multi-band LTSV features. Multi-

band LTSV features achieve the best performance compared to

both baselines, except for channel C where MFCC has the low-

est EER.

In addition, we did an error analysis of individual channels

to investigate the cases for which the algorithm fails to classify

correctly the two classes. On the miss side at the equal error rate

(EER), a common error for all channels was due to the presence

of filler words, laughter etc. Also, for channels D and E al-

most half of the errors contributing to the miss rate were due to

background/degraded speech. Filler words have slower varying

spectral characteristics than verbal speech. If noise has higher

spectral variability than filler words, the LTSV features fail to

discriminate them.

On the false alarm side, the error analysis at EER reveals

that there were a variety of errors including background/robotic

speech, filler words and kids background speech/cry. Such er-

rors are expected since background speech shares the spectral

variability characteristics of foreground speech; in fact, the clas-

sification of background speech by annotators is often based on

semantics rather than low-level signal characteristics.

Apart from the speech-like sounds where the multi-band

LTSV shows degraded performance, there are non-speech

sounds that the multi-band LTSV failed to classify. In particular,

false alarms (FA) in channels A,B,D,E and H have been associ-
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Figure 2: This figure shows the ROC curve of Pfa vs Pmiss for channels A-H of the multi-Band LTSV (LTSV-MultiBand) and the two

baselines (1-band LTSV and MFCC). For channels G and H the 1-band LTSV ROCs are out of the boundaries of the plots, hence they

do not appear in the figure. The same legend applies to all subfigures.

ated with constant tones appearing at different frequencies over

time and impulsive noises at varying frequencies. FA in chan-

nel C are composed of noise with spectral variability appearing

at different frequencies with one strong frequency component

up to 2500Hz and bandwidth greater than the speech formants

bandwidth. The limited frequency discriminability (although

improved in the multi-band version) is an inherent weakness of

the LTSV features. Thus, for channel C, LTSVs performed very

poorly, even worse than MFCC. FAs of multi-band LTSV in

channel G stem from the variability of the channel and not the

environmental noise.

Overall, the multi-band LTSV, performs better than the two

baselines considered: the 1-band LTSV and MFCC. From the

error analysis, we found that the multi-band LTSV not only

retains the discrimination of the 1-band LTSV for stationary

noises but also improves discrimination in noise environments

with variability, even in impulsive noise cases where the 1-band

LTSV fails. However, the multi-band LTSV fails to discrim-

inate impulsive noises appearing at different frequencies over

time. For speech miss errors, filler words/laughter are challeng-

ing for LTSV due to their lower spectral variability over long

time relative to the actual speech. Finally, besides channel C

where MFCC gives the best performance, the multi-band LTSV

gives the best accuracy showing the benefits of capturing addi-

tional information using a multi-resolution LTSV approach.

6. Conclusion and future work

In this paper, we extended the LTSV [11] feature to multiple

spectral bands for the voice activity detection (VAD) task. We

found that the multi-band approach improves the performance

in different noise conditions including impulsive noise cases in

which the 1-band LTSV suffers. We compare the multi-band

approach against two baselines: the 1-band LTSV and MFCC

features and we found that we gain significantly in performance

for 7 out of the 8 channels tested.

In future work, we plan to include delta features along with

additional long-term and short-term features that capture the in-

formation the multi-band LTSV fails to capture. One aspect that

needs further investigation is how to improve the accuracy at the

fine-grained boundaries of the decision due to the long-term na-

ture of the feature set. Also, it would be interesting to explore

the potential of these features with various machine learning al-

gorithms including deep belief networks.
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