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Abstract
Background—KNOWME Networks is a wireless body area network with two tri-axial
accelerometers, a heart rate monitor, and mobile phone that acts as the data collection hub. One
function of KNOWME Networks is to detect physical activity (PA) in overweight Hispanic youth.
The purpose of this study was to evaluate the in-lab recognition accuracy of KNOWME.

Methods—Twenty overweight Hispanic participants (10 males; age 14.6±1.8 years), underwent
four data collection sessions consisting of nine activities/session: lying down, sitting, sitting
fidgeting, standing, standing fidgeting, standing playing an active video game, slow walking, brisk
walking, and running. Data was used to train activity recognition models. The accuracy of
personalized and generalized models is reported.

Results—Overall accuracy for personalized models was 84%. The most accurately detected
activity was running (96%). The models had difficulty distinguishing between the static and
fidgeting categories of sitting and standing. When static and fidgeting activity categories were
collapsed, the overall accuracy improved to 94%. Personalized models demonstrated higher
accuracy than generalized models.

Conclusions—KNOWME Networks can accurately detect a range of activities. KNOWME has
the ability to collect and process data in real-time, building the foundation for tailored, real-time
interventions to increase PA or decrease sedentary time.

Background
Childhood obesity has reached epidemic proportions, particularly among minority youth. A
study using United States (US) national data from 2007-2008 reported that 18% of
adolescents aged 12 - 19 years are obese and 34% are overweight1. These numbers were
substantially higher in Hispanic youth1, placing them at high and life-long risk of diseases
such as cardiovascular disease2,3 and Type 2 diabetes4. Physical activity (PA) is central to
reducing and preventing obesity and maintaining physical and mental well-being5, yet PA
declines precipitously during early adolescence6,7. In 2007, a nationwide survey of US high
school students reported that only 37% of non-Hispanic White, 31% of non-Hispanic Black,
and 30% of Hispanic adolescents met the recommended 60 minutes per day of moderate-to-
vigorous PA8. These numbers show that majority of adolescents are not meeting the PA
recommendations, a large number of them are overweight or obese, and that minority youth
are disproportionately impacted.

Accurate measurement of PA is essential for determining whether an individual meets PA
guidelines and for evaluating the effectiveness of interventions to increase physical activity9.
Objective measures such as those obtainable using an accelerometer (ACC) or a heart rate
(HR) monitor can capture the intensity and duration of an activity and subjective measures
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such as self-report or diary methods can capture the activity being done as well as the
context. However, these methods have limitations. For instance, objective measures are
generally unable to identify the type of activity being performed, while subjective measures
are vulnerable to recall bias. Increasingly researchers are moving towards measurement of
PA using multiple sensors systems and pattern recognition. To date, the majority of research
has utilized one or more accelerometers and data processing algorithms to detect physical
activity states with an overall accuracy ranging from 81-99%10-13. Basic activities such as
lying13-15, sitting13,16, standing13,17, walking13,18 and running14 can be detected with a high
degree of accuracy while more complex activities such as walking uphill12, stretching19, or
ascending and descending stairs20 are more difficult to detect accurately. PA state detection
could provide a more informative objective measurement of PA and, when combined with a
contextual measure, could offer a rich data set showing where, when and what activity is
being performed. The ability to measure PA objectively as well as capture contextual
information would allow for a more sophisticated understanding of PA behavior and the
development of interventions that target a specific behavior within a specific context.

Interventions to increase PA in children and adolescents have been largely unsuccessful,
although interventions to decrease sedentary behavior (SB) are more promising21.
Traditionally, PA interventions collect data pre- and post-intervention and analyze that data
after completion of the study. Such data collection and analysis conventions do not allow
researchers to monitor of the effectiveness of or adapt the intervention while it is occurring.
Real-time sensing of PA would allow for the development of interventions to increase PA or
decrease SB that provide immediate tailored feedback which may be more effective in
enacting behavior change22.

Minority youth are at higher risk of being overweight than their Caucasian counterparts,
however, few interventions have targeted minorities21. Intervention tools that are developed
in and appropriate for this population are thus sorely needed. The goal of the KNOWME
Networks was to design a mobile, wearable body area network system that can detect PA
states in overweight Hispanic youth with a high degree of accuracy using a small number of
discrete, wireless sensors. This population presents at least two major challenges. First,
ethnicity23 and body mass24-26 may influence the energy cost of locomotion, and hence
could be key variables in calibrating sensor output and developing accurate algorithms 27.
To date, no cut-points or state detection algorithms have been developed specifically for
overweight Hispanic youth. Second, age and ethnicity will likely impact which sensor
configuration is considered wearable and unobtrusive. Therefore, this study took a
participatory approach28 that included in-lab try-outs and focus group interviews to ensure
that choice and placement of sensors was acceptable to the targeted group. The current suite
of sensors includes accelerometers and a heart rate monitor which interface directly with a
mobile phone to process and relay data. This data is sent to a backend server where it is
further processed, stored, and relayed to a secure website. In addition, KNOWME Networks
enables real-time sensing which will facilitate the monitoring of PA accurately, remotely,
and unobtrusively and support the development of real-time interventions. The purpose of
this study was to evaluate the accuracy of personalized and generalized models in detecting
a range of physical activities performed by overweight Hispanic youth wearing KNOWME
Networks in a laboratory setting.

Methods
Subjects

Participants were 20 overweight Hispanic boys and girls aged 12-17 years. Participants were
recruited from Los Angeles County, California, through participating physicians and clinics,
churches, schools, and community centers. Inclusion criteria were Latino heritage by
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parental self-report and meeting criteria for overweight [age- and gender-specific body mass
index (BMI) ≥ 85th percentile of the Centers for Disease Control and Prevention (CDC)
reference data29]. Parents and children were provided with detailed written and verbal
information about the study in their primary language and informed written consent from the
parent and assent from the child was obtained. The study was approved by the Institutional
Review Board of the University of Southern California (USC).

Instrumentation
The current system uses off-the-shelf devices, including the Alive Technologies Heart
Monitor and Accelerometer (Arundel, Australia), which contains a single channel
electrocardiogram (ECG) monitor and a tri-axial ACC, and the Nokia N95 phone with 8GB
built-in flash memory30. The sampling rate for the ECG is 300 Hz and the sampling rate for
the ACC is 75Hz. One Alive Technologies monitor is placed on a chest strap and positioned
in the center of the chest to record ECG and ACC data, while a second Alive Technologies
monitor is placed on the right hip in a custom pouch to record ACC data only. The phone is
placed in a holder on the left hip. The device configuration and system setup is shown in
Figure 1. Sensor data is continuously streamed to the mobile phone via Bluetooth
connection. Data collection on the phone is done using programming that was developed
specifically for KNOWME Networks31 and written in Python32. For this experiment, data
was time-stamped and stored on the phone and then downloaded and processed offline.

Study Procedures
Study visits took place in an exercise observation laboratory designed specifically for
studies in youth. Two video cameras were installed in the lab to unobtrusively record in-lab
activities. Height was measured to the nearest 0.1 cm using a wall-mounted stadiometer and
weight was measured to the nearest 0.1 kg with a Tanita TBF 300/A analyzer (Arlington
Heights, IL). Measurements were done while wearing light clothing and no shoes. BMI was
calculated as weight (kg) divided by height (m) squared. BMI percentiles for age and gender
were calculated using publicly available SAS syntax from CDC (available at:
http://www.cdc.gov/nccdphp/dnpa/growthcharts/resources/index.htm).

While wearing KNOWME Networks, participants performed a series of 9 activities in a pre-
determined order for 7 minutes per activity. The activities were: lying down, sitting
motionless, sitting fidgeting, standing motionless, standing fidgeting, standing playing an
active video game (Wii), slow walking, brisk walking, and running (both walking and
running were at self-selected speeds). These activities were based on a continuous version of
System for Observing Fitness Instruction Time (SOFIT) protocol33 and supplemented to
include other activities commonly performed by youth, namely, fidgeting and playing active
video games. We developed and used this augmented SOFIT system for continuous
behavioral observation successfully in earlier research 34 and it provides a solid basis for
expanding behavioral categories for recognition in the future. Nintendo Wii tennis was
selected as the active video game because the participants could learn how to play it quickly
and enjoyed playing it. Activities were performed in the same order every time unless the
participant was physically unable to complete them in that order. Participants were allowed
to rest between activities for however long they deemed necessary. Each session lasted
between 1 - 1.5 hours. Participants completed 4 sessions with a maximum of 2 sessions per
day. Data from multiple days and sessions were collected in order to develop more robust
personalized models by introducing variability across days into the models. A researcher in
the room provided instruction and supervision while the participant was performing the
activities as well as noting the start and end time of each activity. In addition, all sessions
were video-recorded using the unobtrusive camera system described above.
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Analysis
As described in detail previously 35,36, ECG and ACC data were processed to extract
features from 10 heart beats and 6.72s data windows, respectively. Briefly, the ECG signal
was pre-processed to normalize each heartbeat to the same time duration and amplitude
range. Using this normalized ECG signal, the cardiac activity mean (CAM) and motion
artifact noise (MAN) features were determined. Next, Hermite polynomial expansion (HPE)
coefficients were used to model the CAM feature and principal component analysis (PCA)
error vectors were used to model the MAN feature. The HPE coefficients and the PCA error
vectors were then combined with the standard deviation of multiple normalized heart beats
and conventional ECG features such as mean and variance of heart rate. For the ACC signal,
a set of temporal features was extracted. The ECG temporal feature sets were used in a
Support Vector Machine (SVM) with a linear kernel. Linear discriminant analysis (LDA)
based dimension reduction was performed on the ACC temporal features and a radial basis
function (RBF) kernel based SVM was adopted for pattern recognition. Furthermore, ECG
and ACC signals were also transformed to obtain cepstral features that were modeled by a
Gaussian Mixture Model (GMM). Following heteroscedastic linear disciminant analysis
(HLDA) to reduce the ACC cepstral feature dimensions, the SVM and GMM systems were
fused at the score level to obtain final physical activity state detection results37.

Personalized (subject-dependent) models were created using training data from three data-
collection sessions and tested against data from the fourth session for each participant.
Generalized (subject-independent) models were created using pooled training data from all
but one of the participants and tested against data from the remaining participant (leave-one-
out analysis). Analyses were repeated rotating which session or participant was excluded
and then averaged to obtain the overall accuracy.

Results
Table 1 shows the characteristics of the 20 participants included in this study and the
walking and running speeds that were selected by the subjects. There is overlap between the
speeds selected by the subjects for slow walking, brisk walking, and running.

Table 2 shows the contribution of the main analyses modalities (temporal and cepstral signal
features) and the different sensors to the accuracy of the predictions. While the
accelerometer temporal features provide fairly good accuracy, the accumulated model using
both sensors and types of features is the most accurate. The combination of accelerometer
temporal and cepstral features was not more accurate than the combined model using data
from both sensors.

Table 3 shows the accuracy of personalized and generalized models. The models were
constructed considering seven or nine classes of physical activity. The nine class activity set
reflected the full range of behaviors performed during training, while the seven class system
was achieved by collapsing the sitting and sitting fidgeting activities into one category and
collapsing the standing and standing fidgeting activities into one category. The seven class
system outperformed the nine class system and personalized models outperformed
generalized models.

Figure 2 shows a confusion matrix of the 9 activities personalized state detection model
accuracy (overall accuracy for this model was 84%). The confusion matrix displays the
distribution of the decisions made by the model and whether or not that decision was
accurate (decisions along the diagonal represent correct decisions). The distribution of
decisions is also color-coded such that cells containing 100% of the decisions would be pure
black while those cells containing 0% of the decisions would be pure white.
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Discussion
Overall, the highest accuracy obtained using this system was 94% with seven classes of
physical activity using personalized models. When classification of fidgeting activities was
included, the accuracy dropped to 84%. For personalized models, the most accurately
detected activity was running, which is consistent with previous studies of PA state
detection14,38. The least accurately detected activity was sitting. This is most likely due to
classification confusion between sitting and sitting fidgeting (Table 3).

Personalized models were more accurate than generalized models. The vast majority of
previous studies report findings from generalized models10-20. In studies that have compared
personalized and generalized models, results have been mixed: three studies reported higher
accuracy for generalized models39-41, two reported approximately equivalent accuracy42,43,
and two studies reported higher accuracy for personalized models44,45. The studies that
reported higher accuracy for personalized models44,45 included HR data in the analysis in
addition to ACC data. Heart rate, particularly as it is modeled here37, could be considered a
biometric signal that is unique to the individual and is therefore better suited for
personalized models46. Different fitness levels, as well as different self-selected walking and
running speeds, may also have contributed to the lower accuracy in the generalized models.
In addition, model accuracy typically improves with increased training data and many
studies do not have enough individual training data to generate accurate personalized
models. While creating generalized models requires less data collection per individual, such
models may be less accurate at the individual level and thus not ideal for real-time
interventions that rely on providing accurate feedback in response to detected activities. In
addition, individual data collection allows for the development of a model that is tailored to
the activities the participant is likely to perform as well as how the individual performs those
particular activities.

The detection of fidgeting is unique to this project. Fidgeting states were modeled because
they are a component of non-exercise activity thermogenesis (NEAT), which may offset
some caloric intake and play a role in combating weight gain47,48. Relative to sitting
motionless, sitting and fidgeting expends 1.46 times the amount of energy, while relative to
standing motionless, standing and fidgeting expends 1.69 times the amount of energy49.
However, the current system was not able to detect fidgeting activities with a high degree of
accuracy. This is most likely due to the placement of the ACCs on the hip and chest.
Placement of ACCs on the extremities (wrists, ankles) may better identify fidgeting.
However, three focus group interviews with six minority adolescents (4 male/2 female, ages
12-17) conducted during the development of the KNOWME Networks sensor suite suggest
that sensors worn on ankles or wrists are not desirable in this group. KNOWME Networks is
designed with the goal of real-world implementation: while placement of additional sensors
could increase the detection accuracy of fidgeting, there is a tradeoff between increased
accuracy and the number of sensors participants are willing to wear.

In addition to fidgeting, active gaming was also modeled. Youth spend a large amount of
time using the computer or playing video games8. Increased participation in “exergames”
could be used as a tool to increase PA in kids50 and KNOWME Networks could detect and
encourage the use of such games. The game selected here – Wii tennis – has been shown to
expend 1.61 times the amount of energy relative to a sedentary video game and could result
in a small, though potentially meaningful, increase in energy expenditure (EE) across a week
of play51. Wii tennis was modeled with high accuracy and other games could be
incorporated into each participant's personalized model on the basis of what games the
participant reports playing. Additionally, mobile-phone and internet-based games designed
to encourage PA could be incorporated into future versions of KNOWME Networks.
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The activities chosen for this study reflect a broad range of EE, ranging from 1.0 metabolic
equivalents (METs) for lying down to 8.0 METs for running at 5.0 miles per hour52. In
addition to distinguishing between basic states such as lying down, sitting, standing, walking
and running, KNOWME Networks can differentiate between similar activities performed at
different intensities (standing fidgeting vs. standing playing Wii; slow walking vs. fast
walking). This information could be used to estimate EE. Other sensor systems, the
Bodymedia armband and IDEAA system, have been tested in combination with indirect
calorimeter for the estimation of EE53,54. These studies show that such systems can be used
for accurate estimation at the group level, but are less accurate at the individual level54 and
may yield poor estimates in obese subjects53. EE for a particular activity can differ by age,
gender, ethnicity and weight status23 and overweight Hispanic youth may be less energy
efficient in how they perform activities24. Future studies will need to determine the EE of
the activities detected by KNOWME Networks in overweight Hispanic youth. Because
KNOWME Networks utilizes a personalized training phase, indirect calorimetry performed
during the training phase could be used for personalized EE prediction.

This system has several strengths. It achieves accurate state detection using a novel feature
set and has the potential for real-time data analysis and feedback. In addition, KNOWME
Networks includes a HR monitor, while many other multi-sensor systems consist
exclusively of ACCs. While the HR monitor provides only a small improvement in state
detection accuracy, consistent with previous studies44,45, it does provide information about
the relative PA intensity of the activity since heart rate correlates linearly with oxygen
consumption55. Additionally, our earlier work shows that fusion of the multimodal (HR
monitor and accelerometer) and multi-domain (time domain SVM and cepstral domain
GMM) subsystems at the score level can improve recognition accuracy of specific
behaviors 36. Furthermore, our previous work suggests that data provided by certain types of
sensors are more informative in distinguishing between certain activities than other
types 35,56. For example, data from the HR monitor is a better discriminator when the
subject is lying down, or in other activities that require low levels of energy expenditure,
while data from the accelerometer is more pertinent to distinguishing between non-sedentary
activities, or activities that demand higher energy expenditure. Detection of additional high
intensity activities along with more complex activities such walking uphill/stairs, cycling,
playing soccer or riding in a car can be included in future studies to further broaden the
range of detected activities. Lastly, PA and SB detection and feedback using KNOWME
Networks can be automated and thus is ideally situated to provide long-term interventions.
Currently, the KNOWME system feeds data from all sensors to a secure website at 10-
minute intervals, where it is analyzed in real-time. The mobile phone interface can prompt
youth to be more active when investigator-determined levels of sedentary behavior have
been reached. For example, automated as well as personalized text messages, tailored to
intervention groups and reacting in real time to incoming data, can be sent to encourage
physical activity and discourage long periods of sedentariness. This KNOWME system
intervention is currently being pilot tested in a group of overweight Hispanic youth. Obesity
prevention and treatment requires long-term care, and once this system has been
personalized following the training phase, KNOWME Networks could provide a method to
deliver an extended intervention.

KNOWME also has limitations. Some of these limitations are those that are inherent in
current available sensors, including the inability to measure water-based activities such as
swimming. Also, because the youth that we worked with did not want to wear sensors on
their wrists or arms, detection of activities such as weight training might be less accurate.
The use of in-lab data to train and test the models in KNOWME may not accurately reflect
real-world performance15,19,57. The ability of the models developed here to accurately
identify activities performed in a semi-naturalistic setting, consisting of a video-recorded in-
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lab free-activity period, is currently being evaluated. Also, the need for individual training
may make large scale implementation difficult. Future studies will evaluate the minimal
amount of training data necessary to develop accurate personalized models. It is envisioned
the KNOWME Networks will be used as an intervention tool by health care researchers and
practitioners. In this scenario, participants would undergo a pre-wear interview to establish
what activities should be modeled, followed by a brief training protocol to gather minimal
data needed to build personal PA models.

The evaluation of multiple sensor systems for PA detection and intervention has been
limited to adult populations and normal weight individuals58-60. This is the first PA
detection system to be specifically developed for and tested in overweight Hispanic
adolescents. Although this could be seen as a limitation, the prevalence of obesity and
obesity-related disorders, such as type 2 diabetes and the constellation of cardiovascular
disease (CVD) risk factors known as the metabolic syndrome, has increased dramatically
among adolescent Latinos in recent years 61,62. Latinos have a 50% lifetime risk of
developing diabetes 63, raising the specter of significant early morbidity in mid-adulthood,
as well as the potential for enormous increases in societal health care expenditures 64.
Therefore, targeting this group is extremely important. This system and the underlying
approach could certainly be used in other populations following the appropriate validation.
Systems that measure food intake in adolescents using a mobile phone are being developed
by other research groups65 and have been shown to be preferred over traditional paper-based
records66. Such systems could be combined with KNOWME Networks to create a system
that monitors both energy intake and energy expenditure in youth. Additional functions such
as location tracking or ecological momentary assessment (EMA) could also be utilized to
create a rich contextual map of the conditions surrounding specific behaviors for each
participant.

Future directions for KNOWME Networks include the evaluation of the system in free-
living environments and real-time interventions to increase PA and decrease SB. Prolonged
SB has been associated with negative health outcomes67 and studies have shown that
adolescents spend much of their time engaged in SB68. KNOWME Networks can classify an
activity such as sitting as SB and calculate the duration of sitting and provide automatic
feedback. Immediate feedback may be effective for behavior change69 although the exact
display and wording of the feedback is important. Some participants do not respond well to
negative feedback70 and messages should not include negative enforcement or complex
activity suggestions71. Studies to evaluate the effectiveness of different kinds of feedback
are also necessary to advance this mode of intervention.

KNOWME targets a unique subject population at high risk for inactivity and obesity,
includes a heart-rate monitor which could provide information on relative activity intensity
and better detect low level activities, and is designed to provide real-time detection and
feedback. Furthermore, while several other projects have advanced the research agenda of
accurately detecting behaviors using sensors (12,19,72-76 and others), most if not all of these
studies are primarily focused on technological advances, and the needs of public health
efforts are not their primary objective. Much work still needs to be done in addressing the
potential end-users' needs and expectations. The needs of youth are different from the
general population. KNOWME is moving beyond simple activity recognition to a system
that can be used to deliver interventions. Thus, KNOWME Networks represents an
innovative, interdisciplinary approach to a complex problem. KNOWME Networks is a tool
that can be used by health professionals and researchers for real-time detection,
classification and monitoring of PA and other obesity-related behaviors and create the
opportunity for highly individualized interventions. These interventions can be tailored to
meet the treatment goals of the individual and take into account the individual's abilities,
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preferences and needs, while performing real-time monitoring and providing real-time
feedback.
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Figure 1. Current configuration of KNOWME Networks
A heart rate monitor/accelerometer is placed on a chest strap and centered on the chest while
a second accelerometer is placed on the right hip. The phone can be carried in a case on the
left hip as was done in this study, or placed elsewhere on the body.
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Figure 2. Confusion matrix for personalized modeling of 20 subjects for 9 activities
Predicted activity is shown on the X-axis and actual activity is shown on the Y-axis. Correct
decisions fall on the diagonal. Percentage of decisions falling into each cell is shown. Cells
containing 100% of the decisions are pure black while those cells containing 0% of the
decisions are pure white.
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Table 1
Characteristics of the sample population

Anthropometric/Demographic Measures Mean ± SD (range)

Age (years) 14.6 ± 1.8 (12 - 17)

BMI (kg/m2) 31.6 ± 6.3 (24.9 - 51.3)

BMI percentile (CDC guidelines) 95.8 ± 3.7 (87 - 99)

% Body fat 36.3 ± 6.7 (22.9 - 50.2)

Treadmill speeds (mph)

Slow walking 1.5 ± 0.5 (0.9 – 2.5)

Fast walking 2.7 ± 0.7 (1.7 – 4.0)

Slow running 4.0 ± 0.7 (2.5 – 5.0)

SD = standard deviation; BMI = body mass index
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Table 2
Final fusion results showing roles of sensors in accuracy of detection

Accuracy in 9-class behavioral analyses

1: ECG_Temporal 47%

2: ACC_Temporal 81%

3: ECG_Cepstral 50%

4: ACC_Cepstral 66%

5: 1+3 53%

6: 2+4 83%

7: 1+2 81%

8: 3+4 69%

9: 1+2+3+4 84%
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