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Appearance-based Gaze Estimation from
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Abstract—Estimating gaze from a low-resolution facial image
is a challenging task. Most current networks for gaze estimation
focus on using face images of adequate resolution. Their per-
formance degrades when the image resolution decreases due to
information loss. This work aims to explore more helpful face
and gaze information in a novel way to alleviate the problem
of information loss in the low-resolution gaze estimation task.
Considering that all faces have a relatively fixed structure, it
is feasible to reconstruct the residual information of face and
gaze based on the solid constraint of the prior knowledge of face
structure through learning an end-to-end mapping from pairs of
low- and high-resolution images. This paper proposes a comple-
mentary dual-branch network (CDBN) to achieve this task. A
fundamental branch is designed to extract features of the major
structural information from low-resolution input. A residual
branch is employed to reconstruct features containing the resid-
ual information as a supplement under the supervision of both
the high-resolution image and gaze direction. These two features
are then fused and processed for gaze estimation. Experimental
results on three widely used datasets, MPIIFaceGaze, EYEDIAP,
and RT-GENE, show that the proposed CDBN achieves more
accurate gaze estimation from the low-resolution input image
compared with the state-of-the-art methods.

Index Terms—Gaze estimation, Super-resolution, Low resolu-
tion, Complementary dual-branch network, Residual informa-
tion.

I. INTRODUCTION

EYE gaze is an important non-verbal cue for human behavior
analysis. It is involved in many cognitive processes and reflects
the visual attentiveness, internal thoughts, and mental states of
a person during social interaction and other human behaviors.
Over the past two decades, gaze estimation has attracted
research interest in the fields of cognitive science and computer
vision. It helps the computer to better understand human
intention and plays a prominent role in various intelligent
applications such as virtual reality [1], [2], driving assistance
systems [3], security surveillance [4], and human-robot inter-
action (HRI) [5]–[7].
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Fig. 1. Comparison of high-resolution images (left column), low-resolution
images (center column), and visualized residual images (right column). The
high-resolution face images are selected from the MPIIFaceGaze dataset. The
low-resolution images are generated by applying bicubic downsampling (8x)
to the corresponding high-resolution images. The visualized residual images
are the absolute difference between the high- and low-resolution images. All
images are scaled to the same size for easy comparison.

Based on the equipment requirements and implementation
processes, gaze estimation can be typically grouped into
model-based and appearance-based methods [8], [9]. Model-
based methods obtain highly accurate gaze by extracting eye
features and building geometric eye models with the assistance
of dedicated devices. They generally work in a controlled
environment due to limitations such as short working dis-
tances and high facility costs. Unlike model-based methods,
appearance-based methods learn a mapping directly from
the input image to the gaze direction. They only require a
consumer monocular camera to perform, making them possible
to adapt to outdoor application scenarios. Although this simple
setup greatly extends their applicability, appearance-based
methods are still challenging because they need to handle the
appearance diversity affected by various factors such as head
pose and individual facial differences.

Advances in deep learning in recent years have made
convolution neural networks (CNNs) a sort of efficient method
for gaze estimation. With sufficient learning data, CNN-
based methods have shown powerful representation capability
to handle diversified appearances and achieved remarkable
performance. Despite the recent developments, most state-of-
the-art CNN-based methods merely consider face images of
ideal sizes, e.g., 224×224 pixels. Their estimation accuracy
degrades greatly as the image resolution decreases. In scenar-
ios where the resolution of the input image is low, e.g., the
human face is captured from a long distance in the wild or
the region of the human face is cropped from an image of



2

Fig. 2. Framework of our proposed Complementary Dual-branch Network
(CDBN). The c in circle represents concatenation of feature maps.

a crowd, accuracy obtained by current methods is far from
satisfactory.

Most existing methods strive to extract discriminative fea-
tures with techniques like attention mechanism [10]–[12] or
dilated convolution [12]–[14] to represent the input image.
These methods work well when the input is of high resolution
(HR) that includes rich facial information. When the quality
of the input image degrades, these methods have trouble char-
acterizing the intrinsic features of a low-resolution (LR) face
image due to information loss. Fig. 1 shows the comparison of
high- and low-resolution images and their corresponding visu-
alized residual images. Detailed facial information that appears
in HR images, such as sharp edges and eye details, becomes
very fuzzy in LR images. The information difference between
the HR and LR image, defined as the residual information in
this paper, is reflected in the residual images in Fig. 1. As
shown in Fig. 1, the residual information is significant, and
recovering it could help improve gaze estimation accuracy at
low resolutions.

The main idea of this work is to recover the residual
information from the LR face image and supplement the
gaze estimation network with this information for better gaze
estimation accuracy. Since the structure and components of
human faces are relatively fixed, there exists prior knowledge
which can be used as a solid constraint to recover the residual
information. It has been demonstrated in the research field of
face super-resolution [15], [16] that neural networks can grasp
this facial prior knowledge and recover the lost information
by training with pairs of HR and LR images. Therefore, in
addition to the basic features extracted directly from the LR
input, features that contain the residual information, defined
as residual features in this paper, will also be recovered
and introduced into our network through network learning.
The recovered residual features act as the supplementary
information and lead to improved estimation accuracy.

This paper proposes a new model named Complementary
Dual-Branch Network (CDBN) to address the challenge of
low-resolution gaze estimation. The framework of the pro-
posed model is shown in Fig. 2. Feature extraction process
is explicitly divided into the structural feature extraction stage
and the semantic feature extraction stage. A dual-branch mod-
ule is used to capture structural features in the former stage.
One branch extracts the fundamental structural features from
the LR image, while the other restores the residual structural
features based on the prior knowledge learned from pairs
of HR and LR images. The restoration of residual structural
features is also supervised under the ground truth of gaze to

ensure that the restored information tends to be beneficial for
gaze estimation.

Features generated by the dual-branch are then concatenated
in the channel dimension and are fed into the subsequent
module for semantic features extraction. Gaze estimation
regression is finally performed on the semantic features. To
evaluate the performance of our proposed CDBN, extensive
experiments were carried out on three widely used gaze
datasets, i.e., MPIIFaceGaze [17], EYEDIAP [18], and RT-
GENE [19]. Experimental results demonstrate that our pro-
posed CDBN achieves smaller angular errors with images of
various resolutions compared to the state-of-the-art methods.

For this paper, the main contributions are as follows:
1) We evaluate the performance of the existing state-of-

the-art gaze estimation methods with low-resolution
input images. Their performance degrades rapidly when
the image resolution decreases because the amount of
information contained in the LR image is limited.

2) A dual-branch model named CDBN is proposed to
alleviate the problem caused by limited information and
improve the accuracy of low-resolution gaze estimation.
In CDBN, one branch extracts fundamental features
directly from the LR input, while the other restores
residual features as a supplement. The residual features
are constructed based on the prior knowledge learned
from pairs of HR and LR images. The learning process
is supervised by the ground truth of gaze meanwhile.
The recovered residual features introduce prior facial
knowledge into the network and help CDBN better
understand and analyze the low-resolution image.

3) Extensive experiments have been conducted to demon-
strate the effectiveness of the proposed CDBN. Com-
pared to the state-of-the-art models, CDBN achieves
smaller angular errors with various resolutions.

II. RELATED WORK

Generally, gaze estimation algorithms can be categorized
as either model-based or appearance-based methods. Model-
based methods build a subject-specific geometric eye model
to estimate gaze. The eye model is fitted by geometric fea-
tures such as the infrared corneal reflections [20] and pupil
center [21]. Although model-based methods achieve superior
accuracy, most of them require short working distances and
dedicated devices, which greatly limits their applications.

Appearance-based methods learn a mapping directly from
an eye or face image to the gaze estimation target. The
target is defined as either a gaze point in 2D estimation or
a gaze vector in 3D estimation. Appearance-based methods
usually use the image captured by a consumer camera as
input and therefore have the potential of estimating gaze from
the low-resolution image. Various conventional approaches
such as Random Forests [22], K-Nearest Neighbors [23], and
adaptive linear regression [24] were applied to address the
gaze estimation task in the early days. While most recently, the
state-of-the-art results were achieved by CNN-based methods.

Zhang et al. were the first to adopt a convolution network to
estimate gaze [25]. Krafka et al. implemented a multi-region
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2D gaze estimation method to estimate gaze points on the
screen of a smartphone or tablet [26]. Zhang et al. presented
a spatial weighting CNN that took full-face into account and
encoded the weights for the different regions of the face [11].
Chen et al. applied the technique of dilated convolutions to
catch the subtle distinctions of eye appearance when gaze
angle varied [13]. They subsequently proposed an improved
version by adding subject-dependent bias into their original
network [13] to handle inter-subject variations in appearance
[14]. Dai et al. built a residual network with an attention mech-
anism to extract contributive features for gaze from the face
image and the original input image with the background [27].
Some work, e.g., I2D-Net [12] and FARE-Net [28], achieved
good results by considering the difference between left and
right eyes. And some work, e.g., CA-Net [10], AGE-Net [12],
and the model with LBSAM and GBSAM [29], integrated
attention mechanism into the eye branches of CNN models
in pursuit of an improved representation capability. Although
current CNN-based methods have obtained promising results
in terms of accuracy in gaze estimation, their performance still
has room for improvement, especially with the low-resolution
input image.

As the increasing real-world applications may not guarantee
high-quality images, vision tasks in complex scenes, such as
occlusion [30]–[32] and low resolution [33]–[36], are becom-
ing crucial and challenging. This paper focuses on the low-
resolution problem. An intuitive idea for the challenge of low-
resolution is to employ the Single Image Super-Resolution
(SISR) technique as an auxiliary task. SISR aims to reconstruct
a high-resolution image from a single low-resolution image.
It is straightforward to think of a two-stage approach that first
applies an off-the-shelf SISR method to reconstruct a high-
resolution image and then carries out the actual vision task
on the reconstructed image. However, if the optimization of
the super-resolution network is not designed especially for the
main vision task, the fine details of the reconstructed image
may not contribute to improving the performance of the main
task. Joint training in a single-stage manner between SISR and
the main task is essential to addressing this challenge.

The existing joint training networks can be divided into two
categories: cascade networks [37]–[40] and parallel networks
[33]–[36]. In cascade networks, the super-resolution network
is directly connected to the network of the main task in
series. The losses of two networks are combined and optimized
together. However, it may not be an optimal choice because
the information of the two networks may not be fully fused or
shared. Parallel networks can overcome this shortcoming and
embed the information more mutually and thoroughly.

Yin et al. proposed a joint facial alignment and super-
resolution network to simultaneously detect facial landmarks
and super-resolve low-resolution faces [33]. It is a parallel
multi-task network that allows two tasks to benefit from each
other, which improves the performance of both tasks. Wang et
al. presented a dual super-resolution learning paradigm to keep
a high-resolution representation for semantic segmentation
[34]. This paradigm significantly improves the performance of
semantic segmentation for low-resolution input and demon-
strates the effectiveness of super-resolution as an auxiliary

means. Bai et al. proposed a face detection algorithm that
generated clear faces from tiny ones in the picture by adopting
a generative adversarial network (GAN) and detected the
positions of the tiny faces meanwhile [35]. The favorable
results show a positive effect of super-resolution on face
detection when dealing with low-resolution faces as small as
10×10 pixels. A similar method has been used for small object
detection and has drawn the same conclusion [36]. The success
of parallel joint training indicates the potential of the super-
resolution technique in handling low-resolution vision tasks.
This paper incorporates this idea to help with gaze estimation
from the low-resolution image.

III. PROPOSED METHOD

A. Overview

The core idea of the proposed method is to introduce
residual information into low-resolution gaze estimation. On
the one hand, estimating gaze direction from a low-resolution
facial image is a hard problem owing to information loss.
Meanwhile, recovering the lost information is an underdeter-
mined inverse problem since multiple possible solutions exist
for any given low-resolution image. Such a problem is likely
to be solved by constraining the solution space with strong
prior information [41], [42], e.g., the prior knowledge of a
human face. Advances in the research field of super-resolution
show that learning an end-to-end mapping between low-/high-
resolution images with a deep convolutional neural network
is an efficient way to grasp the prior information and recover
the lost information [15], [16]. Capturing prior information
through deep CNN reduces ambiguity and uncertainty in the
recovering procedure, making the residual features reliable. On
the other hand, using only pairs of low- and high-resolution
images to supervise the training of residual features is in-
sufficient to ensure that the recovered residual information is
beneficial for gaze estimation. It is essential to use gaze-related
supervision simultaneously during the recovery process.

As an implementation of the idea, this paper proposes a
unified optimization framework to estimate gaze from a low-
resolution facial image. As shown in Fig. 3, the proposed
network employs a Fundamental Module to capture basic
structural features directly from low-resolution input and a
Residual Module to restore residual features. The training of
the Residual Module is supervised by pairs of high- and low-
resolution images and the mapping relation between images
and the ground truth of gaze. This design pushes the Residual
Module to recover useful residual features that are biased
towards gaze estimation. The two parts of features are then
concatenated and mapped to a high-level semantic feature
space. Gaze regression is finally performed on the semantic
features.

B. Complementary Dual-Branch Network

As shown in Fig. 3, the proposed network consists of five
parts: (a) Fundamental Module for extracting basic structural
features from the LR input; (b) Residual Module for restoring
residual structural features as the supplementary information
for gaze estimation; (c) Reconstruction Module for recovering
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(a) The architecture of CDBN

(b) Res G block (c) Res S block

Fig. 3. An overview of the proposed approach. (a) The architecture of the proposed network CDBN. Fundamental Module and Residual Module form a
dual branch. Two features, FFUN and FRES , are extracted by this dual-branch. They are fused in channel dimension and go through Semantic Module for
high-level features FSEM . FSEM finally goes through two fully connected (FC) layers in Regression Module for gaze prediction. Reconstruction Module
serves as an auxiliary module for the extraction of FRES ; (b) The structure of the Res G block; (c) The structure of the Res S block. Compared to the
Res G block, the Res S block omits two Batch Normalization (BN) layers [43] and the second ReLU [44] function.

the super-resolution image; (d) Semantic Module for obtaining
high-level semantic features, and (e) Regression Module for
regressing the gaze direction. Among them, the Fundamental
Module and the Residual Module form a complementary dual-
branch. The input of the whole network is an RGB image, and
its size is set to 128×128.

Fundamental Module. This module is used to extract
fundamental features directly from the LR input. It is a part of
the ResNet-18 [45] network that consists of a stem followed
by four residual blocks (Res G in Fig. 3(b)). The max-pooling
layer is removed from the stem to maintain an appropriate size
of feature maps at the output of this module. Since this module
is shallow, the extracted features can be regarded as structural
features. The size of the output feature maps (FFUN in Fig.
3(a)) from this module is 32×32×128.

Residual Module. This module is used to extract residual
features. It is constructed by an improved version of the
residual block, namely the Res S block in Fig. 3(c). The
structure of the Res S block is the same as the original one
(Res G) in ResNet, except that two Batch Normalization (BN)
layers [43] and the second ReLU [44] function are omitted
because they slow down the convergence speed of super-
resolution [33], [46]. A convolution layer with stride 2, along
with two Res S blocks followed by a max-pooling layer, is
first applied as a stem, which reduces the size of the feature
maps by a factor of 4. Afterward, 16 Res S blocks and 1
convolution layer are stacked to generate deeper and richer
features, while a short skip connection is arranged to keep
gradients for the previous layers. The size of the output feature
maps (FRES in Fig. 3(a)) from this module is 32×32×64.

Reconstruction Module. This module alternately connects
three convolution layers and two Pixel-Shuffle layers [47] to
upsample FRES twice, resulting in an image (IREC in Fig.
3(a)) of the same size as the LR input, i.e., 128×128. A
long skip connection from the input image to the output of
the Reconstruction Module is used to provide rough overall
information directly. It forces the Residual Module and the
Reconstruction Module to focus on finer details and guarantee
these two modules only learn the residual information of
the input. The reconstructed image (ISR in Fig. 3(a)) is
finally obtained after the skip connection. All convolution
layers in the Residual Module and the Reconstruction Module
use kernels of size 3×3, and the number of channels for
all is set to 64, except the last convolution layer in the
Reconstruction Module is set to 3. Note that the proposed
network uses the high-resolution image corresponding to the
LR input to supervise the learning process of ISR, and the
Reconstruction Module can be removed after training to reduce
storage and computational overhead since only the output of
the Residual Module (FRES) is needed for inference. Because
super-resolution is a pixel-level task, features that flow in these
two modules are regarded as low-level structural features.

Semantic Module. High-level semantic features are ex-
plored in this module. First, structural features from the dual
branches (FFUN and FRES) are fed into a 1×1 convolution
layer with 64 channels separately. Next, the feature fusion
operation is performed in the channel dimension and generates
feature maps of 128 channels. The combined features then
go through four Res G blocks to extract high-level semantic
features. The Res G blocks are set by the configuration of
the last four residual blocks in ResNet-18. Finally, a global
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average pooling layer (GAP) is applied to obtain a compact
but representative 1D feature vector.

Regression Module. Fully connected (FC) layers are em-
ployed in this Module to regress the gaze vector. There are two
fully connected layers, and the numbers of units are 512 and
1000, respectively. The output of this module is a 2D angular
vector ĝs = [ĝφ, ĝθ], where ĝφ represents the angle of yaw
(horizontal gaze angle) and ĝθ represents the angle of pitch
(vertical gaze angle) in the spherical coordinate system. Then
they can be converted to the Cartesian coordinate system of
the OpenGL standard via Eq. (1).

x̂ = cos(ĝθ)sin(ĝφ), (1a)
ŷ = sin(ĝθ), (1b)
ẑ = cos(ĝφ)cos(ĝθ), (1c)

where ĝc = [x̂, ŷ, ẑ] ∈ R3 is the unit vector representation of
predicted gaze. Assuming the actual gaze direction is g ∈ R3,
the evaluation metric of the angular error can be computed by
Eq. (2).

eangle = arccos

(
g · ĝc
‖g‖‖ĝc‖

)
(2)

We give a qualitative analysis of how residual information
is restored in CDBN. Assuming that the HR image, the LR
image, and the residual image (the absolute difference between
the HR/LR images) are denoted as IHR, ILR, and IRES ,
respectively, we can describe the relationship among them by
Eq. (3).

IHR = ILR + IRES . (3)

Then in CDBN, we denote the output features of the Residual
Module as FRES , and the output image of the Reconstruction
Module before skip connection as IREC . When provided LR
image ILR as input, the forward propagation in the Residual
Module and the Reconstruction Module can be expressed by
Eq. (4) and Eq. (5).

FRES = HRES(ILR), (4)
IREC = HREC(FRES), (5)

where HRES(·) and HREC(·) refer to the operations of the
Residual Module and the Reconstruction Module, respectively.
After skip connection, the final SR reconstructed image ISR
can be obtained by Eq. (6).

ISR = ILR + IREC . (6)

Comparing Eq. (3) and Eq. (6), and considering that ISR is
reconstructed under the supervision of IHR, we can draw a
conclusion that

IREC ≈ IRES . (7)

Eq. (7) illustrates that the output image before skip connection
(IREC) is an estimation of the residual image (IRES). In other
words, the information passing through the Residual Module
and the Reconstruction Module is the estimated residual in-
formation as expected. The feature FRES , as a mid-embedded
representation of the two modules, characterizes the estimated
residual information and participates in the subsequent gaze
estimation task as a supplement.

Algorithm 1 CDBN Training Process in One Iteration
Input: High-/low-resolution image pair (IHR, ILR); gaze

label (g); learning rate (η); operations and parameters:
Fundamental Module (HFUN , θFUN ), Residual Module
(HRES , θRES), Reconstruction Module (HREC , θREC),
Semantic Module (HSEM , θSEM ), Regression Module
(HREG, θREG).

Output: Updated parameters θ∗FUN ,θ∗RES ,θ∗REC ,θ∗SEM and
θ∗REG;

1: Extract features from dual branches,
FFUN = HFUN (ILR), FRES = HRES(ILR);

2: Predict gaze direction,
ĝ = HREG(HSEM (FFUN , FRES));

3: Generate reconstructed SR image,
ISR = HREC(FRES) + ILR;

4: Calculate the loss Lsr and Lgaze via Eq. (8) and Eq. (9),
respectively;

5: Update parameters of Regression Module, Semantic Mod-
ule, and Reconstruction Module,
θ∗REG ← θREG − η ∂

∂θREG
Lgaze;

θ∗SEM ← θSEM − η ∂
∂θSEM

Lgaze;
θ∗REC ← θREC − η ∂

∂θREC
Lsr;

6: Update parameters of dual branches,
θ∗FUN ← θFUN − η ∂

∂θFUN
Lgaze;

θ∗RES ← θRES − η ∂
∂θRES

(Lgaze + Lsr).

C. Optimization

As mentioned in Section III-A, this work aims to exploit
the maximum amount of information for low-resolution gaze
estimation, including fundamental and residual information. It
is done by simultaneously optimizing the gaze estimation and
SR reconstruction tasks. For both tasks, the Mean Absolute
Error (MAE) loss is minimized via Eq. (8) and Eq. (9).

Lsr =
1

N

N∑
i=1

||I(i)
SR − I

(i)
HR||1, (8)

Lgaze =
1

N

N∑
i=1

||ĝ(i) − g(i)||1, (9)

where superscript i represents the ith image; I(i)
SR represents

the restored super-resolution image and I
(i)
HR represents its HR

counterpart; ĝ(i) represents the estimated 2D gaze vector, and
g(i) represents the ground truth of gaze. The whole objective
function L is a weighted average of Lsr and Lgaze, as shown
in Eq. (10).

L = λ1Lsr + λ2Lgaze (10)

where λ1 and λ2 are weight parameters that are set to 1 and
2 in our experiments.

The backpropagation process is represented by two dotted
lines in Fig. 3(a). The parameters of the Fundamental Module
are updated under the supervision of Lgaze to obtain the
fundamental information from the LR input. At the same time,
the training of the Residual Module is supervised by both
losses, i.e., Lsr and Lgaze. The supervision of Lsr guarantees
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the information extracted from this module is that for image
restoration (i.e., residual information), and the supervision of
Lgaze ensures the restored residual features tend to be benefi-
cial for gaze estimation. The training process of one iteration
is summarized in Algorithm 1 for better understanding.

IV. EXPERIMENTS

A. Datasets and preprocessing
We evaluated the proposed approach on three popular gaze

datasets: MPIIFaceGaze [17], EYEDIAP [18], and RT-Gene
[19].

MPIIFaceGaze: This dataset is a full-face version of the
MPIIGaze dataset. It was collected in real-world conditions
with illumination and head pose variations. It contains 213,659
images in the size of 1280×720 that were captured from 15
subjects by webcams. It provides an evaluation subset, which
contains 3000 samples randomly selected from each subject,
for a total of 45000 samples. Same as other works [11, 13,
17, 25], experiments were carried out on this evaluation subset
and performed a leave-one-person-out cross-validation.

EYEDIAP: This dataset contains a set of video clips of 16
subjects. The videos were collected under two visual target
sessions, i.e., screen target and 3D floating ball. Same as the
routine mentioned in [11, 14], only the screen target sessions
were used for evaluation and were sampled per 15 frames from
videos (640×480), starting to count from the first frame. Note
that data from only 14 subjects can be used in the experiment
due to the lack of videos in the screen target sessions for two
subjects. We randomly divided the 14 participants into five
groups and performed a 5-fold cross-validation.

RT-Gene: This dataset contains 122,531 facial images of
15 subjects with a resolution of 224×224. It was collected
with wearable eye-tracking glasses to acquire accurate gaze
annotations. In order to remove the eye-tracking glasses from
captured images, the authors of the dataset used semantic
inpainting to fill the masked regions of the eye-tracking glasses
with skin texture [19]. As a result, the RT-Gene dataset
provides another inpainted version of the images. We only
used the original dataset for the experiment since there is
too much noise in the inpainted set [12, 14]. We divided the
original dataset into three subsets for 3-fold cross-validation
according to the evaluation protocol provided by the dataset.

For the MPIIFaceGaze and EYEDIAP datasets, we followed
the data processing method proposed in [17] to segment the fa-
cial region from the background and resized the cropped facial
images to 128×128. These were designated as high-resolution
(HR) images. To simulate low-resolution (LR) scenes in real-
world applications, bicubic downsampling with factors of 2,
4, and 8 was applied to the HR images, and three series of
LR images with resolutions of 64×64, 32×32, and 16×16
were obtained. As for the method which requires eye image
input, eye images were cropped from HR images in fixed-
size rectangles (35×21) centered around the landmark and
were downsampled with the same scale factors. Finally, the
LR images were reversed to match the size of the networks’
input using bicubic interpolation. For the RT-Gene dataset,
since the authors have already cropped eyes and faces, we did
not do any further processing except for down-/up-samplings.

B. Implementation Details

The experiments in this work were conducted with the
PyTorch platform. Cuda 10.1 was also employed to speed up
model training.

In CDBN, besides the eight Res G blocks initialized with
ResNet-18 pre-trained on ImageNet, the parameters of the
other parts were randomly initialized using the Kaiming initial-
ization [49]. Optimization was done with the Adam algorithm
[50]. The model was trained for 30 epochs with a batch size of
100. The learning rate was initialized as 0.0005 and reduced
by a factor of 0.1 every ten epochs.

The following state-of-the-art methods were evaluated for
comparison. Experimental settings in the corresponding pub-
lications, including model architectures and hyper-parameters,
were used to implement and test their networks.

• iTracker [26]: A multi-region method that takes two eye
images, the face image, and the face grid, as input to
implement 2D gaze estimation. We simply changed it to
3D gaze estimation by training with 3D gaze labels.

• RT-Gaze [19]: RT-Gaze uses a two-stream VGG-like
CNN to process two eye images and predict a gaze. The
head pose vector is also appended to the FC layers to
introduce head pose information.

• FullFace [11]: A deep neural network with a spatial
weighting mechanism that takes the full facial image as
input.

• Dilated-Net [13]: A three-stream CNN that takes both
eye images and a face image as input. By replacing
traditional convolutions with dilated convolutions in eye
streams, small appearance changes can be captured effec-
tively.

• Gaze360 [48]: Since our experiments were conducted
with static images, we chose the static version of Gaze360
as the baseline model, which takes ResNet-18 as the
backbone model while using Pinball loss.

• I2D-Net [12]: A three-stream CNN that is constructed
with dilated convolution layers. In the eye stream, it
employs a difference layer to eliminate common features
from the left and right eyes of a participant that are not
pertinent to gaze estimation.

• GEDDNet [14]: This is an improved version of Dilated-
Net. It modifies the network structure on the basis of
Dilated-Net and adds a subject-dependent bias to handle
the appearance variation between subjects.

C. Experiment on the MPIIFaceGaze dataset

The performance comparisons of our proposed CDBN and
other state-of-the-art methods on the MPIIFaceGaze dataset
are shown in Table I. The gaze performance was evaluated by
the mean angular error between the predicted gaze vector and
the ground-truth gaze vector (see Eq.(2)). Each row shows the
errors of different methods with the same resolution, and each
column shows the errors of the same method with different
resolutions.

As shown in Table I, the performance of all methods dete-
riorated as the input image size decreased. Our CDBN model
had the slowest degradation trend among all methods. More
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TABLE I
MEAN ANGULAR ERROR AND MODEL SIZE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE MPIIFACEGAZE DATASET.

Image size
Model

iTracker [26] RT-Gaze [19] Full Face [11] Dilated-Net [13] Gaze360 [48] I2D-Net [12] GEDDNet [14] CDBN(ours)

128×128 6.13◦ 4.79◦ 4.86◦ 4.65◦ 4.47◦ 4.38◦ 4.59◦ 4.67◦

64×64 6.25◦ 5.30◦ 4.89◦ 4.93◦ 4.71◦ 4.74◦ 4.78◦ 4.68◦

32×32 6.70◦ 6.59◦ 5.48◦ 5.57◦ 5.34◦ 5.55◦ 5.44◦ 5.13◦

16×16 8.84◦ 9.62◦ 7.25◦ 7.27◦ 7.13◦ 7.35◦ 7.18◦ 6.89◦

#Params 6.29M 31.67M 196.6M 4.71M 11.95M 87.73M 4.05M 13.08M

TABLE II
MEAN ANGULAR ERROR COMPARISON WITH STATE-OF-THE-ART METHODS ON THE EYEDIAP DATASET.

Image size
Model

iTracker [26] RT-Gaze [19] Full Face [11] Dilated-Net [13] Gaze360 [48] I2D-Net [12] GEDDNet [14] CDBN(ours)

128×128 6.53◦ 5.28◦ 5.97◦ 5.46◦ 5.59◦ 5.30◦ 5.32◦ 5.13◦

64×64 6.65◦ 5.34◦ 5.99◦ 5.50◦ 5.68◦ 5.35◦ 5.42◦ 5.21◦

32×32 7.26◦ 5.53◦ 6.13◦ 5.71◦ 5.84◦ 5.60◦ 5.66◦ 5.43◦

16×16 8.20◦ 7.18◦ 7.42◦ 6.69◦ 6.74◦ 6.64◦ 6.65◦ 6.56◦

TABLE III
MEAN ANGULAR ERROR COMPARISON WITH STATE-OF-THE-ART METHODS ON THE RT-GENE DATASET.

Image size
Model

RT-Gaze [19] Full Face [11] Dilated-Net [13] Gaze360 [48] I2D-Net [12] GEDDNet [14] CDBN(ours)

128×128 7.50◦ 8.42◦ 8.40◦ 6.93◦ 8.03◦ 8.17◦ 6.67◦

64×64 7.86◦ 8.51◦ 8.47◦ 7.03◦ 8.13◦ 8.19◦ 6.69◦

32×32 8.81◦ 8.83◦ 8.76◦ 7.49◦ 8.29◦ 8.55◦ 7.08◦

16×16 12.49◦ 11.52◦ 10.53◦ 10.66◦ 10.45◦ 10.39◦ 10.16◦

specifically, when the image size was 128×128, CDBN had
a comparable performance compared to other state-of-the-art
methods. When the image size was 64×64, the angular error of
CDBN was slightly better than that of competitive methods.
When the image size was 32×32, the performance of other
methods worsened rapidly due to extensive loss of information
of the input image. CDBN caught facial prior knowledge by
employing the residual branch, used it to reconstruct part of
the gaze features, and thus maintained superior performance.
Compared to other methods, CDBN obtained an angular error
of 5.13◦ , which was 3.9%, 5.7%, 6.4%, 7.6%, and 7.9% lower
than Gaze360, GEDDNet, FullFace, I2D-Net, and Dilated-Net,
respectively. When the image size was reduced to 16×16,
CDBN was still in the lead and obtained an angular error of
6.89◦, which was 3.4%, 4.0%, 5.0%, 6.3%, and 5.2% lower
than those five methods in the same order.

We also list the size of each model in the bottom row of
Table I. The model size of CDBN is smaller than FullFace,
I2D-Net, and RT-Gaze, and is close to the rest of models.
CDBN achieved excellent performance with a reasonable
model size.

D. Experiment on the EYEDIAP and the RT-GENE datasets

To further evaluate the performance of CDBN and other
state-of-the-art methods, we conducted experiments on two

other popular datasets, i.e., EYEDIAP and RT-GENE. The
results are shown in Table II and Table III.

On the EYEDIAP dataset, the proposed CDBN obtained
competitive results. It obtained the smallest angular error for
all four image resolutions, and the performance improvement
was the most significant for the image size of 64×64 and
32×32. When the image size was 64×64, CDBN obtained the
smallest angular error of 5.21◦, which was 2.6%, 3.9%, 5.3%,
8.3%, and 13.0% lower than I2D-Net, GEDDNet, Dilated-Net,
Gaze360, and FullFace, respectively. When the image size was
reduced to 32×32, CDBN obtained the smallest angular error
of 5.43◦, which was 3.0%, 4.1%, 4.9%, 7.0%, and 11.4% lower
than those five methods in the same order. The experimental
result shows that our proposed method effectively alleviated
performance degradation as image size decreased.

The RT-GENE dataset is more challenging than the other
two because it has larger head-pose and gaze-angle variation.
Furthermore, the occlusion of eye-tracking glasses makes the
network harder to learn valuable features for gaze estimation.
As reported in Table III, CDBN had superior performance on
RT-GENE compared to other models for the image size of
128×128, 64×64, and 32×32. In particular, the performance
improvement of CDBN was most prominent for 32×32.
CDBN obtained an angular error of 7.08◦, which was 5.5%,
14.6%, 17.2%, 19.2%, and 19.8% lower than Gaze360, I2D-
Net, GEDDNet, Dilated-Net, and FullFace, respectively. When
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TABLE IV
MEAN ANGULAR ERROR COMPARISON WITH DIFFERENT

CONFIGURATIONS OF CDBN ON THE MPIIFACEGAZE DATASET.

Model
Image size 64×64 32×32 16×16

Fundamental branch 4.75◦ 5.29◦ 7.08◦

Residual branch 4.92◦ 5.35◦ 7.21◦

Dual branch 4.68◦ 5.13◦ 6.89◦

TABLE V
MEAN ANGULAR ERROR COMPARISON WITH DIFFERENT

CONFIGURATIONS OF CDBN ON THE EYEDIAP DATASET.

Model
Image size 64×64 32×32 16×16

Fundamental branch 5.19◦ 5.44◦ 6.69◦

Residual branch 5.87◦ 5.95◦ 6.75◦

Dual branch 5.21◦ 5.43◦ 6.56◦

TABLE VI
MEAN ANGULAR ERROR COMPARISON WITH DIFFERENT

CONFIGURATIONS OF CDBN ON THE RT-GENE DATASET.

Model
Image size 64×64 32×32 16×16

Fundamental branch 6.83◦ 7.29◦ 10.42◦

Residual branch 8.06◦ 8.32◦ 11.20◦

Dual branch 6.69◦ 7.08◦ 10.16◦

the image size was reduced to 16×16, the performance of
CDBN took a hit but was still the most accurate. It obtained
an angular error of 10.16◦, with a performance improvement
ranging from 2.2% (lower than GEDDNet) to 18.7% (lower
than RT-Gaze).

E. Ablation Study

In this section, ablation experiments were performed by re-
moving one of the two branches to investigate the contribution
of each branch in CDBN. The results are shown in Table IV to
Table VI. In the fundamental branch model, we only used the
Fundamental Module to extract features. In the residual branch
model, we only used the Residual Module to extract features.
We employed both modules in the dual-branch model.

Table IV shows that the dual-branch model had the best
performance on MPIIFaceGaze, while the fundamental-branch
model was the second and the residual-branch model was
the last. It demonstrates that the deletion of either branch
would negatively impact the performance of CDBN at low
resolutions. The better performance of the fundamental-branch
model than the residual-branch model indicates that features
extracted by the fundamental branch contained more informa-
tion and played a dominant role in gaze estimation.

A similar conclusion can be made on the other two datasets.
As shown in Table V, When the image size was 64×64, the
fundamental-branch model obtained comparable performance
to the dual-branch model on EYEDIAP, while the residual-
branch model performed worse. When the image size was

TABLE VII
THE NUMBER OF PARAMETERS AND RUNTIMES OF FOUR POPULAR GAZE

ESTIMATION NETWORKS AND CDBN.

Model #Params Images / sec.
GPU CPU

Gaze360 [48] 11.95M 214.8 21.0
iTracker [26] 6.29M 317.2 31.2

Dilated-Net [13] 4.71M 147.4 16.4
GEDDNet [14] 4.05M 156.3 18.5

CDBN(ours) 13.08M 117.8 13.9

reduced to 32×32 or 16×16, the dual-branch model began
to show its efficiency and achieved better results compared to
the single-branch model. Table VI also shows that the dual-
branch model performed better than the single-branch model at
three low resolutions on RT-GENE. It is worth mentioning that
the performance improvement of the dual-branch model on
EYEDIAP was less than that on the other two datasets, proving
that the dual-branch model performed better with more data
support.

F. Visualization

In order to intuitively understand the effect of CDBN, some
visualization results are shown in Fig. 4 to Fig. 6 in this
section.

Fig. 4 visualizes the input LR images, the reconstructed SR
images, and the images with the predicted gaze directions on
the three employed datasets. Comparison between the input
LR images and the reconstructed SR images shows that facial
details, such as accurate facial component shapes and tex-
tures and especially eyes, were recovered successfully by the
residual branch. These facial details, or residual information,
serve as complementary information to the LR input and
significantly contribute to low-resolution gaze estimation. As
shown in the images with the predicted gaze directions, with
the assistance of residual information, our gaze estimation
method obtained promising results even if the input image
is blurred. Fig. 5 illustrates the visualized comparison of
predicted gaze directions when the input size was 32×32.
It shows that CDBN obtained more accurate predicted gaze
directions compared to other competing methods.

We further visualized the output feature maps of the dual-
branch in Fig. 6. Fig. 6(a) depicts the selected sample of an
original HR image from the MPIIFaceGaze dataset, and Fig.
6(b) depicts the corresponding LR image at the resolution of
16×16. The LR image was fed into CDBN to extract the
fundamental and residual features. As shown in Fig. 6(c), the
Fundamental Module paid more attention to global represen-
tation. Features from this module described the appearance
and contour of the face from a global perspective, containing
information about the flat regions in a facial image. In contrast,
Fig. 6(d) shows that the Residual Module concentrated more
on edge contents. Features from this module described the
edges of facial components, containing information about the
sudden changes in a facial image, such as the edges of the
eyeballs in (2) and (12) of Fig. 6(d). The two types of features
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(a) Visualization of the MPIIFaceGaze dataset

(b) Visualization of the EYEDIAP dataset

(c) Visualization of the RT-GENE dataset

Fig. 4. Visualization of the input and output of CDBN on the three employed datasets. For each specific input resolution, the leftmost image is the LR input,
the middle image is the reconstructed SR image, and the rightmost image shows the predicted gaze drawn on the LR input. The yellow arrow indicates the
ground truth gaze and the red arrow indicates the estimated gaze. All images are resized to 128×128 for display.

Fig. 5. Comparison of predicted gaze directions for the input size of 32×32. Three examples, one from each dataset, are included. The yellow arrow indicates
the ground truth gaze and the red arrow indicates the estimated gaze.

complement each other and positively impact low-resolution
gaze estimation.

G. Processing Speed

To further investigate the feasibility of the proposed method
in real-world intelligent systems, we conducted an experiment
to test the processing speed of the proposed network. Four
state-of-the-art networks with a similar number of parameters
were compared with ours on both GPU and CPU platforms.

The GPU platform employed a single NVIDIA TITAN Xp.
The version of CUDA library was 10.1. The CPU platform
used an Intel Core i7-6700 @ 3.40 GHz processor.

Each network was evaluated on the same target platform ten
times to get reliable experimental results. The average runtime
of each network is shown in Table VII. It shows that the actual
inference speed of other competitive networks was faster than
CDBN since CDBN has two branches to perform. However,
this dual-branch design captures more helpful information
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(a) HR Image

(b) LR Image (c) Fundamental Structural Feature Maps (d) Residual Structural Feature Maps

Fig. 6. Visualization of dual-branch feature maps. Only the first 16 feature maps are shown. (a) A sample of original HR image; (b) The corresponding input
LR image with the resolution of 16×16; (c) Feature maps extracted from fundamental branch; (d) Feature maps extracted from residual branch.

(a) Separated connection

(b) Joint-training serial connection

(c) Joint-training parallel connection

Fig. 7. Three topologies of super-resolution network (SRNet) and gaze
network (GazeNet).(a) The topology of the separated connection model; (b)
The topology of the joint-training serial connection model; (c) The topology
of the joint-training parallel connection model.

and provides superior performance. Compared to iTracker,
the performance improvement of CDBN was up to 20%
for the image size of 32×32 on MPIIFaceGaze (5.13◦ vs.
6.70◦ or a 23.4% improvement) and EYEDIAP (5.43◦ vs.
7.26◦ or a 25.2% improvement). Compared to Dilated-Net and
GEDDNet, the performance improvement of CDBN for the
image size of 32×32 on MPIIFaceGaze was 7.9% (5.13◦ vs.
5.57◦) and 5.7% (5.13◦ vs. 5.44◦), respectively.

H. Network Topology

Since there are many ways to combine the SR task with
the gaze estimation task, this section aims to study the
impact of different network topologies. For the convenience
of description, the combination of the Residual Module and
the Reconstruction Module is defined as SRNet, and the
combination of other modules is defined as GazeNet. Fig. 7
shows three potential topologies of these two nets.

In the topology shown in Fig. 7(a), the super-resolution
process is performed with SRNet first, then the gaze is
estimated from the reconstructed SR image with GazeNet.
SRNet and GazeNet are optimized separately. The topology of
Fig. 7(b) connects SRNet and GazeNet in series, and both nets

TABLE VIII
MEAN ANGULAR ERROR COMPARISON OF THREE NETWORK TOPOLOGIES

ON THE MPIIFACEGAZE DATASET.

Model
Image size 64×64 32×32 16×16

Separated connection 4.78◦ 5.60◦ 7.99◦

Joint-training serial connection 4.64◦ 5.30◦ 7.03◦

Joint-training parallel connection 4.68◦ 5.13◦ 6.89◦

are trained together in an end-to-end manner. Our proposed
method is depicted in Fig. 7(c), where two networks are
connected in parallel. The HR image and the gaze label are
used to supervise the training phase in all three topologies.

We conducted an experiment on the MPIIFaceGaze dataset
with the same experimental configuration mentioned in Sec-
tion IV-B. The experimental results are listed in Table VIII.
When the image size was 64×64, the three topologies had
comparable accuracy. When the image size was reduced to
32×32 or 16×16, there were apparent differences in the
performance of the three topologies. More specifically, the
separated connection model (Fig. 7(a)) obtained the worst
performance among the three models. The reason was that the
separately optimized strategy made the optimization direction
inconsistent for both tasks. The joint-training serial connection
model (Fig. 7(b)) performed better than the separate connec-
tion model, demonstrating the importance of joint tuning. Our
proposed method (Fig. 7(c)) obtained the best performance as
it employed a parallel connection of the SRNet and GazeNet,
where the gaze label supervised the super-resolution process
more directly than the other two models. It helped reconstruct
more efficient details biased towards the gaze estimation task.

V. CONCLUSION

In this paper, we evaluate existing gaze estimation methods
and find their disadvantages in dealing with low-resolution
images. We then propose a novel network named CDBN to ad-
dress this low-resolution challenge. The proposed CDBN em-
ploys a dual-branch design to alleviate the lack of information
in the LR image and improve the estimation accuracy of gaze
direction. In CDBN, the fundamental branch directly extracts
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features from the LR image. The residual branch recovers the
residual features as a supplement for gaze estimation based on
the facial prior knowledge. The optimization of the residual
branch is supervised together by pairs of LR/HR images and
gaze labels, guaranteeing that the recovered residual features
are beneficial to the gaze estimation. Two features are then
concatenated and mapped into a high-level semantic feature
space in the subsequent module. Gaze regression is finally
performed on the semantic features.

We evaluated our method on three widely used gaze
datasets, MPIIFaceGaze, EYEDIAP, and RT-GENE, at three
different low resolutions. The experimental results demon-
strated that our method achieves a lower angular error with
a low-resolution input compared to other state-of-the-art ap-
proaches. The ablation study and network topology results
further prove the effectiveness of the dual-branch design. We
also tested our network in terms of inference speed. We believe
the inference speed of our proposed method can be further
improved with some optimization techniques, which is part of
our future work.
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