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Abstract
In this paper, we present a covariance regularized probabilis-
tic linear discriminant analysis (CR-PLDA) model for text in-
dependent speaker verification. In the conventional simplified
PLDA modeling, the covariance matrix used to capture the
residual energies is globally shared for all i-vectors. However,
we believe that the point estimated i-vectors from longer speech
utterances may be more accurate and their corresponding co-
variances in the PLDA modeling should be smaller. Similar
to the inverse 0th order statistics weighted covariance in the
i-vector model training, we propose a duration dependent nor-
malized exponential term containing the duration normalizing
factor µ and duration extent factor ν to regularize the covariance
in the PLDA modeling. Experimental results are reported on the
NIST SRE 2010 common condition 5 female part task and the
NIST 2014 i-vector machine learning challenge, respectively.
For both tasks, the proposed covariance regularized PLDA sys-
tem outperforms the baseline PLDA system by more than 13%
relatively in terms of equal error rate (EER) and norm minDCF
values.
Index Terms: PLDA, covariance regularization, i-vector,
speaker verification, duration

1. Introduction
Total variability i-vector modeling has gained significant atten-
tion in both speaker verification (SV) and language identifica-
tion (LID) domains due to its excellent performance, compact
representation and small model size [1, 2, 3]. In this model-
ing, first, zero-order and first-order Baum-Welch statistics are
calculated by projecting the MFCC features on those Gaussian
Mixture Model (GMM) components using the occupancy pos-
terior probability. Second, in order to reduce the dimensionality
of the concatenated statistics vectors, a single factor analysis
is adopted to generate a low dimensional total variability space
which jointly models language, speaker and channel variabili-
ties all together [1]. Third, within this i-vector space, variability
compensation methods, such as Within-Class Covariance Nor-
malization (WCCN) [4], Linear Discriminative Analysis (LDA)
and Nuisance Attribute Projection (NAP) [5], are performed
to reduce the variability for the subsequent modeling methods
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(e.g., Support Vector Machine [6], Sparse Representation [7],
Probabilistic Linear Discriminant Analysis (PLDA) [8, 9, 10],
etc.).

Conventionally, in the i-vector framework, the tokens for
calculating the zero-order and first-order Baum-Welch statistics
are the MFCC features trained GMM components. Such choice
of token units may not be the optimal solution. Recently, the
generalized i-vector framework [11, 12, 13, 14, 15] has been
proposed. In this framework, the tokens for calculating the
zero-order statistics have been extended to tied triphone states,
monophone states, tandem features trained GMM components,
bottleneck features trained GMM components, etc. The features
for calculating the first-order statistics have also been extended
from MFCC to feature level acoustic and phonetic fused fea-
tures [13]. The phonetically-aware tokens trained by supervised
learning can provide better token separation and discrimination.
This enables the system to compare different speakers’ voices
token by token with more accurate token alignment, which leads
to significant performance improvement on the text independent
speaker verification task [11, 12, 13, 14, 15].

After i-vectors are extracted, among the aforementioned
supervised learning techniques, PLDA is widely adopted and
considered as the state-of-the-art back-end modeling approach
[8, 9, 10, 16, 17, 18, 19, 20]. PLDA is a generative model that
incorporates both within-speaker and between-speaker varia-
tions. Generally, we model the i-vectors with a Gaussian dis-
tribution assumption(G-PLDA). After we learned the model pa-
rameters by expected maximization (EM) algorithm, the scor-
ing is based on a hypothesis testing framework.

Recently, It is shown in[21] that the performance of PLDA
on short utterance is degraded. Duration variability has also
been investigated in the i-vector space using PLDA model
[17][22][23][24]. This motivates us to incorporate the speech
duration information directly into the PLDA model training and
generate a more accurate model.

In the standard simplified PLDA modeling [10], the within-
speaker variations can be considered as the residual that can’t be
interpreted by the speaker space. The covariance matrix used to
model these residuals is globally shared by all i-vectors, no mat-
ter whether the corresponding utterances’ durations are long or
short. We believe that the point estimated i-vectors from longer
speech utterances may be more accurate and their correspond-
ing covariances in the PLDA modeling should be smaller. Mo-
tivated by the inverse 0th order statistics weighted covariance
in the i-vector model training[25][26], we propose a duration
dependent normalized exponential term containing the duration



normalizing factor µ and duration extent factor ν to regularize
the covariance in the PLDA modeling. The numerical value of
µ and ν are tuned to achieve good performance. Specially, when
ν is set to constant 0, this model converges back to the baseline
PLDA model.

2. Methods
2.1. I-vector

In the total variability space, there is no distinction between
the speaker effects and the channel effects. Rather than sep-
arately using the eigenvoice matrix V and the eigenchannel
matrix U [27], the total variability space simultaneously cap-
tures the speaker and channel variabilities[2]. Given a C
component GMM UBM model λ with λc = {pc, uc ,Σc},
c = 1, ..., C and an utterance with a L frame feature sequence
{y1, y2, ..., yL}, the 0th and centered 1st order Baum-Welch
statistics on the UBM are calculated as follows:

Nc =

L
X

t=1

(P (c|yt , λ) (1)

Fc =

L
X

t=1

(P (c|yt , λ)(yt − uc) (2)

where c = 1, ..., C is the GMM component index and and
P (c|yt , λ) is the occupancy probability for yt on λc. The cor-
responding centered mean supervector F̃ is generated by con-
catenating all the F̃c together:

F̃c =

L
P

t=1

(P (c|yt , λ)(yt − uc)

L
P

t=1

(P (c|yt , λ)

(3)

The centered GMM mean supervector F̃ can be projected as
follows:

F̃ → Tx (4)
where T is a rectangular total variability matrix of low rank
and x is the so-called i-vector[2]. Considering a C-component
GMM and D dimensional acoustic features, the total variabil-
ity matrix T is CD × K matrix which can be estimated the
same way as learning the eigenvoice matrix V in [28]except
that here we consider that every utterance is produced by a new
speaker[2].

Given the centered mean supervector F̃ and total variability
matrix T , the i-vector is computed as follows[2]:

x = (I + T tΣ−1NT )−1T tΣ−1NF̃ (5)

where N is a diagonal matrix of dimension CD × CD whose
diagonal blocks are NcI ,c = 1, ..., C and Σ is a diagonal co-
variance matrix of dimension CD×CD estimated in the factor
analysis training step. It models the residual variability not cap-
tured by the total variability matrix T [2]. Covariance Σ is also
updated iteratively.

2.2. PLDA Baseline

2.2.1. PLDA Training

We assume that the training data consists of j utterances from i
speakers and denote the jth i-vector of the ith speaker by ηij .
We assume that the data are generated in the following way[8]:

ηij = φβi + εij (6)

The speaker term φβi is dependent on the speaker index
and the noise term εij is independent for every i-vector and used
to model the within-speaker variabilities.

Suppose there are Mi i-vectors from the ith speaker, the
sufficient statistics are denoted as follows:

exi =

Mi
X

j=1

(ηij ) (7)

F i =
exi

Mi
(8)

For the ith speaker the prior and conditional distribution is
defined as following multivariate Gaussian distributions:

P (F i|βi) = N (φβi,
Σ

Mi
) P (βi) = N (0, I) (9)

The Expectation Maximization(EM) algorithm is employed
in the modeling training. In the E-step, the posterior distribution
of the hidden variable βi given the observed Fi is

P (βi|F i) = N ((I + φT MiΣ
−1φ)−1φT MiΣ

−1Fi ,

I + φT MiΣ
−1φ)

(10)

Then, in the M-step, to maximize the conditional expecta-
tion of the following log-likelihood,

log {
N

Y

i=1

Mi
Y

j=1

(P (ηij , βi)} (11)

the updated φ and Σ are calculated as follows

φ =

„

X

i

MiF iE(βT
i )

«„

X

i

MiE(βiβ
T
i )

«−1

(12)

Σ =

P

i

P

j

ηij [η
T
ij − E(βi)

T φT ]

P

i

Mi
(13)

2.2.2. PLDA Scoring

In the speaker verification task, given a trial with two i-vectors
ηi and ηj , we are interested in testing two alternative hypothe-
ses. H1: both ηi and ηj are from the same speaker and they
share the same speaker identity latent variable βi = βj ; H0:
they come from different speakers and the underlying hidden
variables βi and βj are different[8][10]. The verification score
can now be computed as the loglikelihood ratio of these two
hypotheses.

score = log
P (ηi, ηj |H1)

P (ηi|H0)P (ηj |H0)
(14)

Since the corresponding distribution are all multivariate
Gaussians, the score can be denoted in quadratic terms[10]:

score = log N (

»

ηi

ηj

–

;

»

0
0

–

,

»

Σtot Σac

Σac Σtot

–

)

− log N (

»

ηi

ηj

–

;

»

0
0

–

,

»

Σtot 0
0 Σtot

–

),

= ηT
i Qηi + ηT

j QηT
j + 2ηT

i Pηj + const,

(15)



where Σtot, Σac,P ,Q are denoted as follows:

Σtot = φφT + Σ

Σac = φφT

Q = Σ−1
tot − (Σtot − ΣacΣ

−1
totΣac)

−1

P = Σ−1
totΣac(Σtot − ΣacΣ

−1
totΣac)

−1

(16)

2.3. Covariance Regularized PLDA

In the PLDA model training, to consider the duration variabil-
ities among different utterances, we add a duration dependent
normalized exponential term on top of the conventional covari-
ance φ to model the variance of εij , assuming that those utter-
ances with longer duration generally have smaller covariances.

Σ → (
dij

µ
)−νΣ (17)

where µ is a duration normalizing factor, and ν is a duration
extent factor that describes the regularization strength. We can
adapt these two coefficients to discover the influence of the du-
ration dependent covariance regularization to the PLDA system
performance. It is worth nothing that when µ 6= 0 and ν is set
to 0, the regularized covariance becomes the original globally
sharedΣ.

Hence the conditional distribution of the ith speaker’s av-
erage i-vector Fi is regularized as following :

P (F i|βi) = N (φβi,

Mi
P

j=1

(
dij

µ
)−ν

M2
i

Σ) (18)

And the posterior distribution of the hidden variable β
given the observed F is:

P (βi|F i) =

N

„

I + φT Σ−1 M2
i

Mi
P

j=1

(
dij

µ
)−ν

φ

«−1

φT Σ−1 M2
i

Mi
P

j=1

(
dij

µ
)−ν

F i,

„

I + φT Σ−1 M2
i

Mi
P

j=1

(
dij

µ
)−ν

φ

«−1ff

(19)

The complete data log likelihood of all the training utter-
ance is denoted as follows:

J =

N
X

i=1

Mi
X

j=1

{log(P (ηij |βi)) + log(P (βi))} (20)

In the M-step, after removing those non-relevant items, we
need to maximize the following conditional expected complete
data log likelihood E(J):

E(J) =

N
X

i=1

Mi
X

j=1

{− log |Σ|
2

−
ηT

ij(
dij

µ
)νΣ−1ηij

2

−
(

dij

µ
)νtr(φE(βiβ

T
i )φ

T
Σ−1)

2
+ (

dij

µ
)νηT

ijΣ
−1φE(βi)}

(21)

By letting the derivatives of E(J) towards φ and Σ−1 to
be 0, we can get regularized updating equation for φ and Σ as
following:

φ = (
X

i

X

j

(
dij

µ
)νηijE(β)T )(

X

i

X

j

(
dij

µ
)−νE(βiβ

T
i ))−1

(22)

Σ =

P

i

P

j

(
dij

µ
)νηij(η

T
ij − E(βi)

T φT )

P

i Mi
(23)

when u 6= 0 and v is set to 0, the whole aforementioned covari-
ance regularized training framework becomes back the original
solutions as in 2.2.1.

Among µ and ν these two parameters, ν plays a more im-
portant role because µ only serves as a constant reference dura-
tion used for pre-normalization. In order to make ν more com-
parable on different data sets, we set µ as the averaged duration
of all the PLDA training utterances without loss of generality.

Σ → (
dij

µ
)νΣ (24)

For the CR-PLDA scoring, we ignore the duration informa-
tion and still adopt the baseline PLDA scoring method in 2.2.2
due to its simplification, robustness and efficiency.

3. Experimental Results
3.1. NIST SRE 2010

We first conducted experiments on the NIST 2010 speaker
recognition evaluation(SRE) corpus[29]. Our focus is the fe-
male part of the common condition 5(a subset of tel-tel) in the
core task with the original trials(not the extended ones). We
used the equal error rate(EER), the 2008(old) and 2010(new)
normalized minimum decision cost value(norm minDCF) as the
metrics for evaluation[29]. We adopt the hybrid-GMM-hybrid
feature level fusion strategy in[13]. For cepstral feature extrac-
tion, a 25ms Hamming window with 10ms shifts was adopted.
Each utterance was converted into a sequence of 36- dimen-
sional feature vectors, each consisting of 18 MFCC coefficients
and their first derivatives. For phonetic feature extraction, we
employed an English phoneme recognizer[30] to perform the
voice activity detection(VAD) and output the frame level mono-
phone states posterior probability. After log, PCA and MVN,
the resulted 52 dimensional tandem features are fused with
MFCC at the feature level to get the 88 dimensional hybrid
feature[13]. Feature warping is applied to mitigate variabilities.

The i-vector training data for the NIST 2010 task include
Switchboard II part1 to part3, NIST SRE 2004, 2005, 2006 and
2008 corpora on the telephone channel. We trained a genderde-
pendent GMM UBM model with 1024 mixture components.
The PLDA models were trained on a subset of Switchboard II
part1 to part3 and NIST 2008 corpora on the telephone chan-
nel, which amounted to 1,898 speakers and 15,480 speech files.
The averaged post VAD duration for these utterances is 9.55
seconds. The dimensionality of the i-vectors and the rank of the
speaker-specific subspace in the PLDA model are 600 and 150,
respectively.

The performances of the proposed CR-PLDA systems on
the NIST SRE 2010 common condition 5 female part task with
different ν parameters are shown in Table 1. It is observed that
the CR-PLDA system with ν = 1.5 outperformed the PLDA



baseline by 20% and 14% relative error reduction in terms of
EER and norm new minDCF, respectively. Furturemore, Fig-
ure 1 shows the Detection Error Trade-off (DET) curves of the
CR-PLDA system (ID 7) and the baseline PLDA system (ID 1).
We can find out that the proposed CR-PLDA method achieves
significant performance enhancement.

Table 1: Performance of the proposed CR-PLDA systems on
the NIST SRE 2010 common condition 5 female part task

ID Coefficient
EER
(%)

norm
minDCF

new[29] old[31]
1 ν = 0 2.82 0.311 0.126
2 ν=0.25 2.61 0.288 0.125
3 ν=0.5 2.81 0.291 0.127
4 ν=0.75 2.84 0.294 0.125
5 ν=1 2.56 0.274 0.126
6 ν=1.25 2.32 0.271 0.126
7 ν=1.4 2.31 0.266 0.126
8 ν = 1.5 2.26 0.268 0.125
9 ν=1.75 2.26 0.280 0.125
10 ν=2 2.40 0.271 0.120
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Figure 1: DET curves of the baseline PLDA system(ID 1) and
the CR-PLDA system (ID 7) on the NIST SRE 2010.

3.2. NIST machine learning i-vector challenge 2014

For the NIST 2014 i-vector challenge, the 600 dimensional ivec-
tors were trained by previous years NIST SRE data and pro-
vided by the organizers. Along with each i-vector, utterance
duration information was also provided. The development data
containing 36,573 speech files and 4,959 speakers were used
to train the PLDA model. In the testing phase, there are 6,530
target i-vectors from 1,306 speakers and 9,634 test i-vectors.
The trials were divided into two separate subsets, namely the
progress subset, and the evaluation subset [32].

The performances of the proposed CR-PLDA systems on
the NIST 2014 i-vector machine learning challenge are shown
in Table 2. The baseline system and the best performing sys-
tem on both progress and evaluation sets are highlighted. When
ν is set to 1.5, the proposed CR-PLDA system achieves 13%
and 9% relative EER reduction against the PLDA baseline on
the the progress and evaluation subset, respectively. Figure 2
demonstrates a smooth and consistent improvement of the pro-

posed CR-PLDA system along the DET curves for both sets. It
is worth noting that the best performance was achieved when
ν = 1.5 rather than ν = 1. In the i-vector training, the co-
variance is weighted by the inverse 0th order statistics (ν = 1).
Our future works would include applying different covariance
regularization parameters in the i-vector model training.

Table 2: Performance of the proposed CR-PLDA systems on
the NIST 2014 i-vector machine learning challenge

ID Coefficient
EER
(%)

norm
minDCF[32]

prog eval prog eval
1 ν = 0 3.19 2.85 0.252 0.233
2 ν=0.25 3.22 2.81 0.252 0.231
3 ν=0.5 3.19 2.77 0.251 0.229
4 ν=0.75 3.13 2.71 0.248 0.222
5 ν=1 3.10 2.62 0.243 0.220
6 ν=1.25 3.10 2.62 0.255 0.220
7 ν=1.4 2.89 2.58 0.241 0.220
8 ν = 1.5 2.76 2.58 0.240 0.221
9 ν=1.75 2.86 2.62 0.257 0.237

10 ν=2 3.25 2.85 0.304 0.292
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Figure 2: DET curves of the baseline PLDA system(ID 1)
and the CR-PLDA system(ID 7) on the NIST i-vector machine
learning challenge 2014.

4. Conclusion
This paper presents a covariance regularized PLDA training
method by taking the duration information directly into the
PLDA modeling. We believe that the point estimated i-vectors
from longer speech utterances may be more accurate and their
corresponding covariances in the PLDA modeling should be
smaller. Similar to the inverse 0th[28] order statistics weighted
covariance in the i-vector model training, we propose a duration
dependent normalized exponential term containing the duration
normalizing factor and the duration extent factor to regularize
the covariance in the PLDA modeling. If duration extent factor
equals to 0, the corresponding CR-PLDA method is exactly the
same as the conversional simplified PLDA baseline. The best
performance is achieved when the duration normalizing factor
and the duration extent factor are set to the averaged duration
and 1.5, respectively.
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