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Abstract
The idea of developing unsupervised learning methods has re-
ceived significant attention in recent years. An important ap-
plication is whether one can train a high quality speaker veri-
fication model given large quantities of unlabeled speech data.
Unsupervised learning methods such as data clustering often
play a central role since they are able to analyze the underlying
latent patterns without any supervision information. In this pa-
per, we focus on developing an effective clustering method for
speech data. We propose the locality constrained transitive dis-
tance, a distance measure which better models speech data with
arbitrarily shaped clusters. We also propose a robust top-down
clustering framework on top of the distance measure to gener-
ate accurate cluster labels. Experimental results show the good
performance of the proposed method.
Index Terms: clustering, speaker verification, unsupervised
learning, i-vector, transitive distance

1. Introduction
With the fast growth of digital media and data storage, obtain-
ing data becomes relatively easy, giving rise to the so-called
“data deluge”. In reality however, large quantities of data are
often not sufficiently labeled and the labor cost of labeling can
be high. Today the growing speed of annotation capability can
hardly match the explosive increase of media contents, leaving
large amounts of unlabeled data. An important problem, there-
fore, is whether one develop machine learning techniques that
lead to less human annotation efforts. Such problem has re-
cently received significant attention. Learning methods such as
domain adaptation and semi-supervised learning were proposed
to partially address this problem. In domain adaptation, models
originally built from the labeled out-of-domain data are adapt-
ed to the target domain with unlabeled in-domain data [1] [2].
On the other hand, semi-supervised learning can be applied on
database with small amounts of labeled data and large amounts
of unlabeled data. Despite the reduced label requirement, cer-
tain amounts of labels are still needed for both methods.

Recently the NIST i-vector Machine Learning Challenge
2014 [3] organized competitions to design unsupervised speak-
er verification systems with fully unlabeled i-vector develop-
ment dataset. Since outside data are not allowed and no devel-
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opment labels are provided, both domain adaptation and semi-
supervised learning can not be directly applied under such set-
ting. Unsupervised learning methods, particularly clustering
techniques were widely adopted by many competition teams
as a key step in their proposed systems. [4, 5, 6, 7, 8]. More
specifically, clustering in general plays the role of feeding the
backend with estimated data labels or analyzed latent structures.
Therefore, designing appropriate clustering heuristics can di-
rectly benefit the performance of backend in a unsupervisedly
trained speaker verification system.

Clustering is one of the most fundamental and important
machine learning problems. A number of clustering method-
s were proposed, ranging from the well known k-means and
graph-based approaches [9], to mode seeking [10, 11, 12, 13],
spectral clustering [14, 15, 16], and subspace clustering [17].
Spectral clustering methods were widely used for their excellent
performance, one of the key reasons being the ability to discov-
er non-convex latent structures. However spectral clustering is
not the only family of methods that can handle clusters with
arbitrary shapes. Transitive distance clustering provides an ele-
gant non-eigendecomposition alternative to handling arbitrarily
shaped clusters. Specifically, transitive distance emphasizes on
the connectivity rather than absolute distance between pairwise
data samples. This is achieved by solving a minimax problem
in which one first finds the largest hops (edges) along all possi-
ble connecting paths and then defines the pairwise distance as
the minimum largest hop among all paths. [18] proposed the
concept of transitive distance and an agglomerative bottom-up
approximation for pairwise distance clustering. Other impor-
tant works include the connectivity kernel [19], transitive clo-
sure [20], transitive affinity [21, 22] and the top-down transitive
distance clustering framework with “k-means duality” [23].

An interesting aspect is that there exist some inherent con-
nections between transitive distance and the single linkage al-
gorithm, while the latter is widely used in the speech commu-
nity [4, 6]. It was proved that if the maximum possible path
order (number of nodes forming a path) is equal to N which is
the number of data, the transitive distance edges always lie on
the minimum spanning tree (MST). Despite such resemblance,
transitive distance clustering is not necessarily identical to sin-
gle linkage algorithm. Single linkage algorithm seeks to for-
m clusters by cutting the maximum edges on an MST. Such
bottom-up greedy heuristic not always makes a stable strate-
gy to correctly generate cluster configurations, especially under
noise. On the other hand, transitive distance aims at embedding
the original data into another kernel space with better cluster
shapes, which resembles eigendecomposition in spectral clus-
tering. With a top-down clustering framework [23], transitive



distance clustering can be regarded as an approximate spectral
clustering, behaving much more robust than many bottom-up
methods. Readers who are interested in algorithm details and
properties may kindly refer to [23].

Basically, conventional transitive distance can be regarded
as an opposite extreme to Euclidean distance and cosine dis-
tance in cluster shape flexibility. The former prefers data with
low intrinsic dimensions (having elongated or manifold-shaped
clusters) while the latter two in general works best on data with
convex-like clusters. Although top-down clustering can render
more robustness under noise, conventional transitive distance
loses considerable amount of discriminative information for da-
ta points that are “really far away”. We will discuss later why
this is the case in speech data clustering. In this paper, we
propose the locality constrained transitive distance (LCTD), a
distance measure which inherits the cluster-shape flexibility of
transitive distance at local scale, while simultaneously incor-
porating discriminative information at global scale. We also
propose a more robust top-down clustering framework which
further improves the clustering performance. Experimental re-
sults show that LCTD works better than both transitive distance
and cosine distance, and that the proposed clustering method
achieves excellent performance on all experiment dataset with
considerable improvement over baselines.

2. Top-down Transitive Distance Clustering
To handle data with arbitrary cluster shapes, a common way is
to use kernel method to create the following nonlinear mapping:

φ : V ⊂ Rl 7→ V ′ ⊂ Rs, (1)

such that the clusters in Rs has more compact cluster shapes.
Spectral clustering obtains such nonlinear mapping through
eigendecomposition on the normalized variants of its affinity
matrix (Such as a Laplacian matrix). On the other hand, tran-
sitive distance implicitly builds a non-linear mapping similar to
spectral clustering without eigendecomposition. The transitive
distance for any pairwise data is defined as follows [23]:

Definition 1. Given certain pairwise distance d(·, ·), the tran-
sitive distance is defined as:

DT (xp, xq) = min
P∈P

max
e∈P
{d(e)}, (2)

where P is the set of paths connecting xp and xq with at most n
nodes. In addition:

max
e∈P
{d(e)} = max

(xu,xv)∈P
{d(xu, xv)}. (3)

According to the definition, transitive distance explores the
connectivity between pairwise data by searching for a path that
connects them with the minimum gap1. The way how transitive
distance handles arbitrarily-shaped clusters is to reduce intra-
cluster distances: Even if the Euclidean distance is far away, two
data samples are close if there is at least one path that strongly
correlates them.

Now given any pair of data samples, the next step is to lo-
cate the so-called “transitive edge”: the very gap that determine
the pairwise transitive distance according to definition. This
seems to be almost a complicated searching problem as there
are almost infinitely many combinations of paths. The follow-
ing lemma, however, indicates that there is a computationally
feasible way to locate the transitive edges:

1Gap refers to the largest hop along a path.

Lemma 1. Given a weighted graph, the transitive edge lies on
the MST of the graph.

The proof of Lemma 1 can be found in [19, 23]. The lem-
ma basically states that to determine the pairwise transitive dis-
tance, one only needs to construct an MST and look for the
largest edge. We can use the Kruskal’s algorithm to compute
the transitive distance matrix:

Algorithm 1 Computing the transitive distance matrix
1: Construct a total graph G = (V,E) from data where edge

weights in E are the Euclidean distances.
2: Sort E based on edge weights. Initialize GMST = (V,E′)

where E′ = ∅.
3: Take an edge ei,j from E.
4: If GMST and ei,j form a circle, discard ei,j .
5: Otherwise, add ei,j to E′. Find sets of nodes Vi and Vj

currently connected to edge nodes i and j respectively in
GMST . Update the pairwise distances of all possible com-
binations with |ei,j |.

6: Repeat 3-5 sequentially for all edges in E.

Lemma 2. The transitive distance is an ultrametric and can be
embedded into an n− 1 dimensional vector space.

The corresponding proof and details of Lemma 2 can be
found in [23]. This lemma conveys the following important in-
formation: with the generalized transitive distance, we have an
implicit nonlinear mapping:

φ : (V ⊂ Rl, D) 7→ (V ′ ⊂ Rn−1, d′), (4)

where d′(·, ·) is the Euclidean distance in Rn−1 and D(·, ·) is
the transitive distance in Rl, d′(φ(xi), φ(xj)) = D(xi, xj).
Such mapping plays a similar role to the kernel trick in spec-
tral clustering except that it is an implicit mapping where one
does not have the mapped feature in the kernel space but only
the pairwise Euclidean distance. [23] also detailedly discussed
why the projected data in the kernel space form nicely shaped
clusters.

Given the transitive distance obtained from Algorithm 1,
[23] proposed to simply perform a k-means clustering on the
rows of the distance matrix2. The obtained clustering labels are
regarded as the final output labels.

3. The Proposed LCTD Clustering
Basically, an ideal distance matrix should be block diagonal3.
Pairwise distances should be 0 if two data samples belong to the
same true cluster while relatively large if they do not. In such
case, a simple k-means clustering on the rows of the distance
matrix can easily recover the correct cluster labels. In general
cases however, what we often obtain is a distance matrix pertur-
bated by noise: D = Dblock + E. The task of both top-down
transitive distance clustering [23] and many spectral clustering
methods can be regarded as recovering Dblock. One can intu-
itively treat the inter/intra cluster distance discrimination as sig-
nal strength, and the perturbation strength as noise strength. Ac-
cording to the matrix perturbation theory, such “signal to noise
ratio” directly influences the accuracy of correct recovery.

2Treat each row of the distance matrix just like one data sample
3Here we assume data with the same ground truth labels are arranged

to be consecutive.



For data with low intrinsic dimensions where intra-cluster
variation dominates, reducing the intra-cluster variation certain-
ly benefits the “signal to noise ratio”. For speech data however,
such low intrinsic dimension assumption may no longer hold
at global scale. One major reason is that dimensionality reduc-
tion methods such as factor analysis are widely used in many
frontend methods. An example is the i-vector framework which
extracts features at the frontend for low-dimensional represen-
tation of speech utterances. In this framework, factor analysis
is conducted on the supervectors to generate a low dimensional
total variability space. The very distance representation strategy
in transitive distance that benefits clustering on manifolded da-
ta is now losing discriminative information, since samples that
used to be very far away are dragged much closer in transitive
distance. On the other hand, some conventional distances make
more reasonable measurements under such cases.

Does this mean cosine and Euclidean distances are the op-
timal ones? Probably not. At local scale, it may still be reason-
able to assume that certain clusters do have non-convex shapes.
A possibly better design of distance measure is to combine ad-
vantages from both sides. Therefore, we propose the locali-
ty constrained transitive distance where discrimination between
far away points are reinforced. We will show that LCTD works
better than using Euclidean distance, cosine distance and tran-
sitive distance alone.

3.1. The Locality Constrained Transitive Distance

A very natural reinforcement of discriminative information for
far away samples is to weight the pairwise transitive distance
with cosine distance. The reason why we call it “locality con-
strained” is because the influence of transitive distance is mostly
concentrated on neighboring pairwise data and decades fast for
far away ones. More formally, we have the following definition:

Dlctd1(i, j) = Dtd(i, j) ∗Deu(i, j), (5)

where Dtd is the transitive distance that be obtained via Algo-
rithm 1, and Deu is the Euclidean distance. We will denote the
locality constrained transitive distance defined by (5) as LCTD-
1 in the rest of the paper.

Note that LCTD-1 is no longer an ultrametric. In fact it is
not even a metric since the metric triangle inequality does not
hold. Such pairwise distances violate metricity and, therefore,
cannot be naturally embedded in a vector space [24]. On the
other hand, designing a distance metric guarantees many nicer
theoretical properties. Therefore we propose another variation
of locality constrained transitive distance with linear combina-
tion to impose locality constraints:

Dlctd1(i, j) = αDtd(i, j) + (1− α)Deu(i, j), (6)

where α ∈ [0, 1] is a weight parameter to balance locality. We
denote the locality constrained transitive distance defined by (6)
as LCTD-2. It turns out that empirically setting α to 0.5 already
gives very good performance. We will use this parameter setting
for all the following experiments.

Theorem 1. The proposed locality constrained transitive dis-
tance in (6) is a metric.

Proof: Lemma 2 states that the transitive distance is an ultra-
metric. Therefore, the transitive distance follows the following
strong triangle inequality:

Dtd(i, j) ≤ max(Dtd(i, k), Dtd(k, j))

< Dtd(i, k) +Dtd(k, j), ∀{i, j, k}.
(7)

Let β , (1− α). we have:

Dlctd2(i, j)

=αDtd(i, j) + βDeu(i, j)

<αDtd(i, k) + βDeu(i, k) + αDtd(k, j) + βDeu(k, j)

=Dlctd2(i, k) +Dlctd2(k, j)

(8)

We have therefore proved the triangle inequality for LCTD-2.
Other properties including non-negativity, symmetry and iden-
tity of indiscernibles are easy to prove and is omitted here.

3.2. A New Top-Down Clustering Framework

The LCTD framework possesses many nice properties, one of
them being that the underlying distance embedding implicitly
renders compact cluster representations. Intuitively, one would
want to directly perform k-means in the distance embedded s-
pace. However, without explicit representation of the projected
data, finding an optimal cluster partitioning with a pairwise dis-
tance is anNP-hard combinatorial optimization problem [18].

This by no means indicates one can not find good clus-
ter configurations with approximation under pairwise distance.
With compact clusters projection, the LCTD matrix can be ap-
proximately regarded as a block diagonal matrix perturbated by
additional noise:

Dlctd = Dblock + E (9)

A top-down clustering approximation is to k-means over the
rows [23]. K-means can be regarded as certain low rank ap-
proximation to recover Dblock. In addition, top-down method-
s in general shows more robustness against noise compared to
bottom-up methods. Therefore, such top-down strategy benefits
LCTD clustering, making it considerably different from single
linkage algorithm.

We propose an alternative algorithm which further im-
proves the top-down clustering performance. Instead of directly
performing k-means on Dlctd, We consider the rotated and nor-
malized distance matrix4:

D′ , DlctdVΛ−1 = U, (10)

where Λ is the diagonal matrix of eigenvalues by taking SVD
on Dlctd and V is the initial rotation basis:

Dlctd = UΛV∗, (11)

When we perform cosine distance k-means on the rows of
D′lctd, we are essentially concerned about the following pair-
wise distance:

D′D′
>
= UU>. (12)

The advantage of using D′ over Dlctd is that the former
better separates noise out of useful cluster information. One
can minimize the influence from noise by picking the top K
columns from D′: D′lctd , D′(:, 1 : K) and performing k-
means on rows of D′lctd. Even if Dlctd is not full rank, D′lctd
can be obtained from top columns of U.

In addition, the following proposition states the inherent re-
lationship between the original strategy and the proposed one:

Proposition 1. When Dlctd is ideally block diagonal, perform-
ing k-means on D′lctd exactly recovers the same label as k-
means on Dlctd.

The proof is omitted here as it is very straight forward.

4Here we assume Dlctd is full rank.



4. Experimental Results
We conduct comprehensive experiments on multiple datasets.
In all experiments, we input the groundtruth number of clusters
for all method and measure the cluster purity (accuracy).

4.1. Large scale clustering results

We first conduct large scale clustering experiment on three
datasets. The first one is the NIST i-vector Machine Learn-
ing Challenge [3] development dataset (denoted as “I-Vector”)
which consists of 36572 600-dimensional pre-extracted i-
vectors with 4958 identities. We also form two additional
datasets by extracting the i-vectors under the framework of
[25]5. I-vectors from Switchboard form the “Switchboard”
dataset containing 11587 500-dimensional i-vectors and 1052
identities. The rest from NIST SRE form the “NIST” dataset
containing 21704 i-vectors and 1738 identities.

We test the proposed methods and compare with other base-
lines. Table 1 shows the results of the proposed methods and
baselines6. One could see that the proposed two methods sig-
nificantly outperform many other baselines. Results also indi-
cate that both LCTD and SVD can benefit performance. Note
that single linkage completely fails on the I-Vector dataset for it
erroneously group large amount of data into the same cluster.

Table 1: Quantitative evaluation of large scale clustering

Method NIST I-Vector Switchboard
Normalized Cuts 0.4883 0.3654 0.5340
Single Linkage 0.4544 0.156 0.4754
Spectral Clust 0.6841 0.4898 0.8926
Transitive [23] 0.6915 0.498 0.7276

Transitive + SVD 0.7152 0.5226 0.7766
Cosine + SVD 0.8019 0.7145 0.9144

K-Means (Cosine) 0.7897 0.7174 0.9080
LCTD-1 (No SVD) 0.7707 0.6912 0.8503

LCTD-1 + SVD 0.8228 0.7178 0.9109
LCTD-2 + SVD 0.8196 0.7193 0.9154

4.2. Influence of eigenvector number

We also conduct detailed analysis on the number of eigenvec-
tors and its influence on the clustering result. Figure 1 shows
the accuracies of the proposed two methods and the most rele-
vant baseline Cosine + SVD. LCTD not only helps to boost the
best possible performance, but also better stabilizes the system
performance with different number of eigenvectors.

4.3. Medium scale clustering results

We also test the proposed method and baselines on the NIST
subsets (NIST-04, NIST-05, NIST-06 and NIST-08). The num-
bers of samples are respectively 4305, 5549, 7957, 3893 and
the number of identities are 186, 307, 720, 846. The reason we
conduct this experiment is that different subsets have varying
number of speaker identities and average cluster sizes. Again,
quantitative results in Table 2 indicate that the proposed meth-
ods consistently achieve the best performance.

5The i-vectors are trained on Switchboard II part1 to part3 and NIST
SRE 04, 05, 06, 08 corpora on the telephone channel.

6LCTD-1 (No SVD) denotes directly performing k-means on the
matrix rows. The eigenvector numbers of all methods with SVD are
tuned for best performance.
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Figure 1: Accuracies versus different eigenvector numbers. (a)
Results on the NIST dataset. (b) Results on the I-Vector dataset.

Table 2: Quantitative evaluation of medium scale clustering

Method NIST04 NIST05 NIST06 NIST08
Transitive 0.5487 0.5909 0.7357 0.6948

Trans+SVD 0.6736 0.6578 0.7958 0.7349
Kms(Cos) 0.8149 0.7708 0.8643 0.7858

Euc(NoSVD) 0.6913 0.7012 0.8124 0.7177
Cos(NoSVD) 0.6897 0.6879 0.8254 0.7131

Euc+SVD 0.8397 0.8009 0.8716 0.8329
Cos+SVD 0.8223 0.7987 0.8713 0.8325

LCTD1+SVD 0.8462 0.8018 0.8986 0.8330
LCTD2+SVD 0.8455 0.8036 0.8939 0.8327

4.4. Application to unsupervised speaker verification

We finally apply the proposed method to unsupervisedly train-
ing a speaker verification system. We use the clustering al-
gorithm to generate estimated data labels and feed them into
Gaussian PLDA [26]. The learned PLDA model then gives a
similarity score between target and test samples. We conduc-
t this experiment following the NIST i-vector Challenge with
multiple-enrollment scoring strategy [27]. We adopt K-means
as a baseline for it was widely used for unsupervised label gen-
eration. Table 3 shows the evaluation costs on both the evalua-
tion set as well as the progressive set. Results indicate that our
method helps to boost the verification performance.

Table 3: Speaker verification result evaluation on I-Vector

Method K-means LCTD-1+SVD LCTD-2+SVD
EER Prog 0.0906 0.0866 0.0878
EER Eval 0.0867 0.0825 0.0854
DCF Prog 0.3683 0.3500 0.3482
DCF Eval 0.3691 0.3459 0.3455

5. Conclusion
In this paper, we proposed two versions of locality constrained
transitive distances which better model pairwise speech data
similarity under the i-vector framework. In addition, we pro-
posed a top-down clustering framework based on SVD on top
of LCTD. Experimental results verified the excellence perfor-
mance of the proposed method. We believe that the result in
this paper on robust clustering methods will significantly bene-
fit a wide variety of speech processing methods.
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