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Problem Formulation

@ Speech signal not only contains lexicon information, but also deliver various kinds
of paralinguistic speech attribute information, such as speaker, language, gender,
age, emotion, channel, voicing, psychological states, etc.

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Ming Li Interspeech Survey Talk Interspeech 2019



Problem Formulation

@ Speech signal not only contains lexicon information, but also deliver various kinds
of paralinguistic speech attribute information, such as speaker, language, gender,
age, emotion, channel, voicing, psychological states, etc.

@ The core technique question behind it is utterance level supervised learning based
on text independent or text dependent speech signal with flexible duration

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Interspeech Survey Talk Interspeech 2019 4/ 79



Problem Formulation

@ Speech signal not only contains lexicon information, but also deliver various kinds
of paralinguistic speech attribute information, such as speaker, language, gender,
age, emotion, channel, voicing, psychological states, etc.

@ The core technique question behind it is utterance level supervised learning based
on text independent or text dependent speech signal with flexible duration

@ The traditional framework
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ature Extraction

@ MFCC, PLP, SDC [1]?, PNCC[2]?, GFCC[3]* , CQCC [4]° etc.
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ature Extraction

@ MFCC, PLP, SDC [1], PNCC[2], GFCCJ[3] , CQCC [4],etc.
@ Bottleneck [5]?[6]°, Phoneme Posterior Probability [7]*[8]°, etc.

2Pavel Matejka et al. “Neural Network Bottleneck Features for Language Identification.” In: Proc. of Odyssey.
2014.
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ature Extraction

@ MFCC, PLP, SDC [1], PNCC[2], GFCCJ[3] , CQCC [4],etc.
@ Bottleneck [5][6], Phoneme Posterior Probability [7][8], etc.

@ LLD/OpenSmile [9]?, Speech attributes [10]®, Acoustic-to-articulatory inversion
[11]*, subglottal[12]°, etc.

2Florian Eyben, Martin Wéllmer, and Bjérn Schuller. “Opensmile: the munich versatile and fast open-source
audio feature extractor”. In: Proc. of ACM Multimedia. 2010, pp. 1459-1462.

3Hamid Behravan et al. “Introducing attribute features to foreign accent recognition”. In: Proc. of ICASSP.
IEEE. 2014, pp. 5332-5336.

4Ming Li et al. “Speaker verification based on the fusion of speech acoustics and inverted articulatory signals”.

In: Computer speech & language 36 (2016), pp. 196-211. Al SR
DUKE KUNSHAN
5Jinxi Guo et al. “Speaker Verification Using Short Utterances with DNN-Based Estimation of Subglottal UNIVERSITY

Acoustic Features." In: Proc. of INTERSPEECH. 2016, pp. 2219-2222.

Ming Li Interspeech Survey Talk Interspeech 2019



Feature Extraction

@ MFCC, PLP, SDC [1], PNCC[2], GFCC[3] , CQCC [4] etc.
@ Bottleneck [5][6], Phoneme Posterior Probability [7][8], etc.

@ LLD/OpenSmile [9], Speech attributes [10], Acoustic-to-articulatory inversion [11],
subglottal[12], etc.

@ IMFCC[13]?, Modified Group Delay[14]3, etc.

2Md Sahidullah, Tomi Kinnunen, and Cemal Hanilgi. “A comparison of features for synthetic speech detection”.

In: (2015). A s
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Generative model, adaptation, supervectors

@ Gaussian Mixture Model (GMM) [15]* serves as the generative model

Rk 5E K
DUKE KUNSHAN

4D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. “Speaker Verification Using Adapted Gaussian Mixture Models” UNIVERSITY
In: Digital Signal Processing. 2000, 1941.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019



Generative model, adaptation, supervectors

@ Gaussian Mixture Model (GMM) [15]* serves as the generative model

@ model adaptation from universal background model (UBM)
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Generative model, adaptation, supervectors

@ Gaussian Mixture Model (GMM) [15] serves as the generative model
@ model adaptation from universal background model (UBM)

o MAP adaptation, concatenating mean vector from
all GMM components to get a large dimensional GMM mean supervector [16]*
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Generative model, adaptation, supervectors

@ Gaussian Mixture Model (GMM) [15] serves as the generative model

@ model adaptation from universal background model (UBM)

o MAP adaptation, concatenating mean vector from all GMM components to
get a large dimensional GMM mean supervector [16]*

@ Maximum Likelihood Linear Regression (MLLR) adaptation
the linear regression matrix becomes GMM MLLR supervector [17]°

4W.M Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97-100. A e
5Andreas Stolcke et al. “MLLR transforms as features in speaker recognition”. In: Ninth European Confcrcncc“ SRIVERSITY

on Speech Communication and Technology. 2005.
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Generative model, adaptation, supervectors

@ The statistics vector for a set of features on UBM
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Generative model, adaptation, supervectors

@ The statistics vector for a set of features on UBM
o 0™ order statistics vector N, centered normalized 1% order statistics vector F

Ne =" P(cly, A) (1)

t=1
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Cumulated by L frames
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Generative model, adaptation, supervectors

@ The statistics vector for a set of features on UBM

o 0™ order statistics vector N, centered normalized 1% order statistics vector F
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Generative model, adaptation, supervectors

@ The statistics vector for a set of features on UBM
o 0™ order statistics vector N, centered normalized 1% order statistics vector F

Ne =" P(cly, A) (1)

. =1 Cumulated by L frames
= Zt:l P(cly, A (e — )
Fc= I . (2
21 Plelye, A)
@ Mapping from a set of feature vectors to a fixed dimensional supervector
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Factor analysis based dimension reduction

@ Factor analysis on the concatenated centered normalized 1% order statistics
vector or GMM mean supervector

l-vector

_m____m
4
X
1

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 10 / 79



Factor analysis based dimension reduction

@ Factor analysis on the concatenated centered normalized 1% order statistics
vector or GMM mean supervector
o total variability i-vector [18]°
F=Tx (3) T: factor loading matrix, x: i-vector

l-vector
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Factor analysis based dimension reduction

@ Factor analysis on the concatenated centered normalized 15t order statistics
vector or GMM mean supervector
o total variability i-vector [18]°
F=Tx (3) T: factor loading matrix, x: i-vector
e joint factor analysis (JFA) [19]”
V: Eigenvoices, U: Eigenchannels,
x: speaker factor, y: channel factor,

F=Vx+Uy+Dz (4) D: diagonal covariance matrix
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Variability Compensation

LDA, WCCN [20]%, NAP[16]°, NDA [21]*°, LSDA [22]*, LFDA [23]", etc.
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Backend Classification

SVM [16]*%, PLDA [24]**[25]*°, NN [26]*°[27]"", Joint Bayesian [28]'® , Cosine
Similarity, etc.

Bw.m Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97-100.
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Proc. ICCV. 2017.
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System Pipeline

Variable- Local pattern Encoding Feed-forward .
. Loss function
length input extractor layer network

@ Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term spectral feature (STFT spectrogram [29]'°, Mel-filterbank energies
[30]%°, MFCC [31]?!), or even the raw waveform [32]%2.

19 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. “Voxceleb: a large-scale speaker identification
dataset”. In: arXiv preprint arXiv:1706.08612 (2017). URL: http://www.robots.ox.ac.uk/~vgg/data/voxceleb/.

20Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

2lp, Snyder et al. “Deep neural network-based speaker embeddings for end-to-end speaker verification”. In:
Proc. IEEE SLT. 2017.

2 . o . T ETERe
Mirco Ravanelli and Yoshua Bengio. “Speaker recognition from raw waveform with sincnet”. In: Proc. of SLT# UNIVERSITaY

IEEE. 2018, pp. 1021-1028.
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short-term spectral feature (STFT spectrogram [29]'°, Mel-filterbank energies
[30]%°, MFCC [31]?!), or even the raw waveform [32]%2.

@ The local pattern extractor plays a role as an automatic representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).
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Variable- Local pattern Encoding Feed-forward
length input extractor layer network

Loss function

@ Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term spectral feature (STFT spectrogram [29]'°, Mel-filterbank energies
[30]%°, MFCC [31]?!), or even the raw waveform [32]%2.

@ The local pattern extractor plays a role as an automatic representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).

@ The encoding layer encodes the variable-length sequence into a fixed-dimensional
utterance-level representation. (Recurrent encoding / Pooling)

19 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. “Voxceleb: a large-scale speaker identification
dataset”. In: arXiv preprint arXiv:1706.08612 (2017). URL: http://www.robots.ox.ac.uk/~vgg/data/voxceleb/.

20Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
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Variable- Local pattern Encoding Feed-forward
length input extractor layer network

Loss function

@ Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term spectral feature (STFT spectrogram [29]'°, Mel-filterbank energies
[30]%°, MFCC [31]?!), or even the raw waveform [32]%2.

@ The local pattern extractor plays a role as an automatic representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).

@ The encoding layer encodes the variable-length sequence into a fixed-dimensional
utterance-level representation. (Recurrent encoding / Pooling)

@ All the network components are jointly optimized with a global loss function.
(Forward + Backward + Stochastic gradient descent)

19 Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. “Voxceleb: a large-scale speaker identification
dataset”. In: arXiv preprint arXiv:1706.08612 (2017). URL: http://www.robots.ox.ac.uk/~vgg/data/voxceleb/.

20Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].
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System Pipeline

Variable- Local pattern Encoding Feed-forward

: Loss function
length input extractor layer network unet

@ Language identification or paralinguistic speech attributes detection(Closed-set)

Network outoput — Utterance-level posteriors

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Interspeech Survey Talk Interspeech 2019 15 /79



System Pipeline

Variable- Local pattern Encoding Feed-forward

: Loss function
length input extractor layer network unet

@ Language identification or paralinguistic speech attributes detection(Closed-set)

Network outoput — Utterance-level posteriors

@ Speaker Verification (Open-set)
Utterance-level speaker embedding + Cosine / PLDA — Pairwise scores
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Data preparation

Traditional workflow

@ Off-the-shelf full-length utterance

v

Network workflow
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Data preparation
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Data preparation

Traditional workflow

@ Off-the-shelf full-length utterance

@ Each utterance is performed independently
@ The parameters are updated after seeing all the (or sampled) utterances .

@ Arbitrary duration audio waveform — variable-length feature sequence —
utterane-level fixed-dimensional embedding (e.g. i-vector).

v

Network workflow

@ Well-prepared mini-batch tensor block in the training stage.
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Network workflow

@ Well-prepared mini-batch tensor block in the training stage.
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Data preparation

Traditional workflow

@ Off-the-shelf full-length utterance

@ Each utterance is performed independently
@ The parameters are updated after seeing all the (or sampled) utterances .

@ Arbitrary duration audio waveform — variable-length feature sequence —
utterane-level fixed-dimensional embedding (e.g. i-vector).

v

Network workflow

@ Well-prepared mini-batch tensor block in the training stage.
@ Several utterances are grouped together — Multi-dimensinal array
@ The parameters are updated for each batch of data

@ In the testing stage, arbitrary duration audio waveform — variable-length feature
sequence — utterance-level fixed-dimensional embedding (e.g. x-vector).
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DNN data preparation

D-vector [33]2[34]*[35]®

@ Raw feature sequences are broken into multiple small fixed-length data chunks at
the frame level.

23Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
Proc. of ICASSP. 2014, pp. 4080-4084.
2*Yuan Liu et al. “Deep feature for text-dependent speaker verification”. In: Speech Communication 73 (2015),
pp. 1-13. A s

. . " . . e . . DUKE KUNSHAN
25 antian Li et al. Deep speaker vectors for semi text-independent speaker verification”. In: arXiv preprint UNIVERSITY

arXiv:1505.06427 (2015).
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DNN data preparation

D-vector [33]2[34]*[35]®
@ Raw feature sequences are broken into multiple small fixed-length data chunks at
the frame level.

@ The input layer is fed with dozens of frames formed by stacking the currently
processed frame and its several left-right context frames.

23Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
Proc. of ICASSP. 2014, pp. 4080-4084.
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@ Raw feature sequences are broken into multiple small fixed-length data chunks at
the frame level.

@ The input layer is fed with dozens of frames formed by stacking the currently
processed frame and its several left-right context frames.

@ This data preparation procedure generates a large amount of temporary data
chunks.

23Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
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DNN data preparation

D-vector [33]2[34]*[35]®

@ Raw feature sequences are broken into multiple small fixed-length data chunks at
the frame level.

@ The input layer is fed with dozens of frames formed by stacking the currently
processed frame and its several left-right context frames.

@ This data preparation procedure generates a large amount of temporary data
chunks.

@ In the testing stage, it is also necessary to break the testing segments into a bunch
of fixed-length frames.

23Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
Proc. of ICASSP. 2014, pp. 4080-4084.

2*Yuan Liu et al. “Deep feature for text-dependent speaker verification”. In: Speech Communication 73 (2015),

pp. 1-13. A s
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Data preparation

X-vector [36]%°

@ Several archive files containing data chunks with different segment lengths and
augmentation types are prepared carefully beforehand
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26David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE“ UNIVERSITY
2018, pp. 5329-5333.
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@ Several archive files containing data chunks with different segment lengths and
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@ The input layer is fed with variabel-length segments.
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Data preparation

X-vector [36]%°

@ Several archive files containing data chunks with different segment lengths and
augmentation types are prepared carefully beforehand

The input layer is fed with variabel-length segments.

This data preparation procedure also generates a large amount of temporary data
chunks when data augmentation is performed.
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Data preparation

X-vector [36]%°
@ Several archive files containing data chunks with different segment lengths and
augmentation types are prepared carefully beforehand
@ The input layer is fed with variabel-length segments.

@ This data preparation procedure also generates a large amount of temporary data
chunks when data augmentation is performed.

@ In the testing stage, the full-length utterance-level feature sequence can be directly
fed into the network.

Rk 5E K
DUKE KUNSHAN

26David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE“ UNIVERSIT
2018, pp. 5329-5333.
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Data preparation

Full-length . Data Feature Data Mini-batch
training waveforms Data slice augmentation extraction augmentation Batching tensor block

Full-length Feature Feature
testing waveform extraction sequence

On-the-fly data loader [37]*

@ Offline augmentation requires us to generate all the necessary training samples
into disk beforehand. On the contrary, a data loader here maintains an online
processing work flow to generate training sample on the fly.

A RS R¥
27 . . u . DUKE KUNSHAN
Weicheng Cai et al. “On-the-Fly Data Loader and Utterance-level Aggregation for Speaker and Language UNIVERSITY

Recognition”. In: submitted to IEEE/ACM Transactions on Audio, Speech and Language Pragessing (2019):
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Data preparation

Full-length Data slice Data Feature

Data Mini-batch
training waveforms augmentation extraction augmentation

Batching tensor block

Full-length Feature Feature
testing waveform extraction sequence

On-the-fly data loader [37]*

@ Offline augmentation requires us to generate all the necessary training samples
into disk beforehand. On the contrary, a data loader here maintains an online
processing work flow to generate training sample on the fly.

@ Multiple real-time operations within the data loader: the data slice, the data
transformation (including feature extraction and data augmentation), and the data
batching operation.
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Data preparation

Fulllength ’ Data Feature Data ) Mini-batch
training waveforms Data slice augmentation extraction augmentation Batching tensor block
Fulllength Feature Feature
testing waveform extraction sequence

On-the-fly data loader [37]*

@ This design principle allows us to perform the batch-wise random perturbation,
such as variable-length data slice and online data augmentation efficiently. All the
operations are eagerly executed on the fly, and the training samples are generated
in the memory just before feeding it into the DNNs.
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Data preparation

Full-length Data siice Data Feature Data Batehin Mini-batch
training waveforms augmentation extraction augmentation 9 tensor block

Full-length Feature Feature
testing waveform extraction sequence

On-the-fly data loader [37]*

@ This design principle allows us to perform the batch-wise random perturbation,
such as variable-length data slice and online data augmentation efficiently. All the
operations are eagerly executed on the fly, and the training samples are generated
in the memory just before feeding it into the DNNs.

@ Since we maintain the dataflow from the raw waveform to the DNN output, it also
promotes model inference and deployment ease. After the DNN has been trained,
the data loader can simply tune into the “testing” mode by setting the batch size

to one and removing the data slice, data augmentation and data batching modules.
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Network Structure

Feed-forward DNN(FF-DNN)

Stacked filterbank
energy features. d-vector is the averaged activations
from the last hidden layer.

| P(spk,)

I I .

P(spky)
Fully-connected maxout hidden layers.
The last two layers drop 0.5 activations.

Output layer is removed in
enrollment and evaluation.

@ D-vector for SV [33]%

A JAIIE YN
28 P «“ . e I DUKE KUNSHAN
Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In: UNIVERSIT
Proc. of ICASSP. 2014, pp. 4080-4084.
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Network Structure

Feed-forward DNN(FF-DNN)

#softmax units

#weights
(N, - 1) x 2560

h = 2560

1 #weights
1 (Ny— 1) x 2560
x 2560

#weights
819 x 2560
#visible units
v=39x21=
=819

@ FF-DNN for LID [38]*

RLEESEKF
N . . DUKE KUNSHAN
29|, Lopez-Moreno et al. “Automatic language identification using deep neural networks”. In: Proc. ofICASSP_“ UNIVERSITY

2014, pp. 5337-5341.
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Network Structure

Feed-forward DNN(FF-DNN)
@ Text-dependent (" Ok google”)
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Network Structure

Feed-forward DNN(FF-DNN)
@ Text-dependent (" Ok google”)
@ Short duration (< 3s test segment)
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Network Structure

Feed-forward DNN(FF-DNN)
@ Text-dependent (" Ok google”)
@ Short duration (< 3s test segment)
@ Fixed-length flattened input (Stacked frames )
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Network Structure

Feed-forward DNN(FF-DNN)
@ Text-dependent (" Ok google”)
@ Short duration (< 3s test segment)
@ Fixed-length flattened input (Stacked frames )
(]

Fram-level + Post average — Utterance-level

Rk 5E K
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UNIVERSITY
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Network Structure

RNN/LSTM

=] Yt
(=%
g
LSTM memory blocks
30
@ LSTM for LID [39]
30y, Gonzalez-Dominguez et al. “Automatic language identification using long short-term memory recurrent UNIVERSITY
neural networks". In: Proc. INTERSPEECH, pp. 2155-2159.
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Network ture

RNN/LSTM

Speaker Representation

A

LSTM

fully connected, linear

A

LSTM layer

AAA

AAAAAAAAAY

frames of utterance

@ LSTM for SV [40]*°

3OGeorg Heigold et al. “End-to-End Text-Dependent Speaker Verification”.

Ming Li (DKU)

Interspeech Survey Talk
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Network ture

RNN/LSTM

Speaker Representation

A

LSTM

fully connected, linear

A

LSTM layer

AAA

AAAAAAAAAY

frames of utterance

@ LSTM for SV [40]*°

@ Adopt the last several output units of LSTM

3OGeorg Heigold et al. “End-to-End Text-Dependent Speaker Verification”.

Ming Li (DKU)

Interspeech Survey Talk
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Network ture

RNN/LSTM

Speaker Representation

A

LSTM

fully connected, linear

A

LSTM layer

AAA

AAAAAAAAAY

frames of utterance

@ LSTM for SV [40]*°

@ Adopt the last several output units of LSTM

@ Short duration (< 3s test segment)

3OGeorg Heigold et al. “End-to-End Text-Dependent Speaker Verification”.

Ming Li (DKU)

Interspeech Survey Talk
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Network Structure

CNN

) Deep architecture
miniBatch Front Processing

Average Affine Length- Triplets
sentence Normaliztion loss

@ CNN: Deep Speaker [30]*!

A

RLEESEKF
31Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints, SRVERSTY
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].
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Network Structure

CNN

Deep architecture

miniBatch Front Processing

Average Affine Length- » Triplets
sentence Normaliztion loss

@ CNN: Deep Speaker [30]*!
@ Anti-spoofing [41]*

31Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].
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32Weicheng Cai et al. “Countermeasures for Automatic Speaker Verification Replay Spoofing Attack : On Data SNIVERSTY
Augmentation, Feature Representation, Classification and Fusion”. In: Proc. of Interspeech. 2817, pp. 17-21.
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Network Structure

CNN

Deep architecture

miniBatch Front Processing

Length , Triplets
Normaliztion loss

Bz —-{ Affine | »
sentence

@ CNN: Deep Speaker [30]*
@ Anti-spoofing [41]*

@ Speaker and language recognition [42]*[43]*

31Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

32Weicheng Cai et al. “Countermeasures for Automatic Speaker Verification Replay Spoofing Attack : On Data
Augmentation, Feature Representation, Classification and Fusion”. In: Proc. of Interspeech. 2017, pp. 17-21.

33Weicheng Cai, Jinkun Chen, and Ming Li. “Exploring the Encoding Layer and Loss Function in End-to-End

Speaker and Language Recognition System”. In: Proc. Speaker Odyssey. 2018, pp. 74-81.
34Chunlei Zhang, Kazuhito Koishida, and John H. L. Hansen. “Text-independent Speaker Verification Based on A EJI}IEILLU?ES)\H?N
v

Triplet Convolutional Neural Network Embedding”. In: |IEEE/ACM Transactions on Audio Speech & Language UNIVERSIT
Processing 26.9 (2018), pp. 1633-1644.
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Network Structure

TDNN
Layer Layer context | Total context | Input x output
framel [t —2,t+ 2] 5 120x512
frame2 | {t —2,t,t+ 2} 9 1536x512
frame3 | {t—3,{,L+ 3} 5 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500
stats pooling [0,T) T 15007'x3000

segment6 {0} T 3000x512

segment7 {0} T 512x512
softmax {0} T S512xN

@ x-vector [36]*

35David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE“ UNIVERSITY
2018, pp. 5329-5333.
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Encoding Mechanism

Conventional approaches

@ Average: An utterance-level embedding is derived by averaging the frame-level
DNN hidden layer output. (D-vector)

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Ming Li Interspeech Survey Talk Interspeech 2019 26



Encoding Mechanism

Conventional approaches
@ Average: An utterance-level embedding is derived by averaging the frame-level
DNN hidden layer output. (D-vector)
@ Average: An utterance-level scores is derived by averaging the frame-level DNN
output posteriors.
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Encoding Mechanism

Conventional approaches

@ Average: An utterance-level embedding is derived by averaging the frame-level
DNN hidden layer output. (D-vector)

@ Average: An utterance-level scores is derived by averaging the frame-level DNN
output posteriors.

@ Voting: An utterance-level results is derived by voting the frame-level DNN
predictions.
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UNIVERSITY
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Encoding Mechanism

Encoding layer

@ Recurrent layer (Context-dependent)
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Encoding Mechanism

Encoding layer

@ Recurrent layer (Context-dependent)
o LSTM/GRU encoding[39]3¢
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Encoding Mechanism

Encoding layer

@ Recurrent layer (Context-dependent)

o LSTM/GRU encoding[39]3°
o LSTM/GRU + Attention [44]3"

36, Gonzalez-Dominguez et al. “Automatic language identification using long short-term memory recurrent
neural networks”. In: Proc. INTERSPEECH, pp. 2155-2159.
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37Wang Geng et al. “End-to-End Language ldentification Using Attention-Based Recurrent Neural Networks.” SRVERSTY
In: Proc. INTERSPEECH. 2016, pp. 2944-2948.
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Encoding Mechanism

Encoding layer
@ Recurrent layer (Context-dependent)

o LSTM/GRU encoding[39]3°
o LSTM/GRU + Attention [44]%
o Bi-LSTM + Attention [45]38

36, Gonzalez-Dominguez et al. “Automatic language identification using long short-term memory recurrent
neural networks”. In: Proc. INTERSPEECH, pp. 2155-2159.

37Wang Geng et al. “End-to-End Language ldentification Using Attention-Based Recurrent Neural Networks.”
In: Proc. INTERSPEECH. 2016, pp. 2944-2948.

38\W. Cai et al. “Utterance-level end-to-end language identification using attention-based CNN-BLSTM". In:
Proc. ICASSP. 2019.
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Encoding Mechanism

@ Pooling layer (Context-independent)
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3°
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3°
@ Statistics pooling (mean + std) [36]*°

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL]. Rl Rk
DUKE KUNSHAN

“ODavid Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE“ UNIVERSITY
2018, pp. 5329-5333.
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]°
@ Statistics pooling (mean + std) [36]*°
@ Bilinear pooling [46]*

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

4ODavid Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE

2018, pp. 5329-5333. R UIFESE R
DUKE KUNSHAN

41) Ma et al. “End-to-End Language ldentification Using High-Order Utterance Representation with Bilinear UNIVERSITY
Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575.
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3°
@ Statistics pooling (mean + std) [36]*°
@ Bilinear pooling [46]*!

@ Self-attentive pooling (mean) [47]*2

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

40David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE
2018, pp. 5329-5333.

41) Ma et al. “End-to-End Language ldentification Using High-Order Utterance Representation with Bilinear
Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575. Al SR
DUKE KUNSHAN

42, Bhattacharya, J. Alam, and P. Kenny. “Deep Speaker Embeddings for Short-Duration Speaker Verification” UNIVERSITY
In: Proc. Interspeech. 2017, pp. 1517-1521.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019


http://arxiv.org/abs/1705.02304

Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3°
Statistics pooling (mean + std) [36]*°
Bilinear pooling [46]*!
Self-attentive pooling (mean) [47]
Attentive statistics pooling (mean + std) [48]*3 [49]**

"]
]
° ]42
]

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

“ODavid Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE
2018, pp. 5329-5333.

41) Ma et al. “End-to-End Language Identification Using High-Order Utterance Representation with Bilinear
Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575.

42, Bhattacharya, J. Alam, and P. Kenny. “Deep Speaker Embeddings for Short-Duration Speaker Verification”.
In: Proc. Interspeech. 2017, pp. 1517-1521.

43 Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. “Attentive Statistics Pooling for Deep Speaker

Embedding”. In: Proc. Interspeech. 2018, pp. 2252-2256. P
“Yingke Zhu et al. “Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification.” In: Proc. SRIVERSITY

of Interspeech. 2018, pp. 3573-3577.
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3°

@ Statistics pooling (mean + std) [36]*°

@ Bilinear pooling [46]*!

@ Self-attentive pooling (mean) [47]*2

@ Attentive statistics pooling (mean + std) [48]*3 [49]**
@ Multi-head attentive pooling [50]*°

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

4ODavid Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE
2018, pp. 5329-5333.

41) Ma et al. “End-to-End Language Identification Using High-Order Utterance Representation with Bilinear
Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575.

2. Bhattacharya, J. Alam, and P. Kenny. “Deep Speaker Embeddings for Short-Duration Speaker Verification”.
In: Proc. Interspeech. 2017, pp. 1517-1521.

43 Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. “Attentive Statistics Pooling for Deep Speaker
Embedding”. In: Proc. Interspeech. 2018, pp. 2252-2256.

44Yingke Zhu et al. “Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification.” In: Proc

of Interspeech. 2018, pp. 3573-3577. Bl SE K%
DUKE KUNSHAN
“5Yi Liu et al. “Exploring a Unified Attention-Based Pooling Framework for Speaker Verification”. In: Proc. of UNIVERSITY
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Encoding Mechanism

@ Pooling layer (Context-independent)

@ Temporal pooling (mean) [30]3g

@ Statistics pooling (mean + std) [36]*°
@ Bilinear pooling [46]*!

@ Self-attentive pooling (mean) [47]42

@ Attentive statistics pooling (mean + std) [48]*3 [49]**
@ Multi-head attentive pooling [50]*°

o

Learnable dictionary encoding [51]*®

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

40David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE
2018, pp. 5329-5333.

41) Ma et al. “End-to-End Language ldentification Using High-Order Utterance Representation with Bilinear
Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575.

426, Bhattacharya, J. Alam, and P. Kenny. “Deep Speaker Embeddings for Short-Duration Speaker Verification”.
In: Proc. Interspeech. 2017, pp. 1517-1521.

43 Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. “Attentive Statistics Pooling for Deep Speaker
Embedding”. In: Proc. Interspeech. 2018, pp. 2252-2256.

44Yingke Zhu et al. “Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification.” In: Proc
of Interspeech. 2018, pp. 3573-3577.

45Yi Liu et al. “Exploring a Unified Attention-Based Pooling Framework for Speaker Verification”. In: Proc. of

ISCSLP. 2018, pp. 200-204. Bl SE K%
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Encoding Mechanism

@ Pooling layer (Context-independent)
@ Temporal pooling (mean) [30]3°
@ Statistics pooling (mean + std) [36]*°
@ Bilinear pooling [46]41
@ Self-attentive pooling (mean) [47]*2
@ Attentive statistics pooling (mean + std) [48]*3 [49]%*
@ Multi-head attentive pooling [50]*°
@ Learnable dictionary encoding [51]4°
@ NetFV/NetVLAD/Ghost VLAD [52]*7 [53]*8

39Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].
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2018, pp. 5329-5333.
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Pooling”. In: Proc. of INTERSPEECH, pp. 2571-2575.
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In: Proc. Interspeech. 2017, pp. 1517-1521.

43 Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. “Attentive Statistics Pooling for Deep Speaker
Embedding”. In: Proc. Interspeech. 2018, pp. 2252-2256.

44Yingke Zhu et al. “Self-Attentive Speaker Embeddings for Text-Independent Speaker Verification.” In: Proc.
of Interspeech. 2018, pp. 3573-3577.
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@ Standard cross-entropy loss with softmax function (softmax loss)
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Loss Function

@ Standard cross-entropy loss with softmax function (softmax loss)

@ Contrastive/Triplet loss [54]*° [55]%0

49 Chunlei Zhang and Kazuhito Koishida. “End-to-End Text-Independent Speaker Verification with Triplet Loss

on Short Utterances”. In: Proc. Interspeech. 2017, pp. 1487-1491. [
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Loss Function

@ Standard cross-entropy loss with softmax function (softmax loss)
@ Contrastive/Triplet loss [54]*° [55]%°
@ End-to-End loss [40]°! [56]%2
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50 joon Son Chung, Arsha Nagrani, and Andrew Zisserman. “VoxCeleb2: Deep Speaker Recognition”. In: Proc.
INTERSPEECH. 2018, pp. 1086-1090.
JAIIE YN

51Georg Heigold et al. “End-to-End Text-Dependent Speaker Verification”. In: Proc. of ICASSP. 2016. AR D
52| i Wan et al. “Generalized end-to-end loss for speaker verification”. In: Proc. of ICASSP 2018, pp: 4879-4883.
Ming Li (DKU) Interspeech Survey Talk Interspeech 2019




Loss Function

Standard cross-entropy loss with softmax function (softmax loss)
Contrastive/Triplet loss [54]4° [55]>°

End-to-End loss [40]%! [56]>2

Center loss [42]%3
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Loss Function

Standard cross-entropy loss with softmax function (softmax loss)
Contrastive/Triplet loss [54]4° [55]>°

End-to-End loss [40]%! [56]>2

Center loss [42]%3

Angular softmax loss [57]°* [42][58]%°

Additive margin loss [33]°°
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Data Augmentation

@ Add noise, music, babble, reverberation [36]>"

57David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. |IEEE
2018, pp. 5329-5333.

58Suwon Shon, Ahmed Ali, and James Glass. “Convolutional neural networks and language embeddings for
end-to-end dialect recognition”. In: arXiv preprint arXiv:1803.04567 (2018).
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59Vexin Yang et al. “Generative Adversarial Networks based X-vector Augmentation for Robust Probabilistic SRVERSTY
Linear Discriminant Analysis in Speaker Verification”. In: Proc. of ISCSLP. 2018, pp.:205-209:
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Data Augmentation

@ Add noise, music, babble, reverberation [36]>"
@ Speed perturbation [59]*®

@ Generative adversarial network (GAN) [60]*°
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted

@ AHC clustering + PLDA adaptation [61]%°
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted

@ AHC clustering + PLDA adaptation [61]%°

@ Maximum mean disprepancy [62]%!

50Daniel Garcia-Romero et al. “Unsupervised domain adaptation for i-vector speaker recognition”. In: Proc. of
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker

embedding, performed after the speaker embedding is extracted
@ AHC clustering + PLDA adaptation [61]%°
@ Maximum mean disprepancy [62]%!

@ Autoencoder based domain adaptation (AEDA) [63]52
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted
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@ Autoencoder based domain adaptation (AEDA) [63]52
@ Domain adversarial training (DAT) [64]%3
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted

@ AHC clustering + PLDA adaptation [61]°°
Maximum mean disprepancy [62]°!
Autoencoder based domain adaptation (AEDA) [63]%2
Domain adversarial training (DAT) [64]%3

o
o
o
@ CORAL [65]%*
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted

@ AHC clustering + PLDA adaptation [61]%°

Maximum mean disprepancy [62]°!

Autoencoder based domain adaptation (AEDA) [63]%2
Domain adversarial training (DAT) [64]%3

CORAL [65]54

CORAL+ [66]%°
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Domain Adaptation

End-to-End Domain adaptation

@ End-to-end adversarial training [67]%

666, Bhattacharya, J. Alam, and P. Kenny. “Adapting End-to-end Neural Speaker Verification to New Languages

and Recording Conditions with Adversarial Training”. In: Proc. of ICASSP. 2019, pp. 6041-6045. [
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67, Zhou et al. “Training Multi-task Adversarial Network for Extracting Noise-robust Speaker Embedding”. In:
Proc. of ICASSP. 2019, pp. 6196-6200.
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Domain Adaptation

End-to-End Domain adaptation

@ End-to-end adversarial training [67]%

@ Generative adversarial network (GAN) [68]°%"
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Domain Adaptation

End-to-End Domain adaptation
@ End-to-end adversarial training [67]%
@ Generative adversarial network (GAN) [68]°%"

@ Multi-task adversarial network [69]%

66, Bhattacharya, J. Alam, and P. Kenny. “Adapting End-to-end Neural Speaker Verification to New Languages
and Recording Conditions with Adversarial Training”. In: Proc. of ICASSP. 2019, pp. 6041-6045.
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o Robust Modeling of End-to-End methods
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Speech under Far Field and Complex Environment Settings

@ Long range fading
@ Room reverberation

o Early reverberation (reflections within 50 to 100 ms): may improve the
received speech quality

o Late reverberation: smearing spectral-temporal structures, amplifying
the low-frequency energy, and flattening the formant transitions, etc

@ Complex environmental noises

o fill in regions with low speech energy in the time-frequency plane and
blur the spectral details
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Previous Methods on Robust Modeling

@ Signal level

o Dereverberation: linear prediction inverse modulation transfer function
filter [70]°°, weighted prediction error (WPE) [71]°

9B, J. Borgstrom and A. McCree. “The Linear Prediction Inverse Modulation Transfer Function (IP-IMTF) Filter

for Spectral Enhancement, with Applications to Speaker Recognition”. In: Proc. ICASSP. 2012, pp. 4065-4068. A e
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70L. Mosner et al. “Dereverberation and Beamforming in Far-Field Speaker Recognition”. In: Proc. ICASSP. UNIVERSITY
2018, pp. 5254-5258.
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o DNN based denoising methods for single-channel speech enhancement
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o DNN based denoising methods for single-channel speech enhancement
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Previous Methods on Robust Modeling

@ Feature level

o Sub-band Hilbert envelopes based features [76]7°,[77]7"

76T H. Falk and W. Chan. “Modulation Spectral Features for Robust Far-Field Speaker Identification”. In: [EEE

Transactions on Audio, Speech, and Language Processing 18.1 (2010), pp. 90-100. B A
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Previous Methods on Robust Modeling

@ Feature level

o Sub-band Hilbert envelopes based features [76]7°,[77]7"
o Warped minimum variance distortionless response (MVDR) cepstral
coefficients [78]8

7T H. Falk and W. Chan. “Modulation Spectral Features for Robust Far-Field Speaker Identification”. In: [EEE
Transactions on Audio, Speech, and Language Processing 18.1 (2010), pp. 90-100.
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pp. 4518-4521.
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Previous Methods on Robust Modeling
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o Sub-band Hilbert envelopes based features [76]7°,[77]""

o Warped minimum variance distortionless response (MVDR) cepstral
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Recognition”. In: IEEE/ACM Transactions on Audio, Speech and Language Processing 24.7 (2016), pp. 1315-1329. A o o ym
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81D, Cai et al. “The DKU-SMIIP System for the Speaker Recognition Task of the VOICES from a Distance UNIVERSITY
Challenge”. In: Proc. of INTERSPEECH. 2019.
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Previous Methods on Robust Modeling

@ Feature level

o Sub-band Hilbert envelopes based features [76]7°,[77]""

o Warped minimum variance distortionless response (MVDR) cepstral
coefficients [78]"®

Blind spectral weighting (BSW) based features [79]7°

]
o Power-normalized cepstral coefficients (PNCC) [80]°[81]8!
o DNN bottleneck features [82]%2, etc.

75T H. Falk and W. Chan. “Modulation Spectral Features for Robust Far-Field Speaker Identification”. In: [EEE
Transactions on Audio, Speech, and Language Processing 18.1 (2010), pp. 90-100.

7T, Mosner et al. “Dereverberation and Beamforming in Far-Field Speaker Recognition”. In: Proc. ICASSP.
2018, pp. 5254-5258.

78Q. Jin et al. “Speaker Identification with Distant Microphone Speech”. In: Proc. of ICASSP. 2010,
pp. 4518-4521.

s 0. Sadjadi and J. H. L. Hansen. “Blind Spectral Weighting for Robust Speaker Identification under
Reverberation Mismatch”. In: [EEE/ACM Transactions on Audio, Speech, and Language Processing 22.5 (2014),
pp. 937-945.

80Chanwoo Kim and Richard M Stern. “Power-Normalized Cepstral Coefcients (PNCC) for Robust Speech
Recognition”. In: IEEE/ACM Transactions on Audio, Speech and Language Processing 24.7 (2016), pp. 1315-1329.

81D, Caiet al. “The DKU-SMIIP System for the Speaker Recognition Task of the VOICES from a Distance
Challenge”. In: Proc. of INTERSPEECH. 2019. A [

82 Yamada, L. Wang, and A. Kai. “Improvement of Distant Talking Speaker Identification Using Bottleneck ORIVERSTRY

Features of DNN". In: Proc. of INTERSPEECH. 2013, pp. 3661-2664.
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Previous Methods on Robust Modeling

@ Model level
o Reverberation matching with multi-condition training models within
the UBM or i-vector based front-end systems [83]%3,[84]84
o Multi-channel i-vector combination [85]%°
o Multi-condition training of PLDA models [86]%°
@ Score level
e Score normalization [83
e Multi-channel score fusion [87]%8 [88]%°

83| Peer, B. Rafaely, and Y. Zigel. "Reverberation Matching for Speaker Recognition”. In: Proc. of ICASSP.
2008, pp. 4829-4832.

84A. R Avila et al. “Improving the Performance of Far-Field Speaker Verification Using Multi-Condition Training:
The Case of GMM-UBM and i-Vector Systems”. In: Proc. of INTERSPEECH. 2014, pp. 1096-1100.

85A. Brutti and A. Abad. “Multi-Channel i-vector Combination for Robust Speaker Verification in Multi-Room
Domestic Environments”. [n: Proc. of Odyssey. 2016, pp. 252-258.

86D Garcia-Romero, X. Zhou, and C. Y. Espy-Wilson. “Multicondition Training of Gaussian Plda Models in
i-vector Space for Noise and Reverberation Robust Speaker Recognition”. In: Proc. of ICASSP. 2012,
pp. 4257-4260.

87). Peer, B. Rafaely, and Y. Zigel. “Reverberation Matching for Speaker Recognition”. In: Proc. of ICASSP.
2008, pp. 4829-4832.
88Q. Jin, T. Schultz, and A. Waibel. “Far-Field Speaker Recognition”. In: IEEE Transactions on Audio, Speech
and Language Processing 15.7 (2007), pp. 2023—-2032. Bl SR
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]87

89M. Ji et al. “Text-Independent Speaker Identification using Soft Channel Selection in Home Robot
Environments”. In: IEEE Transactions on Consumer Electronics 54.1 (2008), pp. 140+-144.
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. B
DUKE KUNSHAN

91p, Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant UNIVERSITY
and Noisy Environment”. In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

o X-vector + PLDA

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. B
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

o X-vector + PLDA
o Retransmitted speech in reverberant environments

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. e
DUKE KUNSHAN

91p, Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant UNIVERSITY
and Noisy Environment”. In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

e X-vector + PLDA

o Retransmitted speech in reverberant environments

e Speaker embedding based speaker recognition systems gave very
impressive gains over i-vector based systems

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. e
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

e X-vector + PLDA

o Retransmitted speech in reverberant environments

e Speaker embedding based speaker recognition systems gave very
impressive gains over i-vector based systems

@ Two interesting findings of end-to-end methods for robust modeling [90]*
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Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. A s
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

e X-vector + PLDA

o Retransmitted speech in reverberant environments

e Speaker embedding based speaker recognition systems gave very
impressive gains over i-vector based systems

@ Two interesting findings of end-to-end methods for robust modeling [90]*

e The performance gain achieves by data augmentation in the end-to-end
method is lager than in the i-vector framework

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110. A e
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Robust Modeling of End-to-End Methods

@ DNN speaker embedding under far-field and noisy environment [89]%

e X-vector + PLDA

o Retransmitted speech in reverberant environments

e Speaker embedding based speaker recognition systems gave very
impressive gains over i-vector based systems

@ Two interesting findings of end-to-end methods for robust modeling [90]*

e The performance gain achieves by data augmentation in the end-to-end
method is lager than in the i-vector framework

e For end-to-end methods with data augmentation, speech enhancement
algorithms may cause mismatch between the training data (clean and
augmented data) and the enhanced testing speech.

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106-1110.

91p, Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant
and Noisy Environment”. In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

@ Multi-task adversarial network for noise-robust speaker embedding [69]%

Encoding network for speaker embedding

Speaker classifier

Noise discriminator

Adversarial training by using fix-label loss or anti-label loss (take wrong

label with cross entropy) of the noise discriminator

e Outperform the other methods without adversarial training in noisy
environments

Acoustic Feature
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92 Zhou et al. “Training Multi-task Adversarial Network for Extracting Noise-robust Speaker Embedding”. In:
Proc. of ICASSP. 2019, pp. 6196-6200.
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Robust Modeling of End-to-End Methods

@ Joint training of denoising and speaker embedding network[91]%

o Denoising network

@ extract the target speech from noisy speech
@ extract bottleneck features

o Speaker embedding network
o Concatenate bottleneck features with fbank as inputs

Speech Separation

Feature stitching || [ || ~_______

WIWIWIW
Y Ny Al .

Deep Speaker

A Rk 5E K
DUKE KUNSHAN

93F Zhao, H. Li, and X. Zhang. “A Robust Text-independent Speaker Verification Method Based on Speech AL R
Separation and Deep Speaker”. In: Proc. of ICASSP. 2019, pp. 6101-6105.
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Robust Modeling of End-to-End Methods

@ Multi-channel training framework for speaker recognition under reverberant and
noisy environment [90]**

o 3D CNN structure as front-end convolutional network

o Extract the time-, frequency-, and spatial-information
e Significantly outperforms the i-vector system with front-end signal
enhancement as well as the single-channel robust deep speaker

embedding system
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94p. Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant
In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

@ Far-field text-dependent speaker verification [92]%

e Mixed training data with transfer learning

@ Utilize the content and speaker diversity of text-independent data
@ Train model with text-independent data and perform transfer learning
with text-dependent data

e Enrollment data augmentation

@ Enrollment and testing speech can be collected in different
environmental settings (e.g. Cell phone enroll, Smart speakers test)

o Corpus: AISHELL-2019B-eval dataset %

@ Open source wake-up words speech database

9By Qin, D Cai, and M. Li. “Far-Field End-to-End Text-Dependent Speaker Verication based on Mixed Training A Al SR
Data with Transfer Learning and Enrollment Data Augmentation”. In: Proc. of INTERSPEECH. 2019. “5UKE KUNSHAN

NIVERSITY
9 https: / /www.aishelltech.com /aishell 2019B_eval
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e Other Applications of End-to-End Methods
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Speaker Diarization

Speaker diarization is a task of “who spoke when” [93]%7[94]%. In general, it consists of
four essential submodules:

@ Voice activity detection (VAD): remove nonspeech from audios.
@ Speech segmentation: split speech into speaker-homogeneous segments.

@ Similarity measurement: compute the speaker similarity of any two segments in
the same audio.

@ Clustering: cluster segments belonging to the same speaker.
Other submodules like resegmentation and overlap detection are optional.

PWEREA W8 MC

Speech Similarity -
MW ‘ﬂ e Clusteing L 111223...

Figure: Essential submodules in diarization.

975 E. Tranter and D. A. Reynolds. “An Overview of Automatic Speaker Diarization Systems”. In: [EEE

Transactions on Audio, Speech, and Language Processing 14.5 (2006), pp. 1557-1565. 1sSN: 1558-7916. A iﬁ%ﬁsﬁﬁ
N
9%8x. Anguera et al. “Speaker Diarization: A Review of Recent Research”. In: IEEE Transactions on Audio, onvERsTY

356—370. 1SSN: 1558-7916.
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Speaker Diarization: VAD

@ Discriminant classifiers: e.g. in [95]* and [96]'%, linear discriminant analysis
(LDA) and support vector machine are used for classifying MFCC frames into
speech /non-speech.

@ Recently, DNN-based discriminant classifiers for VAD become popular. In [97
the LSTM architecture is employed for sequential modeling of the VAD task and
shows state-of-the-art performance.

]101

9Elias Rentzeperis et al. “The 2006 Athens Information Technology Speech activity detection and speaker
diarization systems”. In: International Workshop on Machine Learning for Multimodal Interaction. Springer. 2006,
pp. 385-395.
100Andlrey Temko, Dusan Macho, and Climent Nadeu. “Enhanced SVM training for robust speech activity
detection”. In: Proc. of ICASSP. Vol. 4. |IEEE. 2007. A s
DUKE KUNSHAN

101 F|orian Eyben et al. “Real-life voice activity detection with Istm recurrent neural networks and an application UNIVERSITY

to hollywood movies”. In: Proc. of ICASSP. IEEE. 2013, pp. 483-487.
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Speaker Diarization: Speech Segmentation

@ SCD: Speaker changepoint detection (SCD) usually searches for change points
first and then splits speech into speaker-homogeneous segments.

The first general approach brought up by [98]'% is a variation on the Bayesian
information criterion (BIC) [99]'®. This technique applies a sliding window over
speech data. It determines whether current windowed speech is better modelled by
a single distribution (no change point, Ho) or two different distributions (change
point, Hy) by computing BIC scores.

@ Generalized likelihood ratio (GLR) [100]*%*.

102 Douglas A Reynolds and P Torres-Carrasquillo. The MIT Lincoln Laboratory RT-04F diarization systems:
Applications to broadcast audio and telephone conversations. Tech. rep. 2004.

1035cott Chen, Ponani Gopalakrishnan, et al. “Speaker, environment and channel change detection and clustering
via the bayesian information criterion”. In: Proc. DARPA broadcast news transcription and understanding
workshop. Vol. 8. Virginia, USA. 1998, pp. 127-132.

JAIIE YN

104Herbert Gish, M-H Siu, and Robin Rohlicek. “Segregation of speakers for speech recognition and speaker SRVERSTY
identification”. In: Proc. of ICASSP. |IEEE. 1991, pp. 873-876.
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Speaker Diarization: Speech Segmentation

@ Recently DNN-based SCD models have also been proposed. For example, [101]1%° labels
speaker change points and their collars of 0.5s as 1, while the rest as 0, and carries out a

2-layer LSTM training.
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© However, SCD only provides an initial base segmentation in diarization, which will be
clustered and often resegmented later. According to [102]% and [103]%7, using a simple
initial uniform segmentation instead doesn’t significantly degrade the overall diarization

performance.

105Ruiqing; Yin, Herv Bredin, and Claude Barras. “Speaker Change Detection in Broadcast TV Using Bidirectional
Long Short-Term Memory Networks”. [n: Proc. Interspeech. 2017, pp. 3827-3831.
106 Chyck Wooters et al. “Towards robust speaker segmentation: The ICSI-SRI fall 2004 diarization system”. In
A
JAIIE YN

RT-04F Workshop. Vol. 23. 2004, p. 23.
107 B P u . . - I DUKE KUNSHAN
Sylvain Meignier et al. “Step-by-step and integrated approaches in broadcast news speaker diarization”. In: UNIVERSITY
Computer Speech & Language 20.2-3 (2006), pp. 303-330.
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Speaker Diarization: Similarity Measurement

@ BIC and GLR measurement can be applied here [104]1%8,

@ [105]'0? first extracts i-vectors from segments and then measures their speaker similarity
using cosine distance or PLDA [24]10. |-vector is later substituted with other speaker
embeddings like d-vector [106]' and x-vector [107]'2 to improve the precision.

© [108]!3 adopts LSTM to infer the similarity matrix directly.

i 6—{— ;,j+ similarity between segment i and segment j

[l rom one speaker
N [ ] From two speakers
similarity matrix §

108Ejie EI Khoury, Christine Senac, and Régine André-Obrecht. “Speaker diarization: towards a more robust and
portable system”. In: Proc. of ICASSP. Vol. 4. IEEE. 2007, pp. IV-489.

109G, Sell and D. Garcia-Romero. “Speaker diarization with plda i-vector scoring and unsupervised calibration”.
In: IEEE Spoken Language Technology Workshop. 2014, pp. 413-417.

105 D, Prince and J.H. Elder. “Probabilistic linear discriminant analysis for inferences about identity”. In
Proc. ICCV. 2017.

111Q. Wang et al. “Speaker Diarization with LSTM". In: Proc. of ICASSP. 2018, pp. 5239-5243.

112Gregory Sell et al. “Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the A
Inaugural DIHARD Challenge”. In: Proc. Interspeech. 2018, pp. 2808-2812. R UIFESE R
B

113Qingjian Lin et al. “LSTM based Similarity Measurement with Spectral Clustering for Speaker Diarization” .
In: Proc. Interspeech. 2019.
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Speaker Diarization: Clustering

The purpose of this stage is to associate or cluster segments from the same speaker
together.

@ AHC: Agglomerative hierarchical clustering (AHC), as a widely used clustering
algorithm, is presented as a binary-tree building process [109]114.

@ Spectralclustering is employed instead of AHC in [106]™° and [108]''®. Spectral
clustering is a graph-based clustering algorithm [110]*". Given the similarity
matrix S, it considers S;; as the weight of the edge between nodes i and j in an
undirected graph. By removing weak edges with small weights, spectral clustering
divides the original graph into subgraphs.

@ UIS — RNN: In [111]"8, the similarity measurement and clustering steps are
replaced by the Unbounded Interleaved-State (UIS) RNN model.

14K Chidananda Gowda and G. Krishna. “Agglomerative Clustering Using the Concept of Mutual Nearest
Neighbourhood”. In: Pattern Recognition 10 (1978), pp. 105-112.

15q. Wang et al. “Speaker Diarization with LSTM”. In: Proc. of ICASSP. 2018, pp. 5239-5243.

116Qingjian Lin et al. “LSTM based Similarity Measurement with Spectral Clustering for Speaker Diarization”.
In: Proc. Interspeech. 2019.

A
JAIIE YN
17rike von Luxburg. “A Tutorial on Spectral Clustering”. In: Statistics and Computing 17 (2007), pp 395—416“ DUKE KUNSHAN

NIVERSIT
118 Aonan Zhang et al. “Fully Supervised Speaker Diarization”. In: Proc. of ICASSP22019.
Ming Li (D
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Speaker Diarization: Others

@ Resegmentation: Re-segmentation is an optional submodule of diarization, aiming
at refining the original segment boundaries and filling in short segments that may
have been removed for more robust processing in the clustering stage.
Traditionally, a Viterbi decoder with or without iteration is employed. First,
speaker-specific GMMs are trained according to diarization outputs, and then data
frames are realigned to GMMs with the maximum posterior probabilities.

An improved version is the VB resegmentation [112]'*°[113]'®. It builds the
speaker-specific GMMs by adapting limited data frames of target speakers to
UBM, which enhances the robustness.

Diarization outputs —> Resegmentd outputs

111223 -

Resegmentation, for K iterations

119Xiemhong Chen et al. “VB-HMM Speaker Diarization with Enhanced and Refined Segment Representation.”
In: Proc. of Odyssey. 2018, pp. 134-139. A s
DUKE KUNSHAN
120Mireia Diez, Lukas Burget, and Pavel Matejka. “Speaker Diarization based on Bayesian HMM with Eigenvoic UNIVERSITY
Priors.” In: Proc. of Odyssey. 2018.
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Speaker Diarization: Others

@ Overlap detection: Overlap errors account for a large percent of DER in
diarization tasks, for example, about 10% in DIHARD. However, current
techniques are mostly migrated from VAD, such as two-stage HMMs and
DNN-based binary classifiers. They are proved not so efficient in this task.

© [114]*' reported the improvement after overlap detection, from DER 27.85% to
27.44% on the DIHARD2018 dev dataset. In DIHARD2019, our team also carried
out experiments and got similar results.

@ Therefore, overlap detection might become one of the most challenging and
attractive research directions in speaker diarization.

Rk 5E K
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121Ondl'ej Novotny et al. “BUT system for DIHARD speech diarization challenge 2018". In(2018).
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Paralinguistic Speech Attribute Recognition

@ Background
@ Features:

@ Frame-level features [115, 116, 117]
@ Utterance-level features [115, 116, 117]

© Network Structure:

@ Frame-level DNN structure [118, 119, 120, 121]

@ Convolutional Network [122, 123, 124]

© Recurrent Network [125, 126, 127]

@ Convolutional Recurrent Neural Network [128, 129, 130]

© Back-end Classifier [126, 131, 124]

A Rk 5E K
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Paralinguistic Speech Attribute Recognition

Background

Paralinguistic speech attribute recognition is a task to classify the attributes in speech signals
automatically [115]'22[116]'23 [117]*24[132]*?. Since 2009, the Interspeech Computational
Paralinguistics ChallengE (ComParE) is held every year to explore the technologies of this area.
Topics in recent years include

Q ComParE2017: Addressee, Cold and Snoring
@ ComParE2018: Atypical and Self-Assessed Affect, Crying and Heart Beats
© ComParE2019: Styrian Dialects, Continuous Sleepiness, Baby Sounds and Orca Activity

Traditional systems include two steps, utterance-level feature extraction and back-end classifiers
training. And Recently, with the development of deep learning algorithm, many end-to-end
solutions are proposed.

122 Bjorn W Schuller et al. “The INTERSPEECH 2019 Computational Paralinguistics Challenge: Styrian Dialects,
Continuous Sleepiness, Baby Sounds & Orca Activity”. In: Proc. of INTERSPEECH. 2019.

123Birn Schuller et al. “The INTERSPEECH 2018 Computational Paralinguistics Challenge: Atypical &
Self-Assessed Affect, Crying & Heart Beats”. [n: Proc. of Interspeech. 2018, pp. 122-126. URL:
http://dx.doi.org/10.21437/Interspeech.2018-51.

124 Bjrn Schuller et al. “The INTERSPEECH 2017 Computational Paralinguistics Challenge: Addressee, Cold &
Snoring”. In: Proc. of Interspeech. 2017, pp. 3442-3446. URI
http://dx.doi.org/10.21437/Interspeech.2017-43.

R K

125Bj5rn Schuller et al. “The INTERSPEECH 2013 computational paralinguistics challenge: social signals, SRVERSTY
conflict, emotion, autism”. In: Proc. of INTERSPEECH. 2013, pp. 148-152.
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Paralinguistic Speech Attribute Recognition

Frame-level features

@ STFT-spectrogram [133]'%¢[128]**

@ Mel-spectrogram [134]'%

@ Constant Q Transform (CQT) [133][135]*%*
@ LPCC, MFCC, RASTA-PLP

@ etc

126Danwei Cai et al. “End-to-End Deep Learning Framework for Speech Paralinguistics Detection Based on
Perception Aware Spectrum”. In: Proc. of INTERSPEECH. 2017, pp. 3452-3456.

127Dengke Tang, Junlin Zeng, and Ming Li. “An End-to-End Deep Learning Framework for Speech Emotion
Recognition of Atypical Individuals”. In: Proc. of INTERSPEECH. 2018, pp. 162-166.

128 \ario Lasseck. “Audio-based bird species identification with deep convolutional neural networks”. In: Working
Notes of CLEF 2018 (2018).

JAIIE YN

129 \assimiliano Todisco, Hetor Delgado, and Nicholas Evans. “Constant Q Cepstral Coefficients: A Spoofing ORIVERSTAY
Countermeasure for Automatic Speaker Verification”. In: Computer Speech & Language 45 (Feb. 2017).
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Paralinguistic Speech Attribute Recognition

Utterance-level features [115, 116, 117]

@ Handcrafted features: OpenSMILE ComParE set [9]**°

@ Features extracted from unsupervised models. These features summarize local
features descriptors in a vectorial statistic.

@ Fisher Encoding: train a GMM model as a visual word dictionary,
extract features by storing a statistics of the difference between
dictionary elements.

@ Bag-of-Audio-Word: quantize based on a codebook, represent audio
chunks as histograms of acoustic LLDs.

@ AuDeep feature: obtained from unsupervised representation learning
with recurrent sequence to sequence autoencoders.

© Supervised deep neural network based features

@ Output posteriors: output probabiltities of network.
@ Embeddings: extracted from the penultimate layer in the network.

Rk 5E K
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130F|orian Eyben, Martin Wollmer, and Bjorn Schuller. “Opensmile: the munich versatile and fast open-source
audio feature extractor”. In: Proc. of ACM Multimedia. 2010, pp. 1459-1462.
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Paralinguistic Speech Attribute Recognition

Network Structure DNN

Frame-level DNN is an effective structure in the field of paralinguistic attribute
recognition [118]"*![119]'*?[120]***[121]"**. The algorithm consists of the following
steps.

@ Extract frame-level features.
@ Train a frame-level DNN model.
© Obtain frame-level DNN posteriors

© Average the frame-level scores or train an extra classifiers to generate final scores

1B31Ghor Gosztolya, Tams Grsz, and Lszl Tth. “General Utterance-Level Feature Extraction for Classifying Crying
Sounds, Atypical & Self-Assessed Affect and Heart Beats”. In: Proc. of Interspeech. 2018, pp. 531-535.

132Ghor Gosztolya et al. “DNN-Based Feature Extraction and Classifier Combination for Child-Directed Speech,
Cold and Snoring Identification”. In: Proc. of Interspeech. 2017, pp. 3522-3526.

133Ghor Gosztolya et al. “Estimating the Sincerity of Apologies in Speech by DNN Rank Learning and Prosodic
Analysis”. In: Proc. of Interspeech. 2016, pp. 2026-2030. Al SR
DUKE KUNSHAN

134vishan Jiao et al. “Accent Identification by Combining Deep Neural Networks and Recurrent Neural Networks“ UNIVERSITY
Trained on Long and Short Term Features”. In: Proc. of Interspeech. 2016, pp. 2388+2392.
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Paralinguistic Speech Attribute Recognition

Network Structure CNN

Front-end CNN structures can be considered as a local pattern extractor. The CNN
system can directly utilize the output as final decision or train an extra classifier or
regressor to generate scores.

@ Plain CNN [122]"*

@ Residual structure [123]*3¢
© 1D-CNN structure [124]%7
Q etc.

A .
] I Multi-channel Orca

u\» ( -
1AM Augmentation | DeepCNN } (cm;,\;;.;)

(e DenseNet) Gt @)/ Noise
Utterances Multi-channel spectral features Embeddings

FIgLI I€. Structure of the proposed deep embedding system for orca activity detection in [136].

135 Johannes Wagner et al. “Deep Learning in Paralinguistic Recognition Tasks: Are Hand-crafted Features Still
Relevant?” In: Proc. of Interspeech. 2018, pp. 147-151.

136Q.F. Tan, P.G. Georgiou, S.S. Narayanan, et al. “Enhanced sparse imputation techniques for a robust speech
recognition front-end”. In: IEEE Transactions on Audio Speech and LanguageProcessing 19.8 (2011), p. 2418.
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137 Ahmed Imtiaz Humayun et al. “An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods UNIVERSITY
for Pathological Heart Sound Classification”. In: Proc. of Interspeech. 2018, pp. 127-131.

Ming Li (0))] Interspeech Survey Talk Interspeech 2019 /79




Paralinguistic Speech Attribute Recognition

Network Structure RNN

Recurrent neural network can take sequential information into consideration.
@ LSTM Network [125]'%
@ Bi-LSTM Network [126]"%
@ Attention structure [126]*°[127]*

Q etc.

138Heysem Kaya et al. “LSTM Based Cross-corpus and Cross-task Acoustic Emotion Recognition”. In: Proc. of
Interspeech. 2018, pp. 521-525.

13986 Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536-540.

140Bo Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536-540.

141 Cristina Gorrostieta et al. “Attention-based Sequence Classification for Affect Detection”. In: Proc. of
Interspeech. 2018, pp. 506-510.
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Paralinguistic Speech Attribute Recognition

Network Structure CRNN

Convolutional Recurrent Neural Network is popular in paralinguistic recognition task
recently and in some tasks it achieve the state-of-the-art performance
[128]*%[129]*3[130]***. The RNN structure includes GRU, LSTM, BLSTM.

1“zDengke Tang, Junlin Zeng, and Ming Li. “An End-to-End Deep Learning Framework for Speech Emotion
Recognition of Atypical Individuals”. In: Proc. of INTERSPEECH. 2018, pp. 162-166.

143Ming Li et al. “An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases
related to autism spectrum disorder”. In: Computer Speech & Language 56 (2019), pp. 80-94.

RLEESEKF
144Danqing Luo, Yuexian Zou, and Dongyan Huang. “Investigation on Joint Representation Learning for Robust SRVERSTY
Feature Extraction in Speech Emotion Recognition”. In: Proc. of Interspeech. 2018, pp. 152-156.
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Paralinguistic Speech Attribute Recognition

Back-end Classifier

Due to the lack of large scale training data in this task, back-end classifiers such as
SVM [126]**°[131]™°, LDA and MLP [124]* are still employed in many situations.
Back-end classifiers are commonly applied on

© CNN/RNN/CRNN embeddings extracted from the penultimate layer of the
network

@ DNN posteriors directly obtained from networks’' output
© CNN embeddings concatenated with handcrafted features

145Bo-Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536-540.

1465hahin Amiriparian et al. “Snore Sound Classification Using Image-Based Deep Spectrum Features”. In: Proc

of INTERSPEECH. 2017, pp. 3512-3516. [
147 Ahmed Imtiaz Humayun et al. “An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods ORIVERSTAY

for Pathological Heart Sound Classification”. In: Proc. of Interspeech. 2018, pp. 127-131.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 60 / 79



Anti-spoofing countermeasures

@ Severe vulnerability of state-of-the-art ASV system under a diverse range of
intentional fraudulent.

@ Physical access senario: replayed recording
@ Logical access senario: synthesised audio, e.g. text-to-speech and voice conversion

@ Anti-spoofing: Develop countermeasure system to distinguish between the bona
fide and the spoof audio.

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

Ming Li Interspeech Survey Talk Interspeech 2019 61/ 79



Input: Variable-length audio waveform

Output: Utterance-level attribute (bona fide or spoof)
The same processing pipeline as speaker and language recognition

But we fed different types of features to the network

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019

Rk 5E K
DUKE KUNSHAN
UNIVERSITY

62 / 79



Anti-spoofing countermeasures
Network structure: CNN or CNN + RNN architecture [137]**® [138]"*° [139]**°

Bona fide
o
E Spoof

Utterance-level representation

Convolutional layers

Variable-length feature sequence

8 Chunlei Zhang, Chengzhu Yu, and John HL Hansen. “An investigation of deep-learning frameworks for speaker
verification antispoofing”. In: IEEE Journal of Selected Topics in Signal Processing 11.4 (2017), pp. 684-694.
149 Galina Lavrentyeva et al. “Audio Replay Attack Detection with Deep Learning Frameworks.” In: Proc. of
A RLEESEKF
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Interspeech. 2017, pp. 82-86.
150Francis Tom, Mohit Jain, and Prasenjit Dey. “End-To-End Audio Replay Attack Detection Using Deep
63 / 79

Convolutional Networks with Attention.” In: Proc. of Interspeech. 2018, pp. 681-685¢
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Anti-spoofing countermeasures

Feature representation

@ Phase information, e.g. Modified group delay feature (MODGDF)
@ High frequency information (CQCC/LFCC/IMFCC)
@ High resolution representation (STFT gram, Group delay gram)
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Summary

Problem Formulation

Traditional Framework

@ Feature Extraction

@ Representation

@ Variability Compensation
@ Backend Classification

End-to-End Deep Neural Network based Framework
System Pipeline

Data Preparation

Network Structure

Encoding Mechanism

Loss Function

Data Augmentation

Domain Adaptation

Robust Modeling of End-to-End methods

@ Speech under Far Field and Complex Environment Settings
@ Previous Methods on Robust Modeling

@ Robust Modeling of End-to-End Methods

Other Applications of End-to-End Methods

@ Speaker Diarization

@ Paralinguistic Speech Attribute Recognition
@ Anti-spoofing Countermeasures
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Thank you very much!

Email: ming.li369@duke.edu
Website: https://scholars.duke.edu/person/MingLi
Slide Download Link: https://sites.duke.edu/dkusmiip
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