
End-to-end deep neural network based
speaker and language recognition

Ming Li1

Data Science Research Center, Duke Kunshan University
Department of Electrical and Computer Engineering, Duke University

Sep 17th 2019

1Thanks Weicheng Cai, Danwei Cai, Qingjian Lin and Haiwei Wu for their contributions

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 1 / 79



Table of Contents

1 Problem Formulation

2 Traditional Framework
Feature Extraction
Representation
Variability Compensation
Backend Classification

3 End-to-End Deep Neural Network based Framework
System Pipeline
Data Preparation
Network Structure
Encoding Mechanism
Loss Function
Data Augmentation
Domain Adaptation

4 Robust Modeling of End-to-End methods
Speech under Far Field and Complex Environment Settings
Previous Methods on Robust Modeling
Robust Modeling of End-to-End Methods

5 Other Applications of End-to-End Methods
Speaker Diarization
Paralinguistic Speech Attribute Recognition
Anti-spoofing Countermeasures

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 2 / 79



Table of Contents

1 Problem Formulation

2 Traditional Framework
Feature Extraction
Representation
Variability Compensation
Backend Classification

3 End-to-End Deep Neural Network based Framework
System Pipeline
Data Preparation
Network Structure
Encoding Mechanism
Loss Function
Data Augmentation
Domain Adaptation

4 Robust Modeling of End-to-End methods
Speech under Far Field and Complex Environment Settings
Previous Methods on Robust Modeling
Robust Modeling of End-to-End Methods

5 Other Applications of End-to-End Methods
Speaker Diarization
Paralinguistic Speech Attribute Recognition
Anti-spoofing Countermeasures

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 3 / 79



Problem Formulation

Speech signal not only contains lexicon information, but also deliver various kinds
of paralinguistic speech attribute information, such as speaker, language, gender,
age, emotion, channel, voicing, psychological states, etc.

The core technique question behind it is utterance level supervised learning based
on text independent or text dependent speech signal with flexible duration

The traditional framework

Figure: General framework
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Feature Extraction

MFCC, PLP, SDC [1]2, PNCC[2]3, GFCC[3]4 , CQCC [4]5,etc.

Bottleneck [5][6], Phoneme Posterior Probability [7][8], etc.

LLD/OpenSmile [9], Speech attributes [10], Acoustic-to-articulatory inversion [11],
subglottal[12], etc.

IMFCC[13], Modified Group Delay[14], etc.

2P. Torres-Carrasquillo et al. “Approaches to language identification using gaussian mixture models and shifted
delta cepstral features”. In: Proc. of ICSLP. 2002, pp. 89–92.

3C. Kim and R. M. Stern. “Power-Normalized Cepstral Coefficients PNCC for Robust Speech Recognition”. In:
IEEE Transactions on Audio Speech and Language Processing 24.7 (2016), pp. 1315–1329.

4Shao Yang and De Liang Wang. “Robust speaker identification using auditory features and computational
auditory scene analysis”. In: Proc. of ICASSP. 2008.

5Massimiliano Todisco, Hector Delgado, and Nicholas Evans. “Constant Q cepstral coefficients: A spoofing
countermeasure for automatic speaker verification”. In: Computer Speech and Language 45 (2017).
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Representation

time varying property =⇒ short time frame level features

generative model for data description =⇒ features (supervectors) in model
parameters’ space for classification
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Generative model, adaptation, supervectors

Gaussian Mixture Model (GMM) [15]4 serves as the generative model

model adaptation from universal background model (UBM)

MAP adaptation, concatenating mean vector from all GMM components to
get a large dimensional GMM mean supervector [16]
Maximum Likelihood Linear Regression (MLLR) adaptation

the linear regression matrix becomes GMM MLLR supervector [17]

4D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. “Speaker Verification Using Adapted Gaussian Mixture Models”.
In: Digital Signal Processing. 2000, 1941.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 8 / 79



Generative model, adaptation, supervectors

Gaussian Mixture Model (GMM) [15]4 serves as the generative model

model adaptation from universal background model (UBM)

MAP adaptation, concatenating mean vector from all GMM components to
get a large dimensional GMM mean supervector [16]

Maximum Likelihood Linear Regression (MLLR) adaptation

the linear regression matrix becomes GMM MLLR supervector [17]

4D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. “Speaker Verification Using Adapted Gaussian Mixture Models”.
In: Digital Signal Processing. 2000, 1941.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 8 / 79



Generative model, adaptation, supervectors

Gaussian Mixture Model (GMM) [15] serves as the generative model

model adaptation from universal background model (UBM)

MAP adaptation, concatenating mean vector from
all GMM components to get a large dimensional GMM mean supervector [16]4

Maximum Likelihood Linear Regression (MLLR) adaptation

the linear regression matrix becomes GMM MLLR supervector [17]

4W.M Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97–100.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 8 / 79



Generative model, adaptation, supervectors

Gaussian Mixture Model (GMM) [15] serves as the generative model

model adaptation from universal background model (UBM)

MAP adaptation, concatenating mean vector from all GMM components to
get a large dimensional GMM mean supervector [16]4

Maximum Likelihood Linear Regression (MLLR) adaptation

the linear regression matrix becomes GMM MLLR supervector [17]5

4W.M Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97–100.

5Andreas Stolcke et al. “MLLR transforms as features in speaker recognition”. In: Ninth European Conference
on Speech Communication and Technology. 2005.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 8 / 79



Generative model, adaptation, supervectors

The statistics vector for a set of features on UBM

0th order statistics vector N, centered normalized 1st order statistics vector F

Nc =
L∑

t=1

P(c|yt, λ) (1)

F̃c =

∑L
t=1 P(c|yt, λ)(yt − µc)∑L

t=1 P(c|yt, λ)
. (2)

Cumulated by L frames

Mapping from a set of feature vectors to a fixed dimensional supervector
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Factor analysis based dimension reduction

Factor analysis on the concatenated centered normalized 1st order statistics
vector or GMM mean supervector

total variability i-vector [18]

F̃ = Tx (3) T: factor loading matrix, x: i-vector

joint factor analysis (JFA) [19]

F̃ = Vx+Uy+Dz (4)

V: Eigenvoices, U: Eigenchannels,
x: speaker factor, y: channel factor,
D: diagonal covariance matrix
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Variability Compensation

LDA, WCCN [20]8, NAP[16]9, NDA [21]10, LSDA [22]11, LFDA [23]12, etc.

8A.O. Hatch, S. Kajarekar, and A. Stolcke. “Within-class covariance normalization for SVM-based speaker
recognition”. In: Proc. of INTERSPEECH. Vol. 4. 2006, pp. 1471–1474.

9W.M Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97–100.

10Seyed Omid Sadjadi, Jason Pelecanos, and Weizhong Zhu. “Nearest neighbor discriminant analysis for robust
speaker recognition”. In: Proc. of Interspeech. 2014.

11Danwei Cai et al. “Locality sensitive discriminant analysis for speaker verification”. In: Proc. of APSIPA ASC.
2016, pp. 1–5.

12Peng Shen et al. “Local fisher discriminant analysis for spoken language identification”. In: Proc. of ICASSP.
2016, pp. 5825–5829.
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Backend Classification

SVM [16]13, PLDA [24]14[25]15, NN [26]16[27]17, Joint Bayesian [28]18 , Cosine
Similarity, etc.

13W.M Campbell et al. “SVM based speaker verification using a GMM supervector kernel and NAP variability
compensation”. In: Proc. of ICASSP. Vol. 1. 2006, pp. 97–100.

14S.J.D. Prince and J.H. Elder. “Probabilistic linear discriminant analysis for inferences about identity”. In:
Proc. ICCV. 2017.

15D. Garcia-Romero and C. Y Espy-Wilson. “Analysis of i-vector Length Normalization in Speaker Recognition
Systems.” In: Proc. INTERSPEECH. 2011, pp. 249–252.

16Kyu Jeong Han et al. “TRAP language identification system for RATS phase II evaluation”. In: Proc. of
Interspeech. 2013, pp. 1502–1506.

17Omid Ghahabi et al. “Deep Neural Networks for iVector Language Identification of Short Utterances in Cars”.
In: Proc. of Interspeech. 2016, pp. 367–371.

18Yiyan Wang, Haotian Xu, and Zhijian Ou. “Joint bayesian gaussian discriminant analysis for speaker
verification”. In: Proc. of ICASSP. IEEE. 2017, pp. 5390–5394.
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System PipelineSystem Pipeline

Variable-
length input

Local pattern
extractor

Encoding
layer

Feed-forward
network

Loss function

Description

Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term specral feature (STFT spectrogram [nagrani2017voxceleb]a,
Mel-filterbank energies [li2017deep]b, MFCC [29]c), or even the raw
waveform [ravanelli2018speaker]d.

The local pattern extractor plays a role as an automaric representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).

The encoding layer encodes the variable-length sequence into a fixed-dimensianl
utterance-level representation. (Recurrent encoding / Pooling)

All the network components are jointly optimized with a global loss function.
(Forward + Backward + Stochastic gradient descent)

a li2017deep.
b li2017deep.
cD. Snyder et al. “Deep neural network-based speaker embeddings for end-to-end speaker verification”. In:

Proc. IEEE SLT 2017. 2017.
dravanelli2018speaker.
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Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term spectral feature (STFT spectrogram [29]19, Mel-filterbank energies
[30]20, MFCC [31]21), or even the raw waveform [32]22.

The local pattern extractor plays a role as an automatic representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).

The encoding layer encodes the variable-length sequence into a fixed-dimensional
utterance-level representation. (Recurrent encoding / Pooling)

All the network components are jointly optimized with a global loss function.
(Forward + Backward + Stochastic gradient descent)

19Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. “Voxceleb: a large-scale speaker identification
dataset”. In: arXiv preprint arXiv:1706.08612 (2017). url: http://www.robots.ox.ac.uk/~vgg/data/voxceleb/.

20Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

21D. Snyder et al. “Deep neural network-based speaker embeddings for end-to-end speaker verification”. In:
Proc. IEEE SLT. 2017.

22Mirco Ravanelli and Yoshua Bengio. “Speaker recognition from raw waveform with sincnet”. In: Proc. of SLT.
IEEE. 2018, pp. 1021–1028.
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20Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].

21D. Snyder et al. “Deep neural network-based speaker embeddings for end-to-end speaker verification”. In:
Proc. IEEE SLT. 2017.

22Mirco Ravanelli and Yoshua Bengio. “Speaker recognition from raw waveform with sincnet”. In: Proc. of SLT.
IEEE. 2018, pp. 1021–1028.
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System Pipeline

System Pipeline

Variable-
length input

Local pattern
extractor

Encoding
layer

Feed-forward
network

Loss function

Description

Speech signal is naturally with arbitrary duration. The input can be a hand-crafted
short-term specral feature (STFT spectrogram [nagrani2017voxceleb]a,
Mel-filterbank energies [li2017deep]b, MFCC [29]c), or even the raw
waveform [ravanelli2018speaker]d.

The local pattern extractor plays a role as an automaric representation learning
module. (TDNN/CNN/LSTM/CNN-LSTM/CNN-BLSTM).

The encoding layer encodes the variable-length sequence into a fixed-dimensianl
utterance-level representation. (Recurrent encoding / Pooling)

All the network components are jointly optimized with a global loss function.
(Forward + Backward + Stochastic gradient descent)

a li2017deep.
b li2017deep.
cD. Snyder et al. “Deep neural network-based speaker embeddings for end-to-end speaker verification”. In:

Proc. IEEE SLT 2017. 2017.
dravanelli2018speaker.
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Task

Language identification or paralinguistic speech attributes detection(Closed-set)

Network outoput → Utterance-level posteriors

Speaker Verification (Open-set)

Utterance-level speaker embedding + Cosine / PLDA → Pairwise scores
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Data preparation

Traditional workflow

Off-the-shelf full-length utterance

Each utterance is performed independently

The parameters are updated after seeing all the (or sampled) utterances .

Arbitrary duration audio waveform → variable-length feature sequence →
utterane-level fixed-dimensional embedding (e.g. i-vector).

Network workflow

Well-prepared mini-batch tensor block in the training stage.

Several utterances are grouped together → Multi-dimensinal array

The parameters are updated for each batch of data

In the testing stage, arbitrary duration audio waveform → variable-length feature
sequence → utterance-level fixed-dimensional embedding (e.g. x-vector).
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DNN data preparation

D-vector [33]23[34]24[35]25

Raw feature sequences are broken into multiple small fixed-length data chunks at
the frame level.

The input layer is fed with dozens of frames formed by stacking the currently
processed frame and its several left–right context frames.

This data preparation procedure generates a large amount of temporary data
chunks.

In the testing stage, it is also necessary to break the testing segments into a bunch
of fixed-length frames.

23Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
Proc. of ICASSP. 2014, pp. 4080–4084.

24Yuan Liu et al. “Deep feature for text-dependent speaker verification”. In: Speech Communication 73 (2015),
pp. 1–13.

25Lantian Li et al. “Deep speaker vectors for semi text-independent speaker verification”. In: arXiv preprint
arXiv:1505.06427 (2015).
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Data preparation

X-vector [36]26

Several archive files containing data chunks with different segment lengths and
augmentation types are prepared carefully beforehand

The input layer is fed with variabel-length segments.

This data preparation procedure also generates a large amount of temporary data
chunks when data augmentation is performed.

In the testing stage, the full-length utterance-level feature sequence can be directly
fed into the network.

26David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE.
2018, pp. 5329–5333.
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On-the-fly data loader [37]27

Offline augmentation requires us to generate all the necessary training samples
into disk beforehand. On the contrary, a data loader here maintains an online
processing work flow to generate training sample on the fly.

Multiple real-time operations within the data loader: the data slice, the data
transformation (including feature extraction and data augmentation), and the data
batching operation.

27Weicheng Cai et al. “On-the-Fly Data Loader and Utterance-level Aggregation for Speaker and Language
Recognition”. In: submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing (2019).
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This design principle allows us to perform the batch-wise random perturbation,
such as variable-length data slice and online data augmentation efficiently. All the
operations are eagerly executed on the fly, and the training samples are generated
in the memory just before feeding it into the DNNs.

Since we maintain the dataflow from the raw waveform to the DNN output, it also
promotes model inference and deployment ease. After the DNN has been trained,
the data loader can simply tune into the “testing” mode by setting the batch size
to one and removing the data slice, data augmentation and data batching modules.

27Weicheng Cai et al. “On-the-Fly Data Loader and Utterance-level Aggregation for Speaker and Language
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Network Structure

Feed-forward DNN(FF-DNN)

Fig. 1. The background DNN model for speaker verification.

Moreover, the PLDA on the i-vectors can decompose the total vari-
ability into speaker and session variability more effectively com-
pared to JFA. The i-vector-PLDA technique and its variants have
also been successfully used in text-dependent speaker recognition
tasks [8, 9, 10].

In past studies, neural networks have been investigated for
speaker recognition [11, 12]. Being nonlinear classifiers, neural net-
works can discriminate the characteristics of different speakers. The
neural network was typically used as a binary classifier of target and
non-target speakers, or multicategory classifiers for speaker identi-
fication purposes. Auto-associative neural networks (AANN) [13]
were proposed to use the reconstruction error difference computed
from the UBM-AANN and speaker specific AANN as the verifica-
tion score. Multi-layer perceptrons (MLPs) with a bottleneck layer
have been used to derive robust features for speaker recognition [14].
More recently, some preliminary studies have been conducted on us-
ing deep learning for speaker recognition, such as the use of convolu-
tional deep belief networks [15] and Boltzmann machine classifiers
[16].

3. DNN FOR SPEAKER VERIFICATION

The proposed background DNN model for SV is depicted in Fig-
ure 1. The idea is similar to [15] in the sense that neural networks
are used to learn speaker specific features. The main differences are
that here we perform supervised training, and use DNNs instead of
convolutional neural networks. In addition, in this paper we evaluate
on a SV task instead of the simpler speaker identification task.

3.1. DNN as a feature extractor

At the heart of the proposed approach in this work is the idea of using
a DNN architecture as a speaker feature extractor. As in the i-vector
approach, we look for a more abstract and compact representation of
the speaker acoustic frames but using a DNN rather than a generative
Factor Analysis model.

With this aim, we first built a supervised DNN, operating at the
frame level, to classify the speakers in the development set. The
input of this background network is formed by stacking each training
frame with its left and right context frames. The number of outputs

corresponds to the number of speakers in the development set, N .
The target labels are formed as a 1-hot N -dimensional vector where
the only non-zero component is the one corresponding to the speaker
identity. Figure 1 illustrates the DNN topology.

Once the DNN has been trained successfully, we use the accu-
mulated output activations of the last hidden layer as a new speaker
representation. That is, for every frame of a given utterance belong-
ing to a new speaker, we compute the output activations of the last
hidden layer using standard feedforward propagation in the trained
DNN, and then accumulate those activations to form a new compact
representation of that speaker, the d-vector. We choose to use the
output from the last hidden layer instead of the softmax output layer
due to a couple of reasons. First, we can reduce the DNN model size
for runtime by pruning away the output layer, and this also enables
us to use a large number of development speakers without increasing
DNN size at runtime. Second, we have observed better generaliza-
tion to unseen speakers from the last hidden layer output.

The underlying hypothesis here is that the trained DNN, having
learned compact representations of the development set speakers in
the output of the last hidden layer, may also be able to represent
unseen speakers.

3.2. Enrollment and evaluation

Given a set of utterances Xs = {Os1 , Os2 , . . . , Osn} from a
speaker s, with observations Osi = {o1, o2, . . . , om}, the process
of enrollment can be described as follows. First, we use every ob-
servation oj in utterance Osi , together with its context, to feed the
supervised trained DNN. The output of the last hidden layer is then
obtained, L2 normalized, and accumulated for all the observations
oj in Osi . We refer to the resulting accumulated vector as the d-
vector associated with the utterance Osi . The final representation of
the speaker s is derived by averaging all d-vectors corresponding for
utterances in Xs.

During the evaluation phase, we first extract the normalized d-
vector from the test utterance. Then we compute the cosine distance
between the test d-vector and the claimed speaker’s d-vector. A ver-
ification decision is made by comparing the distance to a threshold.

3.3. DNN training procedure

Given the low-resource conditions of the scenario explored in this
study (see Section 4), we trained the background DNN as a maxout
DNN using dropout [17][18].

Dropout is a useful strategy to prevent over-fitting in DNN fine-
tuning when using a small training set [18][19]. In essence, the
dropout training procedure consists of randomly omitting certain
hidden units for each training token. Maxout DNNs [17] were con-
ceived to properly exploit dropout properties. Maxout networks dif-
fer from the standard multi-layer perceptron (MLP) in that hidden
units at each layer are divided into non-overlapping groups. Each
group generates a single activation via the max pooling operation.
Training of maxout networks can optimize the activation function
for each unit.

Specifically, in this study, we trained a maxout DNN with four
hidden layers and 256 nodes per layer, within the DistBelief frame-
work [20]. A pool size of 2 is used per layer. The first two layers do
not use dropout while the last two layers drop 50 percent of activa-
tions after dropout, as shown in Figure 1.

Regarding other configuration parameters, we used rectified lin-
ear units [21] as the non-linear activation function on hidden units
and a learning rate of 0.001 with exponential decay (0.1 every

4081

D-vector for SV [33]28

28Ehsan Variani et al. “Deep Neural Networks for Small Footprint Text-Dependent Speaker Verification”. In:
Proc. of ICASSP. 2014, pp. 4080–4084.
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Feed-forward DNN(FF-DNN)

with a 10ms frame rate over 25ms long windows, we followed
the standard recipe described in [17] to obtain i-vectors. We
trained a Universal Background Model (UBM) with 1024
components and a 400-dimensional total variability subspace
initialized by PCA and refined by 10 iterations of EM. Also,
we filtered-out silence frames by using energy-based voice
activity detector.

Once the i-vectors for every language were extracted, we
used different strategies to perform classification. On the one
hand, as a discriminative approach, we performed linear Lo-
gistic Regression (LR). On the other hand, two generative
approaches were tested, LDA followed by cosine distance
(LDA CD), and a Gaussian modelling to fit the i-vectors of
each language, with one (1G) or two components - with and
without tied covariances - (2G TC, 2G). We also explored the
effect of using a single shared covariance across the languages
(1G SC) vs. per-language covariances. For further details
about this approach, see [9].

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [18]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target
languages (NL) plus one extra output for the out-of-set (oos)
languages.

The DNN works at frame level, using the same features as
the baseline systems described above (39 PLP). Specifically,
the input layer is fed with 21 frames formed by stacking the
current processed frame and its ±10 left-right context. There-
fore, there are 819 (21 × 39) visible units, v. The number of
total weights w, considering Nhl hidden layers, can be then
easily computed as w = (v×h)+((Nhl−1)×h×h)+h×s.
Figure 1 represents the complete topology of the network.

We trained all the DNN architectures presented in this
work using asynchronous stochastic gradient descent within
the DistBelief framework [19]. We also fixed the learning
rate and minibatch size to 0.001 and 200 samples. Finally, we
computed the output scores at utterance level by respectively
averaging the log of the softmax output of all its frames (i.e.:
log of the predicted posterior probabilities).

2.3. Logistic Regression Calibration

Our scores were calibrated using discriminatively trained,
regularized multiclass logistic regression [20]. The calibra-
tion was trained in the ”cheating” way, that is, using the
evaluation scores themselves. The reason, why we performed
the cheating calibration, was to concentrate on the ability
of the underlying models to discriminate between the given
classes. We did not want to introduce other errors coming

Fig. 1. DNN network topology

from over-training the systems on the training data-set and
therefore producing miscalibrated scores for our evaluation
set.

The L2 regularization penalty weight was chosen prior to
training to be proportional to the mean magnitude of the con-
ditioned input vectors (scores) [21].

The calibration uses an affine transform to convert the
NL-dimensional vector of input scores, st, for trial t, into a
NL-dimensional calibrated score-vector, rt

rt = Cst + d, (1)

The logistic regression parameters are given by C, a full
NL-by-NL matrix, and d, a NL-dimensional vector and they
are trained by minimizing the multiclass cross-entropy with
equalizing the amount of data for individual classes

F = λ tr(CTC)−
NL∑

i=1

1

NLNi

∑

t∈Ri

log
exp(rit)∑N

j=1 L exp(rjt)
,

(2)

where rit is the ith component of rt and Ri is the set of Ni

training examples of language i.

3. EXPERIMENTAL PROTOCOL

3.1. Databases

Google 5M LID Corpus

We generated The Google 5M LID Corpus dataset by ran-
domly picking queries from several Google speech recogni-
tion services such as Voice Search or the Speech API.

5338

FF-DNN for LID [38]29

29I. Lopez-Moreno et al. “Automatic language identification using deep neural networks”. In: Proc. of ICASSP.
2014, pp. 5337–5341.
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Network Structure

Feed-forward DNN(FF-DNN)

Text-dependent (”Ok google”)

Short duration (≤ 3s test segment)

Fixed-length flattened input (Stacked frames )

Fram-level + Post average → Utterance-level
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Figure 1: DNN network topology

L is given by

Sw,wL =
(Atw)(AtwL)p

(Atw)(Atw)
p

(AtwL)(AtwL)
(1)

being A is the LDA matrix.
In [10] we provided a more detailed comparison between

state-of-the-art i-vector and DNN -based LID system over the
Google 5M dataset. In this work we opted for a LDA CS base-
line as it is a widely used technique and offers comparable re-
sults with the DNN model on the public LRE’09 dataset [10].

The total number of parameters of the i-vector system ac-
counts for the TV and LDA matrices. It is given by NFD +
D(NL � 1), being N , F , D and NL the number of Gaussians
components (1024), the feature dimension (39) the i-vector di-
mensions (400) and the number of languages (8). In our model,
this makes a total of ⇠16M of parameters.

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [19]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target lan-
guages (NL) plus one extra output for the out-of-set (oos) lan-
guages.

The DNN works at frame level, using the same features
as the baseline systems described above (39 PLP). The input
layer is fed with 21 frames formed by stacking the current pro-
cessed frame and its ±10 left-right context. Therefore, there are
819 (21 ⇥ 39) visible units, v. The number of total weights w,
considering Nhl hidden layers can be then easily computed as
w = vh+(Nhl �1)hh+ sh. Figure 1 represents the complete
topology of the network.

Regarding the training parameters, we used asynchronous
stochastic gradient descent within the DistBelief framework
[20]. We also fixed the learning rate and minibatch size to 1e-03
and 200 samples.
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Figure 2: Long Short-Term Memory recurrent neural network
architecture. A single memory block is shown for clarity.

Finally, we computed the output scores at utterance level
by respectively averaging the log of the softmax output of all its
frames (i.e. log of the predicted posterior probabilities).

3. Long Short-Term Memory RNNs
The modern LSTM RNN architecture [14, 15, 16] is shown
in Figure 2. The LSTM contains special units called memory
blocks in the recurrent hidden layer. The memory blocks con-
tain memory cells with self-connections storing the temporal
state of the network in addition to special multiplicative units
called gates to control the flow of information. The input gate
controls the flow of input activations into the memory cell. The
output gate controls the output flow of cell activations into the
rest of the network. The forget gate scales the internal state
of the cell before adding it as input to the cell through self-
recurrent connection of the cell, therefore adaptively forgetting
or resetting the cell’s memory. In addition, the LSTM RNN ar-
chitecture contains peephole connections from its internal cells
to the gates in the same cell to learn precise timing of the out-
puts [16].

With this architecture, LSTM RNNs compute a mapping
from an input sequence x = (x1, ..., xT ) to an output sequence
y = (y1, ..., yT ). They calculate the activations for network
units using the following equations iteratively from the time
step t = 1 to T :

it = �(Wixxt + Wirrt�1 + Wicct�1 + bi) (2)
ft = �(Wfxxt + Wfrrt�1 + Wfcct�1 + bf ) (3)

ct = ft � ct�1 + it � tanh(Wcxxt + Wcrrt�1 + bc) (4)
ot = �(Woxxt + Worrt�1 + Wocct + bo) (5)

rt = ot � tanh(ct) (6)
yt = �(Wyrrt + by) (7)

where the W terms denote weight matrices (e.g. Wix

is the matrix of weights from the input gate to the input),
Wic, Wfc, Woc are diagonal weight matrices for peephole con-
nections, the b terms denote bias vectors (bi is the input gate
bias vector), � is the logistic sigmoid function, and i, f , o and
c are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the cell
output activation vector r, � is the element-wise product of the
vectors, tanh is the hyperbolic tangent activation function for
cell inputs and cell outputs, and � is the softmax output activa-
tion function for the LSTM RNN models used in this paper.

LSTM for LID [39]30

30J. Gonzalez-Dominguez et al. “Automatic language identification using long short-term memory recurrent
neural networks”. In: Proc. INTERSPEECH, pp. 2155–2159.
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Figure 3: Long short-term memory recurrent neural network
(LSTM) with a single output.

better comparability. Unlike vanilla LSTMs which have multi-
ple outputs, we only connect the last output to the loss to obtain
a single, utterance-level speaker representation.

The speaker model is the average over a small number of
”enrollment” representations (Section 2). We use the same net-
work to compute the internal representations of the ”test” ut-
terance and of the utterances for the speaker model. The ac-
tual number of utterances per speaker available in training typi-
cally is much larger (a few hundred or more) than in enrollment
(fewer than ten), see Table 1. To avoid a mismatch, we sample
for each training utterance only a few utterances from the same
speaker to build the speaker model at training time. In general,
we cannot assume to have N utterances per speaker. To allow
for a variable number of utterances, we pass a weight along with
the utterance to indicate whether to use the utterance.

Finally, we compute the cosine similarity between the
speaker representation and the speaker model, S(X, spk), and
feed it to a logistic regression including a linear layer with a
bias. The architecture is optimized using the end-to-end loss

le2e = − log p(target) (1)
with the binary variable target ∈ {accept, reject}, p(accept) =
(1+exp(−wS(X, spk)−b))−1, and p(reject) = 1−p(accept).
The value −b/w corresponds with the verification threshold.

The input of the end-to-end architecture are 1 + N utter-
ances, i.e., an utterance to be tested and up to N different ut-
terances of the same speaker to estimate the speaker model. To
achieve a good tradeoff between data shuffling and memory, the
input layer maintains a pool of utterances to sample 1+N utter-
ances from for each training step and gets refreshed frequently
for better data shuffling. As a certain number of utterances of
the same speaker is needed for the speaker model, the data is
presented in small groups of utterances of the same speaker.

The end-to-end architecture allows for direct optimization
of the evaluation metric using the standard evaluation proto-
col with consistent speaker models. Conceivably, this will re-
sult in better accuracy without the need for heuristics and post-
processing steps, for example, score normalization. Moreover,
the approach scales well as it neither depends on the number of
training speakers and nor requires a minimum number of utter-
ances per speaker.

5. Experimental Evaluation
We evaluate the proposed end-to-end approach on our internal
”Ok Google” benchmark.

5.1. Data Sets & Basic Setup

We tested the proposed end-to-end approach on a set ?Ok
Google? utterances collected from anonymized voice search
logs. For improved noise robustness, we perform multistyle

training. The data were augmented by artificially adding in car
and cafeteria noise at various SNRs, and simulating different
distances between the speaker and the microphone, see [2] for
further details. Enrollment and evaluation data include only real
data. Table 1 shows some data set statistics.

Table 1: Data set statistics.
#utterances #speakers #utts / spk

(#augmented)
train 2M 2M (9M) 4k >500
train 22M 22M (73M) 80k >150
enrollment 18k 3k 1-9
evaluation 20k 3k 3-5

The utterances are forced aligned to obtain the ”Ok Google”
snippets. The average length of these snippets is around 80
frames, for a frame rate of 100 Hz. Based on this observa-
tion, we extracted the last 80 frames from each snippet, pos-
sibly padding or truncating frames at the beginning of the snip-
pet. The frames consist of 40 log-filterbanks (with some basic
spectral subtraction) each.

For DNNs, we concatenate the 80 input frames, resulting in
a 80x40-dimensional feature vector. Unless specified otherwise,
the DNN consists of 4 hidden layers. All hidden layers in the
DNN have 504 nodes and use ReLU activation except the last,
which is linear. The patch size for the locally-connected layer
of the DNN is 10×10. For LSTMs, we feed the 40-dimensional
feature vectors frame by frame. We use a single LSTM layer
with 504 nodes without a projection layer. The batch size is 32
for all experiments.

Results are reported in terms of equal error rate (EER),
without and with t-norm score normalization [23].

5.2. Frame-Level vs. Utterance-Level Representation

First, we compare frame-level and utterance-level speaker rep-
resentations, see Table 2. Here, we use a DNN as described in
Fig. 1 with a softmax layer and trained on train 2M (Table 1)
with 50% dropout [24] in the linear layer. The utterance-level
approach outperforms the frame-level approach by 30%. Score
normalization gives a substantial performance boost (up to 20%
relative) in either case. For comparison, two i-vector baselines

Table 2: Equal error rates for frame-level and utterance-level
speaker representations.

EER (%)
level system raw t-norm
frame i-vector [6] 5.77 5.11

i-vector+PLDA [25] 4.66 4.89
DNN, softmax [4] 3.86 3.32

utterance DNN, softmax 2.90 2.28

are shown. The first baseline is based on [6], and uses 13 PLPs
with first-order and second-order derivatives, 1024 Gaussians,
and 300-dimensional i-vectors. The second baseline is based
on [25] with 150 eigenvoices. The i-vector+PLDA baseline
should be taken with a grain of salt as the PLDA model was
only trained on a subset of the 2M train data set (4k speakers
and 50 utterances per speaker) due to limitations of our current
implementation.1 Also, this baseline does not include other re-
fining techniques such as ”uncertainty training” [10] that have

1However, training with only 30 utterances per speaker gives almost
the same results.

LSTM for SV [40]30

Adopt the last several output units of LSTM

Short duration (≤ 3s test segment)

30Georg Heigold et al. “End-to-End Text-Dependent Speaker Verification”. In: Proc. of ICASSP. 2016.
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better comparability. Unlike vanilla LSTMs which have multi-
ple outputs, we only connect the last output to the loss to obtain
a single, utterance-level speaker representation.

The speaker model is the average over a small number of
”enrollment” representations (Section 2). We use the same net-
work to compute the internal representations of the ”test” ut-
terance and of the utterances for the speaker model. The ac-
tual number of utterances per speaker available in training typi-
cally is much larger (a few hundred or more) than in enrollment
(fewer than ten), see Table 1. To avoid a mismatch, we sample
for each training utterance only a few utterances from the same
speaker to build the speaker model at training time. In general,
we cannot assume to have N utterances per speaker. To allow
for a variable number of utterances, we pass a weight along with
the utterance to indicate whether to use the utterance.

Finally, we compute the cosine similarity between the
speaker representation and the speaker model, S(X, spk), and
feed it to a logistic regression including a linear layer with a
bias. The architecture is optimized using the end-to-end loss

le2e = − log p(target) (1)
with the binary variable target ∈ {accept, reject}, p(accept) =
(1+exp(−wS(X, spk)−b))−1, and p(reject) = 1−p(accept).
The value −b/w corresponds with the verification threshold.

The input of the end-to-end architecture are 1 + N utter-
ances, i.e., an utterance to be tested and up to N different ut-
terances of the same speaker to estimate the speaker model. To
achieve a good tradeoff between data shuffling and memory, the
input layer maintains a pool of utterances to sample 1+N utter-
ances from for each training step and gets refreshed frequently
for better data shuffling. As a certain number of utterances of
the same speaker is needed for the speaker model, the data is
presented in small groups of utterances of the same speaker.

The end-to-end architecture allows for direct optimization
of the evaluation metric using the standard evaluation proto-
col with consistent speaker models. Conceivably, this will re-
sult in better accuracy without the need for heuristics and post-
processing steps, for example, score normalization. Moreover,
the approach scales well as it neither depends on the number of
training speakers and nor requires a minimum number of utter-
ances per speaker.

5. Experimental Evaluation
We evaluate the proposed end-to-end approach on our internal
”Ok Google” benchmark.

5.1. Data Sets & Basic Setup

We tested the proposed end-to-end approach on a set ?Ok
Google? utterances collected from anonymized voice search
logs. For improved noise robustness, we perform multistyle

training. The data were augmented by artificially adding in car
and cafeteria noise at various SNRs, and simulating different
distances between the speaker and the microphone, see [2] for
further details. Enrollment and evaluation data include only real
data. Table 1 shows some data set statistics.

Table 1: Data set statistics.
#utterances #speakers #utts / spk

(#augmented)
train 2M 2M (9M) 4k >500
train 22M 22M (73M) 80k >150
enrollment 18k 3k 1-9
evaluation 20k 3k 3-5

The utterances are forced aligned to obtain the ”Ok Google”
snippets. The average length of these snippets is around 80
frames, for a frame rate of 100 Hz. Based on this observa-
tion, we extracted the last 80 frames from each snippet, pos-
sibly padding or truncating frames at the beginning of the snip-
pet. The frames consist of 40 log-filterbanks (with some basic
spectral subtraction) each.

For DNNs, we concatenate the 80 input frames, resulting in
a 80x40-dimensional feature vector. Unless specified otherwise,
the DNN consists of 4 hidden layers. All hidden layers in the
DNN have 504 nodes and use ReLU activation except the last,
which is linear. The patch size for the locally-connected layer
of the DNN is 10×10. For LSTMs, we feed the 40-dimensional
feature vectors frame by frame. We use a single LSTM layer
with 504 nodes without a projection layer. The batch size is 32
for all experiments.

Results are reported in terms of equal error rate (EER),
without and with t-norm score normalization [23].

5.2. Frame-Level vs. Utterance-Level Representation

First, we compare frame-level and utterance-level speaker rep-
resentations, see Table 2. Here, we use a DNN as described in
Fig. 1 with a softmax layer and trained on train 2M (Table 1)
with 50% dropout [24] in the linear layer. The utterance-level
approach outperforms the frame-level approach by 30%. Score
normalization gives a substantial performance boost (up to 20%
relative) in either case. For comparison, two i-vector baselines

Table 2: Equal error rates for frame-level and utterance-level
speaker representations.

EER (%)
level system raw t-norm
frame i-vector [6] 5.77 5.11

i-vector+PLDA [25] 4.66 4.89
DNN, softmax [4] 3.86 3.32

utterance DNN, softmax 2.90 2.28

are shown. The first baseline is based on [6], and uses 13 PLPs
with first-order and second-order derivatives, 1024 Gaussians,
and 300-dimensional i-vectors. The second baseline is based
on [25] with 150 eigenvoices. The i-vector+PLDA baseline
should be taken with a grain of salt as the PLDA model was
only trained on a subset of the 2M train data set (4k speakers
and 50 utterances per speaker) due to limitations of our current
implementation.1 Also, this baseline does not include other re-
fining techniques such as ”uncertainty training” [10] that have

1However, training with only 30 utterances per speaker gives almost
the same results.

LSTM for SV [40]30
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better comparability. Unlike vanilla LSTMs which have multi-
ple outputs, we only connect the last output to the loss to obtain
a single, utterance-level speaker representation.

The speaker model is the average over a small number of
”enrollment” representations (Section 2). We use the same net-
work to compute the internal representations of the ”test” ut-
terance and of the utterances for the speaker model. The ac-
tual number of utterances per speaker available in training typi-
cally is much larger (a few hundred or more) than in enrollment
(fewer than ten), see Table 1. To avoid a mismatch, we sample
for each training utterance only a few utterances from the same
speaker to build the speaker model at training time. In general,
we cannot assume to have N utterances per speaker. To allow
for a variable number of utterances, we pass a weight along with
the utterance to indicate whether to use the utterance.

Finally, we compute the cosine similarity between the
speaker representation and the speaker model, S(X, spk), and
feed it to a logistic regression including a linear layer with a
bias. The architecture is optimized using the end-to-end loss

le2e = − log p(target) (1)
with the binary variable target ∈ {accept, reject}, p(accept) =
(1+exp(−wS(X, spk)−b))−1, and p(reject) = 1−p(accept).
The value −b/w corresponds with the verification threshold.

The input of the end-to-end architecture are 1 + N utter-
ances, i.e., an utterance to be tested and up to N different ut-
terances of the same speaker to estimate the speaker model. To
achieve a good tradeoff between data shuffling and memory, the
input layer maintains a pool of utterances to sample 1+N utter-
ances from for each training step and gets refreshed frequently
for better data shuffling. As a certain number of utterances of
the same speaker is needed for the speaker model, the data is
presented in small groups of utterances of the same speaker.

The end-to-end architecture allows for direct optimization
of the evaluation metric using the standard evaluation proto-
col with consistent speaker models. Conceivably, this will re-
sult in better accuracy without the need for heuristics and post-
processing steps, for example, score normalization. Moreover,
the approach scales well as it neither depends on the number of
training speakers and nor requires a minimum number of utter-
ances per speaker.

5. Experimental Evaluation
We evaluate the proposed end-to-end approach on our internal
”Ok Google” benchmark.

5.1. Data Sets & Basic Setup

We tested the proposed end-to-end approach on a set ?Ok
Google? utterances collected from anonymized voice search
logs. For improved noise robustness, we perform multistyle

training. The data were augmented by artificially adding in car
and cafeteria noise at various SNRs, and simulating different
distances between the speaker and the microphone, see [2] for
further details. Enrollment and evaluation data include only real
data. Table 1 shows some data set statistics.

Table 1: Data set statistics.
#utterances #speakers #utts / spk

(#augmented)
train 2M 2M (9M) 4k >500
train 22M 22M (73M) 80k >150
enrollment 18k 3k 1-9
evaluation 20k 3k 3-5

The utterances are forced aligned to obtain the ”Ok Google”
snippets. The average length of these snippets is around 80
frames, for a frame rate of 100 Hz. Based on this observa-
tion, we extracted the last 80 frames from each snippet, pos-
sibly padding or truncating frames at the beginning of the snip-
pet. The frames consist of 40 log-filterbanks (with some basic
spectral subtraction) each.

For DNNs, we concatenate the 80 input frames, resulting in
a 80x40-dimensional feature vector. Unless specified otherwise,
the DNN consists of 4 hidden layers. All hidden layers in the
DNN have 504 nodes and use ReLU activation except the last,
which is linear. The patch size for the locally-connected layer
of the DNN is 10×10. For LSTMs, we feed the 40-dimensional
feature vectors frame by frame. We use a single LSTM layer
with 504 nodes without a projection layer. The batch size is 32
for all experiments.

Results are reported in terms of equal error rate (EER),
without and with t-norm score normalization [23].

5.2. Frame-Level vs. Utterance-Level Representation

First, we compare frame-level and utterance-level speaker rep-
resentations, see Table 2. Here, we use a DNN as described in
Fig. 1 with a softmax layer and trained on train 2M (Table 1)
with 50% dropout [24] in the linear layer. The utterance-level
approach outperforms the frame-level approach by 30%. Score
normalization gives a substantial performance boost (up to 20%
relative) in either case. For comparison, two i-vector baselines

Table 2: Equal error rates for frame-level and utterance-level
speaker representations.

EER (%)
level system raw t-norm
frame i-vector [6] 5.77 5.11

i-vector+PLDA [25] 4.66 4.89
DNN, softmax [4] 3.86 3.32

utterance DNN, softmax 2.90 2.28

are shown. The first baseline is based on [6], and uses 13 PLPs
with first-order and second-order derivatives, 1024 Gaussians,
and 300-dimensional i-vectors. The second baseline is based
on [25] with 150 eigenvoices. The i-vector+PLDA baseline
should be taken with a grain of salt as the PLDA model was
only trained on a subset of the 2M train data set (4k speakers
and 50 utterances per speaker) due to limitations of our current
implementation.1 Also, this baseline does not include other re-
fining techniques such as ”uncertainty training” [10] that have

1However, training with only 30 utterances per speaker gives almost
the same results.

LSTM for SV [40]30

Adopt the last several output units of LSTM

Short duration (≤ 3s test segment)

30Georg Heigold et al. “End-to-End Text-Dependent Speaker Verification”. In: Proc. of ICASSP. 2016.

Ming Li (DKU) Interspeech Survey Talk Interspeech 2019 23 / 79



Network Structure

CNN

Figure 1: Diagram of the Deep Speaker architecture

recognition tasks in both Mandarin and English. We also investi-
gate the effects of softmax pre-training, system combination, train-
ing dataset size, and enrollment utterance count. The experiments
indicate Deep Speaker can significantly improve over DNN-based
i-vector text-independent speaker recognition systems. In the text-
dependent task, Deep Speaker can match a DNN i-vector baseline
system, and improve upon it if fine-tuned after text-independent
training. In particular, two interesting results are shown: (1) Deep
Speaker leverages big data well (performance boosts when trained
on as many as 250,000 speakers), and (2) Deep Speaker can transfer
well across spoken languages that are vastly different, i.e., Mandarin
and English.

2 Related Work
Traditionally, i-vectors have been used to model inter-speaker vari-
ability [3]. i-vector-based speaker recognition models perform clas-
sification using cosine similarity between i-vectors or more ad-
vanced techniques such as PLDA [20], heavy-tailed PLDA [21], and
Gauss-PLDA [5].

There have been several papers replacing pieces of the tradi-
tional speaker recognition system with DNNs. One approach is to
train a GMM on bottleneck features extracted from a DNN, and
then extract i-vectors [22]. Another DNN-based approach uses an
acoustic speech recognition DNN instead of a UBM-GMM to pro-
duce frame posteriors for i-vector computation [4]. Ehsan Vari-
ani et al. [8] trained DNNs to classify speakers with frame-level
acoustic features. The activations of the final hidden layer are av-
eraged over the utterance to create a “d-vector” which replaces the
i-vector. These approaches all show improvements upon the tradi-
tional i-vector baseline.

There have recently been end-to-end neural speaker recognition
efforts as well. Georg Heigold et al. [6] trained an LSTM for text-
dependent speaker verification, which acheived a 2% equal error rate
(EER) on the “Ok Google” benchmark. The model maps a test ut-
terance and a few reference utterances directly to a single score for
verification and jointly optimizes the system’s components using the
same evaluation protocol as at test time. David Snyder et al. [7]
also train an end-to-end text-independent speaker verification sys-
tem. Like [6], the objective function separates same-speaker and
different-speaker pairs, the same scoring done during verification.
The model reduces EER by 13% on average, compared to the i-
vector baseline.

Our paper uses different architectures than [6] and [7] that bal-
ance inference time with model depth and also draw from state-of-
the-art speech recognition systems. We showcase our models’ effi-
cacy on both text-dependent and text-independent speaker recogni-
tion tasks. Lastly, we provide novel insight on the effect of dataset
size, softmax pre-training, model fusion, and adaptation from one

Figure 2: Detailed view of ResBlock. A convolution block Conv 3⇥3
is parameterized by the filter size 3 ⇥ 3, the zero padding 1 in both
directions and the consecutive striding 1 ⇥ 1

language to another.

3 Deep Speaker
Figure 1 illustrates the architecture of Deep Speaker. Raw audio is
first preprocessed using the steps detailed in Section 4.3. Then, we
use a feed-forward DNN to extract features over the preprocessed au-
dio. We experiment with two different core architectures: a ResNet-
style [16] deep CNN and the Deep Speech 2 (DS2)-style architecture
consisting of convolutional layers followed by GRU layers. The de-
tails of these networks are described in Section 3.1. A sentence av-
erage layer converts frame-level input to an utterance-level speaker
representation. Then, an affine layer and a length normalization layer
map the temporally-pooled features to a speaker embedding, as pre-
sented in Section 3.2. Finally, the triplet loss layer operates on pairs
of embeddings, by maximizing the cosine similarities of embedding
pairs from the same speaker, and minimizing those from different
speakers, as explained in Section 3.3.

3.1 Neural Network Architecture
As stated above, we use two types of deep architectures for frame-
level audio feature extraction.

3.1.1 Residual CNN

Though deep networks have larger capacity than shallow networks,
they tend to be more difficult to train. ResNet [16] was proposed
to ease the training of very deep CNNs. ResNet is composed of
a number of stacked residual blocks (ResBlocks). Each ResBlock
contains direct links between the lower layer outputs and the higher

2

CNN: Deep Speaker [30]31

Anti-spoofing [41]

Speaker and language recognition [42][43]

31Chao Li et al. “Deep Speaker: an End-to-End Neural Speaker Embedding System”. In: arXiv e-prints,
arXiv:1705.02304 (2017), arXiv:1705.02304. arXiv:1705.02304 [cs.CL].
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recognition tasks in both Mandarin and English. We also investi-
gate the effects of softmax pre-training, system combination, train-
ing dataset size, and enrollment utterance count. The experiments
indicate Deep Speaker can significantly improve over DNN-based
i-vector text-independent speaker recognition systems. In the text-
dependent task, Deep Speaker can match a DNN i-vector baseline
system, and improve upon it if fine-tuned after text-independent
training. In particular, two interesting results are shown: (1) Deep
Speaker leverages big data well (performance boosts when trained
on as many as 250,000 speakers), and (2) Deep Speaker can transfer
well across spoken languages that are vastly different, i.e., Mandarin
and English.

2 Related Work
Traditionally, i-vectors have been used to model inter-speaker vari-
ability [3]. i-vector-based speaker recognition models perform clas-
sification using cosine similarity between i-vectors or more ad-
vanced techniques such as PLDA [20], heavy-tailed PLDA [21], and
Gauss-PLDA [5].

There have been several papers replacing pieces of the tradi-
tional speaker recognition system with DNNs. One approach is to
train a GMM on bottleneck features extracted from a DNN, and
then extract i-vectors [22]. Another DNN-based approach uses an
acoustic speech recognition DNN instead of a UBM-GMM to pro-
duce frame posteriors for i-vector computation [4]. Ehsan Vari-
ani et al. [8] trained DNNs to classify speakers with frame-level
acoustic features. The activations of the final hidden layer are av-
eraged over the utterance to create a “d-vector” which replaces the
i-vector. These approaches all show improvements upon the tradi-
tional i-vector baseline.

There have recently been end-to-end neural speaker recognition
efforts as well. Georg Heigold et al. [6] trained an LSTM for text-
dependent speaker verification, which acheived a 2% equal error rate
(EER) on the “Ok Google” benchmark. The model maps a test ut-
terance and a few reference utterances directly to a single score for
verification and jointly optimizes the system’s components using the
same evaluation protocol as at test time. David Snyder et al. [7]
also train an end-to-end text-independent speaker verification sys-
tem. Like [6], the objective function separates same-speaker and
different-speaker pairs, the same scoring done during verification.
The model reduces EER by 13% on average, compared to the i-
vector baseline.

Our paper uses different architectures than [6] and [7] that bal-
ance inference time with model depth and also draw from state-of-
the-art speech recognition systems. We showcase our models’ effi-
cacy on both text-dependent and text-independent speaker recogni-
tion tasks. Lastly, we provide novel insight on the effect of dataset
size, softmax pre-training, model fusion, and adaptation from one

Figure 2: Detailed view of ResBlock. A convolution block Conv 3⇥3
is parameterized by the filter size 3 ⇥ 3, the zero padding 1 in both
directions and the consecutive striding 1 ⇥ 1

language to another.

3 Deep Speaker
Figure 1 illustrates the architecture of Deep Speaker. Raw audio is
first preprocessed using the steps detailed in Section 4.3. Then, we
use a feed-forward DNN to extract features over the preprocessed au-
dio. We experiment with two different core architectures: a ResNet-
style [16] deep CNN and the Deep Speech 2 (DS2)-style architecture
consisting of convolutional layers followed by GRU layers. The de-
tails of these networks are described in Section 3.1. A sentence av-
erage layer converts frame-level input to an utterance-level speaker
representation. Then, an affine layer and a length normalization layer
map the temporally-pooled features to a speaker embedding, as pre-
sented in Section 3.2. Finally, the triplet loss layer operates on pairs
of embeddings, by maximizing the cosine similarities of embedding
pairs from the same speaker, and minimizing those from different
speakers, as explained in Section 3.3.

3.1 Neural Network Architecture
As stated above, we use two types of deep architectures for frame-
level audio feature extraction.

3.1.1 Residual CNN

Though deep networks have larger capacity than shallow networks,
they tend to be more difficult to train. ResNet [16] was proposed
to ease the training of very deep CNNs. ResNet is composed of
a number of stacked residual blocks (ResBlocks). Each ResBlock
contains direct links between the lower layer outputs and the higher
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use a feed-forward DNN to extract features over the preprocessed au-
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style [16] deep CNN and the Deep Speech 2 (DS2)-style architecture
consisting of convolutional layers followed by GRU layers. The de-
tails of these networks are described in Section 3.1. A sentence av-
erage layer converts frame-level input to an utterance-level speaker
representation. Then, an affine layer and a length normalization layer
map the temporally-pooled features to a speaker embedding, as pre-
sented in Section 3.2. Finally, the triplet loss layer operates on pairs
of embeddings, by maximizing the cosine similarities of embedding
pairs from the same speaker, and minimizing those from different
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3.1 Neural Network Architecture
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level audio feature extraction.
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2.2. Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features
(BNF) from an ASR DNN acoustic model and is similar to [9].
The DNN is a time-delay acoustic model with p-norm nonlineari-
ties. The ASR DNN is trained on the Fisher English corpus and uses
the same recipe and architecture as the system described in Section
2.2 of [11], except that the penultimate layer is replaced with a 60
dimensional linear bottleneck layer. Excluding the softmax output
layer, which is not needed to compute BNFs, the DNN has 9.2
million parameters.

The BNFs are concatenated with the same 20 dimensional
MFCCs described in Section 2.1 plus deltas to create 100 dimen-
sional features. The remaining components of the system (feature
processing, UBM, i-vector extractor, and PLDA classifier) are iden-
tical to the acoustic system in Section 2.1.

2.3. The x-vector system

This section describes the x-vector system. It is based on the DNN
embeddings in [1] and described in greater detail there.

Our software framework has been made available in the Kaldi
toolkit. An example recipe is in the main branch of Kaldi at https:
//github.com/kaldi-asr/kaldi/tree/master/egs/
sre16/v2 and a pretrained x-vector system can be downloaded
from http://kaldi-asr.org/models.html. The recipe
and model are similar to the x-vector system described in Section
4.4.

Layer Layer context Total context Input x output
frame1 [t � 2, t + 2] 5 120x512
frame2 {t � 2, t, t + 2} 9 1536x512
frame3 {t � 3, t, t + 3} 15 1536x512
frame4 {t} 15 512x512
frame5 {t} 15 512x1500

stats pooling [0, T ) T 1500Tx3000
segment6 {0} T 3000x512
segment7 {0} T 512x512
softmax {0} T 512xN

Table 1. The embedding DNN architecture. x-vectors are extracted
at layer segment6, before the nonlinearity. The N in the softmax
layer corresponds to the number of training speakers.

The features are 24 dimensional filterbanks with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3 seconds.
The same energy SAD as used in the baseline systems filters out
nonspeech frames.

The DNN configuration is outlined in Table 1. Suppose an input
segment has T frames. The first five layers operate on speech frames,
with a small temporal context centered at the current frame t. For
example, the input to layer frame3 is the spliced output of frame2, at
frames t� 3, t and t + 3. This builds on the temporal context of the
earlier layers, so that frame3 sees a total context of 15 frames.

The statistics pooling layer aggregates all T frame-level outputs
from layer frame5 and computes its mean and standard deviation.
The statistics are 1500 dimensional vectors, computed once for each
input segment. This process aggregates information across the time
dimension so that subsequent layers operate on the entire segment.
In Table 1, this is denoted by a layer context of {0} and a total con-
text of T . The mean and standard deviation are concatenated to-

gether and propagated through segment-level layers and finally the
softmax output layer. The nonlinearities are all rectified linear units
(ReLUs).

The DNN is trained to classify the N speakers in the training
data. A training example consists of a chunk of speech features
(about 3 seconds average), and the corresponding speaker label. Af-
ter training, embeddings are extracted from the affine component of
layer segment6. Excluding the softmax output layer and segment7
(because they are not needed after training) there is a total of 4.2
million parameters.

2.4. PLDA classifier

The same type of PLDA [3] classifier is used for the x-vector and
i-vector systems. The representations (x-vectors or i-vectors) are
centered, and projected using LDA. The LDA dimension was tuned
on the SITW development set to 200 for i-vectors and 150 for
x-vectors. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The scores are normal-
ized using adaptive s-norm [22].

3. EXPERIMENTAL SETUP

3.1. Training data

The training data consists of both telephone and microphone speech,
the bulk of which is in English. All wideband audio is downsampled
to 8kHz.

The SWBD portion consists of Switchboard 2 Phases 1, 2, and 3
as well as Switchboard Cellular. In total, the SWBD dataset contains
about 28k recordings from 2.6k speakers. The SRE portion con-
sists of NIST SREs from 2004 to 2010 along with Mixer 6 and con-
tains about 63k recordings from 4.4k speakers. In the experiments
in Sections 4.1–4.4 the extractors (UBM/T or embedding DNN) are
trained on SWBD and SRE and the PLDA classifiers are trained on
just SRE. Data augmentation is described in Section 3.3 and is ap-
plied to these datasets as explained throughout Section 4.

In the last experiment in Section 4.5 we incorporate audio from
the new VoxCeleb dataset [19] into both extractor and PLDA train-
ing lists. The dataset consists of videos from 1,251 celebrity speak-
ers. Although SITW and VoxCeleb were collected independently,
we discovered an overlap of 60 speakers between the two datasets.
We removed the overlapping speakers from VoxCeleb prior to using
it for training. This reduces the size of the dataset to 1,191 speakers
and about 20k recordings.

The ASR DNN used in the i-vector (BNF) system was trained
on the Fisher English corpus. To achieve a limited form of domain
adaptation, the development data from SITW and SRE16 is pooled
and used for centering and score normalization. No augmentation is
applied to these lists.

3.2. Evaluation

Our evaluation consists of two distinct datasets: Speakers in the Wild
(SITW) Core [23] and the Cantonese portion of the NIST SRE 2016
evaluation (SRE16) [24]. SITW consists of unconstrained video au-
dio of English speakers, with naturally occurring noises, reverber-
ation, as well as device and codec variability. The SRE16 portion
consists of Cantonese conversational telephone speech. Both en-
roll and test SITW utterances vary in length form 6–240 seconds.
For SRE16, the enrollment utterances contain about 60 seconds of
speech while the test utterances vary from 10–60 seconds.

x-vector [36]35

35David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE.
2018, pp. 5329–5333.
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Conventional approaches

Average: An utterance-level embedding is derived by averaging the frame-level
DNN hidden layer output. (D-vector)

Average: An utterance-level scores is derived by averaging the frame-level DNN
output posteriors.

Voting: An utterance-level results is derived by voting the frame-level DNN
predictions.
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Encoding layer

Recurrent layer (Context-dependent)

LSTM/GRU encoding[39]
LSTM/GRU + Attention [44]
Bi-LSTM + Attention [45]
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Encoding Mechanism

Pooling layer (Context-independent)

Temporal pooling (mean) [30]39
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Loss Function

Standard cross-entropy loss with softmax function (softmax loss)

Contrastive/Triplet loss [54] [55]

End-to-End loss [40] [56]

Center loss [42]

Angular softmax loss [57] [42][58]

Additive margin loss [33]
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Data Augmentation

Add noise, music, babble, reverberation [36]57

Speed perturbation [59]58

Generative adversarial network (GAN) [60]59

57David Snyder et al. “X-vectors: Robust dnn embeddings for speaker recognition”. In: Proc. of ICASSP. IEEE.
2018, pp. 5329–5333.

58Suwon Shon, Ahmed Ali, and James Glass. “Convolutional neural networks and language embeddings for
end-to-end dialect recognition”. In: arXiv preprint arXiv:1803.04567 (2018).

59Yexin Yang et al. “Generative Adversarial Networks based X-vector Augmentation for Robust Probabilistic
Linear Discriminant Analysis in Speaker Verification”. In: Proc. of ISCSLP. 2018, pp. 205–209.
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Domain Adapatation

Traditional domain adaptation is suitable for both the i-vector and deep speaker
embedding, performed after the speaker embedding is extracted

AHC clustering + PLDA adaptation [61]

Maximum mean disprepancy [62]

Autoencoder based domain adaptation (AEDA) [63]

Domain adversarial training (DAT) [64]

CORAL [65]

CORAL+ [66]
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Domain Adaptation

End-to-End Domain adaptation

End-to-end adversarial training [67]66

Generative adversarial network (GAN) [68]

Multi-task adversarial network [69]67

66G. Bhattacharya, J. Alam, and P. Kenny. “Adapting End-to-end Neural Speaker Verification to New Languages
and Recording Conditions with Adversarial Training”. In: Proc. of ICASSP. 2019, pp. 6041–6045.

67J. Zhou et al. “Training Multi-task Adversarial Network for Extracting Noise-robust Speaker Embedding”. In:
Proc. of ICASSP. 2019, pp. 6196–6200.
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Speech under Far Field and Complex Environment Settings

Long range fading

Room reverberation

Early reverberation (reflections within 50 to 100 ms): may improve the
received speech quality
Late reverberation: smearing spectral-temporal structures, amplifying
the low-frequency energy, and flattening the formant transitions, etc

Complex environmental noises

fill in regions with low speech energy in the time-frequency plane and
blur the spectral details
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Previous Methods on Robust Modeling

Signal level

Dereverberation: linear prediction inverse modulation transfer function
filter [70]69, weighted prediction error (WPE) [71]70

DNN based denoising methods for single-channel speech enhancement
[72] [73] [74],[75]
Beamforming for multi-channel speech enhancement [71]

69B. J. Borgstrom and A. McCree. “The Linear Prediction Inverse Modulation Transfer Function (lP-IMTF) Filter
for Spectral Enhancement, with Applications to Speaker Recognition”. In: Proc. ICASSP. 2012, pp. 4065–4068.

70L. Mosner et al. “Dereverberation and Beamforming in Far-Field Speaker Recognition”. In: Proc. ICASSP.
2018, pp. 5254–5258.
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Previous Methods on Robust Modeling

Feature level

Sub-band Hilbert envelopes based features [76]76,[77]77

Warped minimum variance distortionless response (MVDR) cepstral
coefficients [78]
Blind spectral weighting (BSW) based features [79]
Power-normalized cepstral coefficients (PNCC) [80][81]
DNN bottleneck features [82], etc.

76T. H. Falk and W. Chan. “Modulation Spectral Features for Robust Far-Field Speaker Identification”. In: IEEE
Transactions on Audio, Speech, and Language Processing 18.1 (2010), pp. 90–100.

77L. Mosner et al. “Dereverberation and Beamforming in Far-Field Speaker Recognition”. In: Proc. ICASSP.
2018, pp. 5254–5258.
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DNN bottleneck features [82], etc.
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Previous Methods on Robust Modeling

Model level

Reverberation matching with multi-condition training models within
the UBM or i-vector based front-end systems [83]83,[84]84

Multi-channel i-vector combination [85]85

Multi-condition training of PLDA models [86]86

Score level

Score normalization [83]87

Multi-channel score fusion [87]88,[88]89

83I. Peer, B. Rafaely, and Y. Zigel. “Reverberation Matching for Speaker Recognition”. In: Proc. of ICASSP.
2008, pp. 4829–4832.

84A. R Avila et al. “Improving the Performance of Far-Field Speaker Verification Using Multi-Condition Training:
The Case of GMM-UBM and i-Vector Systems”. In: Proc. of INTERSPEECH. 2014, pp. 1096–1100.

85A. Brutti and A. Abad. “Multi-Channel i-vector Combination for Robust Speaker Verification in Multi-Room
Domestic Environments”. In: Proc. of Odyssey. 2016, pp. 252–258.

86D. Garcia-Romero, X. Zhou, and C. Y. Espy-Wilson. “Multicondition Training of Gaussian Plda Models in
i-vector Space for Noise and Reverberation Robust Speaker Recognition”. In: Proc. of ICASSP. 2012,
pp. 4257–4260.

87I. Peer, B. Rafaely, and Y. Zigel. “Reverberation Matching for Speaker Recognition”. In: Proc. of ICASSP.
2008, pp. 4829–4832.

88Q. Jin, T. Schultz, and A. Waibel. “Far-Field Speaker Recognition”. In: IEEE Transactions on Audio, Speech
and Language Processing 15.7 (2007), pp. 2023–2032.

89M. Ji et al. “Text-Independent Speaker Identification using Soft Channel Selection in Home Robot
Environments”. In: IEEE Transactions on Consumer Electronics 54.1 (2008), pp. 140–144.
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Robust Modeling of End-to-End Methods

DNN speaker embedding under far-field and noisy environment [89]90

X-vector + PLDA
Retransmitted speech in reverberant environments
Speaker embedding based speaker recognition systems gave very
impressive gains over i-vector based systems

Two interesting findings of end-to-end methods for robust modeling [90]91

The performance gain achieves by data augmentation in the end-to-end
method is lager than in the i-vector framework
For end-to-end methods with data augmentation, speech enhancement
algorithms may cause mismatch between the training data (clean and
augmented data) and the enhanced testing speech.

90M. K. Nandwana et al. “Robust Speaker Recognition from Distant Speech under Real Reverberant
Environments Using Speaker Embeddings”. In: Proc. of INTERSPEECH. 2018, pp. 1106–1110.

91D. Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant
and Noisy Environment”. In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

Multi-task adversarial network for noise-robust speaker embedding [69]92

Encoding network for speaker embedding
Speaker classifier
Noise discriminator
Adversarial training by using fix-label loss or anti-label loss (take wrong
label with cross entropy) of the noise discriminator
Outperform the other methods without adversarial training in noisy
environments

Frame-level 

Feature  

Extractor
…

Acoustic Feature

Average Pooling

Layer

Output Layer

Cross Entropy Loss

FL-Loss or AL-Loss

Cross Entropy LossOutput Layer

Speaker EmbeddingEncoder

Classifier

Discriminator

Speaker Embedding

Length

Normalization
Whitening LDA PLDA Scoring

x Fully-Connected

Layer

(a) Training Stage

(b) Verification Stage

Fig. 1. The framework of our proposed multi-task adversarial network.

2. MULTI-TASK ADVERSARIAL NETWORK

2.1. CNN Based Embedding Learning

CNN-based neural network architecture has proved its supe-
rior performance in speaker verification tasks [7, 12]. In this
work, we use the CNN-based architecture for speaker embed-
ding learning which includes the encoder and classifier of the
framework shown in the dotted line of Fig. 1 (a). The de-
tails of the architecture are as follow. Four one-dimensional
convolutional layers with 1*1 filter, 1 stride and 256 chan-
nels followed by an average pooling layer which maps the
frame-level feature to an utterance-level representation. Then,
the speaker representation will be fed to the next two fully-
connected layers with 256 and 1024 nodes in sequence. Fi-
nally, the output layer with Ns (the number of speakers in
training data) nodes will take the speaker embeddings as in-
put. The output of last hidden layer is extracted as utterance-
level speaker embedding. Besides, batch normalization and
RELU activation function are applied to all layers except the
output layer. And the verification back-ends are shown in
Fig.1 (b).

2.2. Multi-Task Adversarial Network

The entire architecture of MTAN is shown in Fig.1 (a). And
the implementation details of the encoder and classifier have
been demonstrated in Section 2.1. As to the discriminator, it
is just an output layer with M (the number of noise types in
training data) nodes. The arrows indicate the forward propa-
gation direction.

Given an input x ∈ Rt∗m where t and m refer to the
frame number and acoustic feature dimension of the utter-
ance respectively, the encoder maps it to a speaker embed-
ding E(x) ∈ Rn, where n is the dimension of latent embed-
ding. Then the classifier and the discriminator try to predict
the classes of E(x). Since our goal is to encode speaker in-
formation while eliminating performance degradation caused
by noise, the encoder should extract a latent representation

that is more discriminative for speaker and robust for noise.
In order to achieve this goal, we use the multi-task adversarial
network to learn discriminative speaker feature and simulta-
neously improve its noise robustness. Specifically, we train
the classifier cooperated with the encoder to extract discrimi-
native speaker feature. Besides, we play a minimax game by
training discriminator to maximize the probability of assign-
ing the correct noise label to the embedding extracted from
the encoder and simultaneously training the encoder to maxi-
mize the probability of assigning the wrong noise label to the
embedding.

2.3. Loss Function

In this work we consider cross entropy loss function and its
two variants. For the cooperative training of the classifier and
encoder, we directly minimize the cross entropy loss lCs (the
superscript C means classifier). For multi-class adversarial
training, the output of the discriminator will be fed to a cross
entropy loss function lDs (the superscript D means for discrim-
inator) and its variants including FL-Loss (fixed label loss)
proposed in [13] and AL-Loss. The details of loss functions
will be addressed in Section 2.3.1 and Section 2.3.2. Then a
minimax game will be executed with the value function ladv ,
which can be formulated as follow:

max
E

min
D

ladv = γlDs − βlvar (1)

where γ and β are scale parameters and lvar could be FL-Loss
or AL-Loss. When training an adversarial network, rather
than directly using the minimax loss, we split the optimiza-
tion into two independent objectives, one for encoder and one
for discriminator. Therefore, we train the encoder, discrimi-
nator and classifier by min

E
(lCs + βlvar), min

D
γlDs and min

C
lCs

respectively.

92J. Zhou et al. “Training Multi-task Adversarial Network for Extracting Noise-robust Speaker Embedding”. In:
Proc. of ICASSP. 2019, pp. 6196–6200.
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Robust Modeling of End-to-End Methods

Joint training of denoising and speaker embedding network[91]93

Denoising network

extract the target speech from noisy speech
extract bottleneck features

Speaker embedding network

Concatenate bottleneck features with fbank as inputs
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Fig. 1: Network architecture of our proposed speaker verification architecture.

speech separation and the deep speaker are employed together
as the loss function of joint training architecture. The loss
function can be written as:

Ljt = �Lss + Lds (3)

where � is a weighting factor to adjust the trade-off between
losses. Lss represent the loss function of the speech separa-
tion part (E.q 1). Lds represent the loss function of the deep
speaker part (E.q 2).

3.2. Network architecture

The proposed network input is encoded into a low dimension
latent space by several convolutional layers and then the fol-
lowing LSTM models the sequential information of the latent
feature. The output of the LSTM is converted back to the o-
riginal input shape by the decoder. CRN is recently invented
architecture which combines the feature extraction capabili-
ty of CNNs and the temporal modeling capability of recur-
rent neural networks (RNNs). The output of the LSTM is
used as auxiliary feature for SV. For SV part, we use ResCN-
N architecture which contains 4 convolution layers, 4 residu-
al blocks (ResBlocks), 1 average pooling (AP) layer, 1 fully
connected layer (FC) and length normalization (LN) to pro-
duce utterance-level embedding.

A more detailed description of the architecture is pro-
vided in Table 1. The input size and the output size of
each layer are specified in featureMaps ⇥ timeSteps ⇥
frequencyChannels format. The layer hyper-parameters are
given as (kernelSize, strides, outChannels) for convolution
and deconvolution layers. In speech separation part, the
kernel size is 1⇥3 (Time⇥Frequency), the stride length is
1⇥2 (Time,Frequency). We do not apply padding on time

or frequency. The number of feature maps in each decoder
layer is doubled by the skip connections. In SV part, a basic
ResBlock layer is added to each adjacent convolutional and
deconvolutional layers.

4. EXPERRIMENTS

4.1. Experimental setup

We use 797 female speakers to evaluate the experiment. A-
mong the speakers, 402 are from NIST SRE 2006 (8conv con-
dition) [25] and 395 are from NIST SRE 2008 (8conv condi-
tion) [26]. For each target speaker, eight two-channel tele-
phone conversations are provided, and each conversation is
about two minutes. For each utterance, the large chunks of
silence are removed by voice activity detect technology. Ut-
terances are then mixed with babble or speech-shaped noise
(SSN) at signal-to-noise ratios (SNRs) of {-5, 0, 5, 10} to pro-
duce the noisy utterances. Each noise is about four minutes
and is divided into two non-overlapping time portions. The
first and the second parts are used for training and testing, re-
spectively. In addition, to test the generalization performance
of the proposed model, the SNRs of {-3, 3, 8, 12} are also
involved as SNR-unmatch condition.

The proposed method and deep speaker are implemented
by using open-source AI framework PyTorch [27]. For the
proposed method, the parameter � is tuned to balance the two
training losses and set to 0.1 according to our experiments.
The models are trained with Adam optimizer [28]. We set
learning ration to 0.001. Margin ↵ is set to 0.1 and a mini-
batch size of 64.

Equal error rate (EER) is utilized as evaluation indicator

6103

93F. Zhao, H. Li, and X. Zhang. “A Robust Text-independent Speaker Verification Method Based on Speech
Separation and Deep Speaker”. In: Proc. of ICASSP. 2019, pp. 6101–6105.
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Robust Modeling of End-to-End Methods

Multi-channel training framework for speaker recognition under reverberant and

noisy environment [90]94

3D CNN structure as front-end convolutional network
Extract the time-, frequency-, and spatial-information
Significantly outperforms the i-vector system with front-end signal
enhancement as well as the single-channel robust deep speaker
embedding system
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94D. Cai, X. Qin, and M. Li. “Multi-Channel Training for End-to-End Speaker Recognition under Reverberant
and Noisy Environment”. In: Proc. of INTERSPEECH. 2019.
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Robust Modeling of End-to-End Methods

Far-field text-dependent speaker verification [92]95

Mixed training data with transfer learning

Utilize the content and speaker diversity of text-independent data
Train model with text-independent data and perform transfer learning
with text-dependent data

Enrollment data augmentation

Enrollment and testing speech can be collected in different
environmental settings (e.g. Cell phone enroll, Smart speakers test)

Corpus: AISHELL-2019B-eval dataset 96

Open source wake-up words speech database

95X. Qin, D Cai, and M. Li. “Far-Field End-to-End Text-Dependent Speaker Verication based on Mixed Training
Data with Transfer Learning and Enrollment Data Augmentation”. In: Proc. of INTERSPEECH. 2019.

96https://www.aishelltech.com/aishell 2019B eval
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Speaker Diarization

Speaker diarization is a task of “who spoke when” [93]97[94]98. In general, it consists of
four essential submodules:

1 Voice activity detection (VAD): remove nonspeech from audios.

2 Speech segmentation: split speech into speaker-homogeneous segments.

3 Similarity measurement: compute the speaker similarity of any two segments in
the same audio.

4 Clustering: cluster segments belonging to the same speaker.

Other submodules like resegmentation and overlap detection are optional.

VAD
Speech 

segmentation

Similarity 

measurement
Clustering …111223…

Figure: Essential submodules in diarization.

97S. E. Tranter and D. A. Reynolds. “An Overview of Automatic Speaker Diarization Systems”. In: IEEE
Transactions on Audio, Speech, and Language Processing 14.5 (2006), pp. 1557–1565. issn: 1558-7916.

98X. Anguera et al. “Speaker Diarization: A Review of Recent Research”. In: IEEE Transactions on Audio,
Speech, and Language Processing 20.2 (2012), pp. 356–370. issn: 1558-7916.
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Speaker Diarization: VAD

1 Discriminant classifiers: e.g. in [95]99 and [96]100, linear discriminant analysis
(LDA) and support vector machine are used for classifying MFCC frames into
speech/non-speech.

2 Recently, DNN-based discriminant classifiers for VAD become popular. In [97]101 ,
the LSTM architecture is employed for sequential modeling of the VAD task and
shows state-of-the-art performance.

99Elias Rentzeperis et al. “The 2006 Athens Information Technology Speech activity detection and speaker
diarization systems”. In: International Workshop on Machine Learning for Multimodal Interaction. Springer. 2006,
pp. 385–395.

100Andrey Temko, Dusan Macho, and Climent Nadeu. “Enhanced SVM training for robust speech activity
detection”. In: Proc. of ICASSP. Vol. 4. IEEE. 2007.

101Florian Eyben et al. “Real-life voice activity detection with lstm recurrent neural networks and an application
to hollywood movies”. In: Proc. of ICASSP. IEEE. 2013, pp. 483–487.
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Speaker Diarization: Speech Segmentation

1 SCD: Speaker changepoint detection (SCD) usually searches for change points
first and then splits speech into speaker-homogeneous segments.

The first general approach brought up by [98]102 is a variation on the Bayesian
information criterion (BIC) [99]103. This technique applies a sliding window over
speech data. It determines whether current windowed speech is better modelled by
a single distribution (no change point, H0) or two different distributions (change
point, H1) by computing BIC scores.

2 Generalized likelihood ratio (GLR) [100]104.

102Douglas A Reynolds and P Torres-Carrasquillo. The MIT Lincoln Laboratory RT-04F diarization systems:
Applications to broadcast audio and telephone conversations. Tech. rep. 2004.

103Scott Chen, Ponani Gopalakrishnan, et al. “Speaker, environment and channel change detection and clustering
via the bayesian information criterion”. In: Proc. DARPA broadcast news transcription and understanding
workshop. Vol. 8. Virginia, USA. 1998, pp. 127–132.

104Herbert Gish, M-H Siu, and Robin Rohlicek. “Segregation of speakers for speech recognition and speaker
identification”. In: Proc. of ICASSP. IEEE. 1991, pp. 873–876.
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Speaker Diarization: Speech Segmentation

2 Recently DNN-based SCD models have also been proposed. For example, [101]105 labels
speaker change points and their collars of 0.5s as 1, while the rest as 0, and carries out a
2-layer LSTM training.

(b)(a)

3 However, SCD only provides an initial base segmentation in diarization, which will be
clustered and often resegmented later. According to [102]106 and [103]107, using a simple
initial uniform segmentation instead doesn’t significantly degrade the overall diarization
performance.

105Ruiqing Yin, Herv Bredin, and Claude Barras. “Speaker Change Detection in Broadcast TV Using Bidirectional
Long Short-Term Memory Networks”. In: Proc. Interspeech. 2017, pp. 3827–3831.

106Chuck Wooters et al. “Towards robust speaker segmentation: The ICSI-SRI fall 2004 diarization system”. In:
RT-04F Workshop. Vol. 23. 2004, p. 23.

107Sylvain Meignier et al. “Step-by-step and integrated approaches in broadcast news speaker diarization”. In:
Computer Speech & Language 20.2-3 (2006), pp. 303–330.
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Speaker Diarization: Similarity Measurement

1 BIC and GLR measurement can be applied here [104]108.

2 [105]109 first extracts i-vectors from segments and then measures their speaker similarity
using cosine distance or PLDA [24]110. I-vector is later substituted with other speaker
embeddings like d-vector [106]111 and x-vector [107]112 to improve the precision.

3 [108]113 adopts LSTM to infer the similarity matrix directly.

𝑆𝑖,𝑗: similarity between segment 𝑖 and segment 𝑗

similarity matrix 𝑺

From one speaker

From two speakers

⋮
⋮

⋯⋯ ⋯

𝑖

𝑗 𝑁

𝑁

⋮

108Elie El Khoury, Christine Senac, and Régine André-Obrecht. “Speaker diarization: towards a more robust and
portable system”. In: Proc. of ICASSP. Vol. 4. IEEE. 2007, pp. IV–489.

109G. Sell and D. Garcia-Romero. “Speaker diarization with plda i-vector scoring and unsupervised calibration”.
In: IEEE Spoken Language Technology Workshop. 2014, pp. 413–417.

110S.J.D. Prince and J.H. Elder. “Probabilistic linear discriminant analysis for inferences about identity”. In:
Proc. ICCV. 2017.

111Q. Wang et al. “Speaker Diarization with LSTM”. In: Proc. of ICASSP. 2018, pp. 5239–5243.
112Gregory Sell et al. “Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the

Inaugural DIHARD Challenge”. In: Proc. Interspeech. 2018, pp. 2808–2812.
113Qingjian Lin et al. “LSTM based Similarity Measurement with Spectral Clustering for Speaker Diarization”.

In: Proc. Interspeech. 2019.
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Speaker Diarization: Clustering

The purpose of this stage is to associate or cluster segments from the same speaker
together.

1 AHC: Agglomerative hierarchical clustering (AHC), as a widely used clustering
algorithm, is presented as a binary-tree building process [109]114.

2 Spectralclustering is employed instead of AHC in [106]115 and [108]116. Spectral
clustering is a graph-based clustering algorithm [110]117. Given the similarity
matrix S, it considers Si,j as the weight of the edge between nodes i and j in an
undirected graph. By removing weak edges with small weights, spectral clustering
divides the original graph into subgraphs.

3 UIS− RNN: In [111]118, the similarity measurement and clustering steps are
replaced by the Unbounded Interleaved-State (UIS) RNN model.

114K. Chidananda Gowda and G. Krishna. “Agglomerative Clustering Using the Concept of Mutual Nearest
Neighbourhood”. In: Pattern Recognition 10 (1978), pp. 105–112.

115Q. Wang et al. “Speaker Diarization with LSTM”. In: Proc. of ICASSP. 2018, pp. 5239–5243.
116Qingjian Lin et al. “LSTM based Similarity Measurement with Spectral Clustering for Speaker Diarization”.

In: Proc. Interspeech. 2019.
117Ulrike von Luxburg. “A Tutorial on Spectral Clustering”. In: Statistics and Computing 17 (2007), pp. 395–416.
118Aonan Zhang et al. “Fully Supervised Speaker Diarization”. In: Proc. of ICASSP. 2019.
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Speaker Diarization: Others

1 Resegmentation: Re-segmentation is an optional submodule of diarization, aiming
at refining the original segment boundaries and filling in short segments that may
have been removed for more robust processing in the clustering stage.

Traditionally, a Viterbi decoder with or without iteration is employed. First,
speaker-specific GMMs are trained according to diarization outputs, and then data
frames are realigned to GMMs with the maximum posterior probabilities.

An improved version is the VB resegmentation [112]119[113]120. It builds the
speaker-specific GMMs by adapting limited data frames of target speakers to
UBM, which enhances the robustness.

Speaker-specific 

GMMs
Viterbi decoding Resegmentd outputs

UBM

Diarization outputs

⋯111223⋯

Resegmentation, for 𝐾 iterations

119Xianhong Chen et al. “VB-HMM Speaker Diarization with Enhanced and Refined Segment Representation.”
In: Proc. of Odyssey. 2018, pp. 134–139.

120Mireia Diez, Lukás Burget, and Pavel Matejka. “Speaker Diarization based on Bayesian HMM with Eigenvoice
Priors.” In: Proc. of Odyssey. 2018.
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Speaker Diarization: Others

2 Overlap detection: Overlap errors account for a large percent of DER in
diarization tasks, for example, about 10% in DIHARD. However, current
techniques are mostly migrated from VAD, such as two-stage HMMs and
DNN-based binary classifiers. They are proved not so efficient in this task.

3 [114]121 reported the improvement after overlap detection, from DER 27.85% to
27.44% on the DIHARD2018 dev dataset. In DIHARD2019, our team also carried
out experiments and got similar results.

4 Therefore, overlap detection might become one of the most challenging and
attractive research directions in speaker diarization.

121Ondrej Novotnỳ et al. “BUT system for DIHARD speech diarization challenge 2018”. In: (2018).
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Paralinguistic Speech Attribute Recognition

1 Background

2 Features:

1 Frame-level features [115, 116, 117]
2 Utterance-level features [115, 116, 117]

3 Network Structure:

1 Frame-level DNN structure [118, 119, 120, 121]
2 Convolutional Network [122, 123, 124]
3 Recurrent Network [125, 126, 127]
4 Convolutional Recurrent Neural Network [128, 129, 130]

4 Back-end Classifier [126, 131, 124]
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Paralinguistic Speech Attribute Recognition
Background

Paralinguistic speech attribute recognition is a task to classify the attributes in speech signals
automatically [115]122[116]123 [117]124[132]125. Since 2009, the Interspeech Computational
Paralinguistics ChallengE (ComParE) is held every year to explore the technologies of this area.
Topics in recent years include

1 ComParE2017: Addressee, Cold and Snoring

2 ComParE2018: Atypical and Self-Assessed Affect, Crying and Heart Beats

3 ComParE2019: Styrian Dialects, Continuous Sleepiness, Baby Sounds and Orca Activity

Traditional systems include two steps, utterance-level feature extraction and back-end classifiers
training. And Recently, with the development of deep learning algorithm, many end-to-end
solutions are proposed.

122Björn W Schuller et al. “The INTERSPEECH 2019 Computational Paralinguistics Challenge: Styrian Dialects,
Continuous Sleepiness, Baby Sounds & Orca Activity”. In: Proc. of INTERSPEECH. 2019.

123Bjrn Schuller et al. “The INTERSPEECH 2018 Computational Paralinguistics Challenge: Atypical &
Self-Assessed Affect, Crying & Heart Beats”. In: Proc. of Interspeech. 2018, pp. 122–126. url:
http://dx.doi.org/10.21437/Interspeech.2018-51.

124Bjrn Schuller et al. “The INTERSPEECH 2017 Computational Paralinguistics Challenge: Addressee, Cold &
Snoring”. In: Proc. of Interspeech. 2017, pp. 3442–3446. url:
http://dx.doi.org/10.21437/Interspeech.2017-43.

125Björn Schuller et al. “The INTERSPEECH 2013 computational paralinguistics challenge: social signals,
conflict, emotion, autism”. In: Proc. of INTERSPEECH. 2013, pp. 148–152.
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Paralinguistic Speech Attribute Recognition
Frame-level features

1 STFT-spectrogram [133]126[128]127

2 Mel-spectrogram [134]128

3 Constant Q Transform (CQT) [133][135]129

4 LPCC, MFCC, RASTA-PLP

5 etc

126Danwei Cai et al. “End-to-End Deep Learning Framework for Speech Paralinguistics Detection Based on
Perception Aware Spectrum”. In: Proc. of INTERSPEECH. 2017, pp. 3452–3456.

127Dengke Tang, Junlin Zeng, and Ming Li. “An End-to-End Deep Learning Framework for Speech Emotion
Recognition of Atypical Individuals”. In: Proc. of INTERSPEECH. 2018, pp. 162–166.

128Mario Lasseck. “Audio-based bird species identification with deep convolutional neural networks”. In: Working
Notes of CLEF 2018 (2018).

129Massimiliano Todisco, Hctor Delgado, and Nicholas Evans. “Constant Q Cepstral Coefficients: A Spoofing
Countermeasure for Automatic Speaker Verification”. In: Computer Speech & Language 45 (Feb. 2017).
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Paralinguistic Speech Attribute Recognition
Utterance-level features [115, 116, 117]

1 Handcrafted features: OpenSMILE ComParE set [9]130

2 Features extracted from unsupervised models. These features summarize local

features descriptors in a vectorial statistic.

1 Fisher Encoding: train a GMM model as a visual word dictionary,
extract features by storing a statistics of the difference between
dictionary elements.

2 Bag-of-Audio-Word: quantize based on a codebook, represent audio
chunks as histograms of acoustic LLDs.

3 AuDeep feature: obtained from unsupervised representation learning
with recurrent sequence to sequence autoencoders.

3 Supervised deep neural network based features

1 Output posteriors: output probabiltities of network.
2 Embeddings: extracted from the penultimate layer in the network.

130Florian Eyben, Martin Wöllmer, and Björn Schuller. “Opensmile: the munich versatile and fast open-source
audio feature extractor”. In: Proc. of ACM Multimedia. 2010, pp. 1459–1462.
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Paralinguistic Speech Attribute Recognition
Network Structure DNN

Frame-level DNN is an effective structure in the field of paralinguistic attribute
recognition [118]131[119]132[120]133[121]134. The algorithm consists of the following
steps.

1 Extract frame-level features.

2 Train a frame-level DNN model.

3 Obtain frame-level DNN posteriors

4 Average the frame-level scores or train an extra classifiers to generate final scores

131Gbor Gosztolya, Tams Grsz, and Lszl Tth. “General Utterance-Level Feature Extraction for Classifying Crying
Sounds, Atypical & Self-Assessed Affect and Heart Beats”. In: Proc. of Interspeech. 2018, pp. 531–535.

132Gbor Gosztolya et al. “DNN-Based Feature Extraction and Classifier Combination for Child-Directed Speech,
Cold and Snoring Identification”. In: Proc. of Interspeech. 2017, pp. 3522–3526.

133Gbor Gosztolya et al. “Estimating the Sincerity of Apologies in Speech by DNN Rank Learning and Prosodic
Analysis”. In: Proc. of Interspeech. 2016, pp. 2026–2030.

134Yishan Jiao et al. “Accent Identification by Combining Deep Neural Networks and Recurrent Neural Networks
Trained on Long and Short Term Features”. In: Proc. of Interspeech. 2016, pp. 2388–2392.
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Paralinguistic Speech Attribute Recognition
Network Structure CNN

Front-end CNN structures can be considered as a local pattern extractor. The CNN
system can directly utilize the output as final decision or train an extra classifier or
regressor to generate scores.

1 Plain CNN [122]135

2 Residual structure [123]136

3 1D-CNN structure [124]137

4 etc.

Figure: Structure of the proposed deep embedding system for orca activity detection in [136].

135Johannes Wagner et al. “Deep Learning in Paralinguistic Recognition Tasks: Are Hand-crafted Features Still
Relevant?” In: Proc. of Interspeech. 2018, pp. 147–151.

136Q.F. Tan, P.G. Georgiou, S.S. Narayanan, et al. “Enhanced sparse imputation techniques for a robust speech
recognition front-end”. In: IEEE Transactions on Audio Speech and LanguageProcessing 19.8 (2011), p. 2418.

137Ahmed Imtiaz Humayun et al. “An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods
for Pathological Heart Sound Classification”. In: Proc. of Interspeech. 2018, pp. 127–131.
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Paralinguistic Speech Attribute Recognition
Network Structure RNN

Recurrent neural network can take sequential information into consideration.

1 LSTM Network [125]138

2 Bi-LSTM Network [126]139

3 Attention structure [126]140[127]141

4 etc.

138Heysem Kaya et al. “LSTM Based Cross-corpus and Cross-task Acoustic Emotion Recognition”. In: Proc. of
Interspeech. 2018, pp. 521–525.

139Bo-Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536–540.

140Bo-Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536–540.

141Cristina Gorrostieta et al. “Attention-based Sequence Classification for Affect Detection”. In: Proc. of
Interspeech. 2018, pp. 506–510.
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Paralinguistic Speech Attribute Recognition
Network Structure CRNN

Convolutional Recurrent Neural Network is popular in paralinguistic recognition task
recently and in some tasks it achieve the state-of-the-art performance
[128]142[129]143[130]144. The RNN structure includes GRU, LSTM, BLSTM.

142Dengke Tang, Junlin Zeng, and Ming Li. “An End-to-End Deep Learning Framework for Speech Emotion
Recognition of Atypical Individuals”. In: Proc. of INTERSPEECH. 2018, pp. 162–166.

143Ming Li et al. “An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases
related to autism spectrum disorder”. In: Computer Speech & Language 56 (2019), pp. 80–94.

144Danqing Luo, Yuexian Zou, and Dongyan Huang. “Investigation on Joint Representation Learning for Robust
Feature Extraction in Speech Emotion Recognition”. In: Proc. of Interspeech. 2018, pp. 152–156.
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Paralinguistic Speech Attribute Recognition
Back-end Classifier

Due to the lack of large scale training data in this task, back-end classifiers such as
SVM [126]145[131]146, LDA and MLP [124]147 are still employed in many situations.
Back-end classifiers are commonly applied on

1 CNN/RNN/CRNN embeddings extracted from the penultimate layer of the
network

2 DNN posteriors directly obtained from networks’ output

3 CNN embeddings concatenated with handcrafted features

145Bo-Hao Su et al. “Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic
Features”. In: Proc. of Interspeech. 2018, pp. 536–540.

146Shahin Amiriparian et al. “Snore Sound Classification Using Image-Based Deep Spectrum Features”. In: Proc.
of INTERSPEECH. 2017, pp. 3512–3516.

147Ahmed Imtiaz Humayun et al. “An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods
for Pathological Heart Sound Classification”. In: Proc. of Interspeech. 2018, pp. 127–131.
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Anti-spoofing countermeasures

Severe vulnerability of state-of-the-art ASV system under a diverse range of
intentional fraudulent.

Physical access senario: replayed recording

Logical access senario: synthesised audio, e.g. text-to-speech and voice conversion

Anti-spoofing: Develop countermeasure system to distinguish between the bona
fide and the spoof audio.
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Anti-spoofing countermeasures

Input: Variable-length audio waveform

Output: Utterance-level attribute (bona fide or spoof)

The same processing pipeline as speaker and language recognition

But we fed different types of features to the network
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Anti-spoofing countermeasures

Network structure: CNN or CNN + RNN architecture [137]148 [138]149 [139]150

1932-4553 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2016.2647199, IEEE Journal
of Selected Topics in Signal Processing
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Fig. 5. Diagram of CNN architecture for spoofing detection. ConvLayer
stands for convolutional layer; we apply maxpooling for downsampling. The
output of CNNs (i.e., [32⇥8⇥18]) is vectorized and then submitted to a fully-
connected (FC) network.

The classifier maps feature matrices to either genuine/spoofed
class probabilities using several convoluational/pooling layers
as feature extractors, followed by a fully connected network
with a softmax layer as the final classification layer. The
architecture is illustrated in Fig.5. Here, we use a normal-
ized T-F spectrogram with [1⇥128⇥250] dimensionality as
input to the CNNs. In this case, a height 128 represents the
number of frequency bins, width 250 is the length along time
axis. ConvLayer will compute the output of neurons that are
connected to local regions in the input. A ConLayer Ck⇥l

m!n

computes m ⇥ n convolutions between m input frames and
n output frames, with convolution filters of size k ⇥ l. This
may result in a total volume of [16⇥122⇥244] if we decided
to use 16 filters, 7 ⇥ 7 convolutions. Pooling will perform a
downsampling operation along the spatial dimensions (width,
height), resulting in a smaller volume as [16⇥62⇥123]. The
FC (i.e. fully-connected) layer will compute the class scores,
resulting in a volume of size [1⇥1⇥2], which represents the
probabilities of both genuine and spoofed speech.
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Recurrent layer 

Input: 1×128×250 

Fig. 6. Diagram of RNN architecture for spoofing detection. As shown in
the figure, we employ many-to-one recurrent model for the classification task.
The output of the recurrent layer is followed by a fully-connected hidden layer
and a final classification softmax layer, similar to that of CNNs.

C. Recurrent neural networks

As the extension of the conventional feedforward neural
network, an RNN is designed to address a variable length input
sequence. This is particularly suitable for modeling speech.
By having a recurrent hidden state whose activation at each
time is dependent on that from the previous time, an RNN
could learn the long-term dependencies of the sequence. For

example, given a sequence x = (x1,x2, ...,xT ), the RNN
updates its recurrent hidden state ht by

ht =

⇢
0, t = 0

�(ht�1,xt), otherwise
(4)

where � is a nonlinear function. To prevent the problem of
gradient vanishing, a recently proposed gated recurrent unit
(GRU) activation function is employed in this study [46]. The
proposed RNN architecture is shown as Fig. 6. Although it is
not necessary to force align the feature dimensions, we simply
use our proposed padding or cropping method to keep the same
input size format as the CNN or CNN+RNN model.

D. Integration of CNNs and RNNs

As noted in Section I, the introduction of SAD to the
spoofing detection pipeline did not help to improve our i-vector
based systems previously submitted to ASVspoof 2015. This
observation suggests that “spoofing” may have a consistent
effect on genuine speech. Inspired by the fact that the CNN
plays a role for extracting genuine/spoofing discriminative
features, and that an RNN is capable of modeling the long-
term dependencies (in this study, “spoofing” is the factor which
we want to model with the RNN) across the long sequence
instead of short frames, we propose to employ CNNs and
RNNs simultaneously for spoofing detection.

In the CNN+RNN framework, the output of the CNN is a
set of channels (i.e., feature maps), as illustrated in Fig. 7. For
example, here the feature maps are formulated as a 3D tensor,
where 18 is the number of time steps mapped from the 250
time steps in the original spectrogram. This means 18 recurrent
layers should be constructed in the RNNs. Similar with other
frameworks, the RNN output is followed by a fully-connected
network with a softmax layer for final classification.

Exploiting recent advancements in deep learning research,
Batch Normalization is implemented for CNN and RNN model
[47]. This significantly reduces training time. Also, 50 %
Dropout is applied to the final fully-connected layer to address
overfitting.
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Fig. 7. Diagram of CNN+RNN architecture for spoofing detection. From the
3D tensor, the 32 ⇥ 8 snippet is vectorized to feed into RNN layers.

GAP

Utterance-level representation

Bona fide

Variable-length feature sequence Convolutional layers
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Figure 1: Utterance-level DNN framework for anti-spoofing. It accepts input data sequence with variable length, and produces an
utterance-level result directly from the output of the DNN.

512⇥256 “image” before feeding into the DNN in [19]. In con-
trast, we employ a variable-length training strategy, and in the
testing stage, the raw full-length feature sequences are fed into
our DNN directly. (ii) the training procedure in [19] contains
the complicated two-stage flow. Both of the two-stage networks
rely on a pre-trained model from the large-scale Imagenet [24]
dataset. In contrast, we train a single DNN from scratch only
using the ASVspoof 2019 training set.

We first transform the raw waveform into a frame-level fea-
ture sequence based on hand-crafted filters. The output se-
quence of feature extraction is a matrix of size D⇥L, where D
is the feature dimension along the frequency axis, and L denotes
the frame length along the time axis.

As depicted in Fig. 1, we use a deep convolutional neural
network (CNN) to further transform the raw feature into a high-
level abstract representation. For a given feature sequence of
size D⇥L, typically, the CNN learned descriptions are a three-
dimensional tensor block of shape C⇥H⇥W , where C denotes
the number of channels, H and W denotes the height and width
of the feature maps. Generally, H and W are much smaller
than the original D and L, since we have many downsample
operations within the CNN structure.

The CNN acts as a local pattern extractor, and the learned
representation by CNN is still with temporal order. The remain-
ing question is: how to aggregate the whole sequence together
over time? Concerning about that, we adopt a global average
pooling (GAP) layer on the top of CNN [25]. Given CNN
learned feature maps F 2 RC⇥H⇥W , the GAP layer accumu-
lates mean statistics along with the time–frequency axis, and the
corresponding output is defined as:

vi =
1

H ⇥ W
⇥

j=HX

j=1

k=WX

k=1

F i,j,k (1)

Therefore, we get fixed-dimensional utterance-level repre-
sentation V = [v1, v2, · · · , vC ] from the output of GAP.

We further process the utterance-level representation
through a fully-connected feed-forward network and build an
output layer on top. The two units in the output layer are repre-
sented as bona fide and spoof categories. We can optimize the
whole countermeasure system in an end-to-end manner with a
cross-entropy loss. The final utterance-level score can be di-
rectly fetched from the DNN output.

2.2. Feature representation

In this section, we investigate different input feature represen-
tations upon the introduced DNN framework in Section 2.1.

2.2.1. CQCC

The CQCC feature is obtained by perceptually-aware CQT cou-
pled with traditional cepstral analysis. It is reported to be sensi-
tive to the general form of spoofing attack, and yields superior
performance among various kinds of features [16]. More details
of CQCC can be found in [14].

2.2.2. LFCC

The official baseline systems adopt the CQCC feature as well
as the LFCC feature.

LFCC is a kind of cepstral features based on triangle filter-
bank similar to the widely-used Mel-frequency cepstral coeffi-
cients (MFCC). It is extracted the same way as MFCC, but the
filters are in the same triangular shape rather than on mel scale.
Therefore, LFCC might have better resolution in the higher fre-
quency region [26].

2.2.3. IMFCC

IMCC is also a kind of filter bank based cepstral features. The
difference with MFCC is that IMFCC uses filters that are lin-
early placed in “inverted-mel” scale, which lays more stress on
the high-frequency region [26].

2.2.4. STFT gram

Let x(n) be a given speech sequence and Xn(!) its STFT after
applying a window w(n) on the speech signal x(n). X(!) can
be expressed as

Xn(!) = |Xn(!)|ej✓n(!). (2)

where |Xn(!)| corresponds to the short-time magnitude spec-
trum and ✓n(!) corresponds to the phase spectrum.

The square of the magnitude spectrum is called the STFT
power spectrum. We adopt the logarithm of the power spectrum
as the STFT gram.

2.2.5. Group delay gram

Most spectral features are derived from the STFT magnitude
spectrum, while the short-time phase spectrum is not used, con-
sidering that the fact that the human ear is phase “deaf”. How-
ever, the phase spectrum has been used for various speech pro-
cessing tasks including synthetic speech detection and audio re-
play detection recently [19, 27–29]. Paliwal et al. have shown
that deviations in the phase that are not linear are important for

2

148Chunlei Zhang, Chengzhu Yu, and John HL Hansen. “An investigation of deep-learning frameworks for speaker
verification antispoofing”. In: IEEE Journal of Selected Topics in Signal Processing 11.4 (2017), pp. 684–694.

149Galina Lavrentyeva et al. “Audio Replay Attack Detection with Deep Learning Frameworks.” In: Proc. of
Interspeech. 2017, pp. 82–86.

150Francis Tom, Mohit Jain, and Prasenjit Dey. “End-To-End Audio Replay Attack Detection Using Deep
Convolutional Networks with Attention.” In: Proc. of Interspeech. 2018, pp. 681–685.
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Anti-spoofing countermeasures

Feature representation

Phase information, e.g. Modified group delay feature (MODGDF)

High frequency information (CQCC/LFCC/IMFCC)

High resolution representation (STFT gram, Group delay gram)
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Summary

1 Problem Formulation

2 Traditional Framework
Feature Extraction
Representation
Variability Compensation
Backend Classification

3 End-to-End Deep Neural Network based Framework
System Pipeline
Data Preparation
Network Structure
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Loss Function
Data Augmentation
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4 Robust Modeling of End-to-End methods
Speech under Far Field and Complex Environment Settings
Previous Methods on Robust Modeling
Robust Modeling of End-to-End Methods

5 Other Applications of End-to-End Methods
Speaker Diarization
Paralinguistic Speech Attribute Recognition
Anti-spoofing Countermeasures
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Thank you very much!

Email: ming.li369@duke.edu
Website: https://scholars.duke.edu/person/MingLi

Slide Download Link: https://sites.duke.edu/dkusmiip
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