

Special Thanks

Shixin Xu

Jian-Guo Liu

Prof. Peter Pickl

and Yiewei Xiong for her hard work!

DUKE KUNSHAN Zu Chongzhi Center for Mathematics and Computational Sciences Speaker: Prof. Robert Eisenberg, Illinois Institute of Technology

Life is special because it is inherited from a tiny number of atoms

Page 4

How can a few thousand atoms conceivably control 10²⁵ atoms?

How can a few thousand atoms conceivably control 10²⁵ atoms?

ANSWER: by forming a HIERARCHY of DEVICES

Working hypothesis: The Structures of Biology

make a Hierarchy of Devices

that span the scales

And make biology The ULTIMATE MULTISCALE MACHINE

From Atoms to Axons to Meters

Vocabulary

Words are Needed at each level of Hierarchy of Scales Extensive Vocabulary is a Barrier for Students

> Best Source for Vocabulary are Video Clips, often from YouTube

> > YouTube

or from educational websites like MIT

or from Wikipedia

Or from general Internet Search

and I will provide a Vocabulary List

Nerve Conduction

- What is the information signal of a nerve?
- How does that signal move down a nerve fiber?
- What are the molecular mechanisms involved?
- Completely solved in outline
- Mathematics available
 - Many IMPORTANT problems unsolved
 <u>Optimization of function</u>

Neuronal Signal

Voltage Signals are Found Throughout Life

Channels Determine Electrical Properties

Resting Potential Set by K Channels

Nernst Potential is the concentration gradient of one ion in electrical units! It is also the "chemical potential" of the ion

[Na] means concentration of Sodium ion

Nernst Potential

is the concentration gradient of one ion in electrical units! It is also the "chemical potential" of the ion

Potential Determined by the Ion with the greatest Conductance

Page 17

Potential Determined by the Ion with the greatest Conductance

Page 18

Propagation

Animation of Action Potential

Good References

https://www.youtube .com/watch?v=kCdt m_chqKk

https://www.youtube .com/watch?v=oa6r vUJlg7o

> b NEUROBIOLOGY Gary G. Matthews

Propagation of Action Potential

Myelinated Nerve Propagation

Sodium Na Channel

Page 24

Potassium K channel

Reminder: the Action Potential

Page 26

HERG channel is a KILLER of Students

Page 28

Now Discuss Channels

Short Course

From Atoms to Axons Bob Eisenberg

Cells are defined by their Membranes

Most of Life Occurs In Cells with Membranes

Ion Channels are the Valves of Cells

Ion Channels are the Main Controllers of Biological Function YouTube

YouTube

Different lons carry Different Signals

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative (acid) <u>Blue</u> is positive (basic) **YouTube** YouTube

Figure of ompF porin by Raimund Dutzler

*Pure H₂O is toxic to cells & proteins

Hard Spheres

3 Å

Ion Channels are Biological Devices

Natural nano-valves* for atomic control of biological function

- <u>Ion channels</u> coordinate contraction of cardiac muscle, allowing the heart to function as a pump
- lon channels coordinate contraction in skeletal muscle
- lon channels control all electrical activity in cells
- lon channels produce signals of the nervous system
- <u>lon channels</u> are involved in secretion and absorption in all cells: kidney, intestine, liver, adrenal glands, etc.
- <u>Ion channels</u> are involved in thousands of diseases and many drugs act on channels
- <u>lon channels</u> are proteins whose genes (blueprints) can be manipulated by molecular genetics
- <u>lon channels</u> have structures shown by x-ray crystallography in favorable cases

Channels are Devices

Channels are (nano) valves

Valves Control Flow

Classical Theory & Simulations NOT designed for flow

Thermodynamics, Statistical Mechanics do not allow flow

Rate and Markov Models do not Conserve Current

$$A \xrightarrow{k_{AB}} B \xrightarrow{k_{BC}} C$$
$$I_{AB} - I_{BA} \neq I_{BC} - I_{CB}$$

A few atoms make a BIG Difference

Structure determined by Raimund Dutzler in Tilman Schirmer's lab Current Voltage relation by John Tang in Bob Eisenberg's Lab
Multi-Scale Issues are Always Present in Atomic Scale Engineering

Atomic & Macro Scales are both used by channels just because Channels are Nanovalves

By definition: all valves use small structures to control large flows

How do a few atoms control (macroscopic) Biological Function?

Answer, oversimplified: A few atoms control the electric field

Much as they do in transistors

The Electric Field is Strong

If you were standing at arm's length from someone and each of you had

One percent more electrons than protons,

the force would lift the Entire Earth!

slight paraphrase of third paragraph, p. 1-1 of Feynman, Leighton, Sands (1963) 'The Feynman Lectures on Physics, Mainly Electromagnetism and Matter' also at http://www.feynmanlectures.caltech.edu/II_toc.html. Thermodynamics, Statistical Mechanics, Molecular Dynamics are UNSUITED for DEVICES

Thermodynamics, Statistical Mechanics, Molecular Dynamics have No inputs, outputs, flows, or power supplies or DEVICE EQUATIONS Fower supply = spatially nonuniform inhomogeneous Dirichlet conditions Analysis of Devices must be NONEQUILIBRIUM with spatially non-uniform BOUNDARY CONDITIONS

Tremendous Opportunity For Applied Mathematics

More important than most Nobel Prizes

THEORETICAL CHEMISTRY MUST BE REBUILT

To deal with FLOW of CURRENT and changes

Where to start?

Why not compute all the atoms?

Multiscale Issues

Journal of Physical Chemistry C (2010)114:20719

Computational Scale	Biological Scale	Ratio
<u>Time</u> 10 ⁻¹⁵ sec	10 ⁻⁴ sec	10 ¹¹
<u>Space</u> 10 ⁻¹¹ m	10 ⁻⁵ m	10 ⁶
Spatial Resolution	Three Dimensional (10 ⁶) ³	10 ¹⁸
Solute Concentration		10 ¹¹

Biological Scales Occur Together so must be <u>Computed Together</u> This may be impossible in simulations Physicists and Engineers rarely try

Multiscale Issues

Journal of Physical Chemistry C (2010)114:20719

Uncalibrated Simulations will not make devices that actually work YouTube **Calibrátion is Hard Work** particularly for Non-Ideal systems with **Correlations, Finite Size effects, and Flows** YouTube

Where to start?

Mathematically ?

Physically?

Reduced Models are Needed

YouTube

Reduced Models are Device Equations

like Input Output Relations of Engineering Systems

The device equation is the mathematical statement of how the system works **Device Equations describe 'Slow Variables'** found in some complicated systems

How find a Reduced Model?

Biology is Easier than Physics

Reduced Models Exist*

for important biological functions or the Animal would not survive to reproduce

*Evolution provides the existence theorems and uniqueness conditions so hard to find in theory of inverse problems.

> (Some biological systems – the human shoulder – are not robust, probably because they are incompletely evolved, i.e they are in a local minimum 'in fitness landscape'. I do not know how to analyze these. I can only describe them in the classical biological tradition.)

Working Hypothesis:

Crucial Biological Adaptation is Crowded lons and Side Chains

Wise to use the Biological Adaptation to make the reduced model!

Reduced Models allow much easier Atomic Scale Engineering

Physical basis of function

Active Sites of Proteins are <u>Very Charged</u> 7 charges $\sim 20M$ net charge = 1.2×10²² cm⁻³

Enzyme Type		Catalytic Active Site Density (Molar)			Protein
		Acid (positive)	Basic (negative)	Total	Elsewhere
	Total (n = 573)	10.6	8.3	18.9	2.8
EC1	Oxidoreductases (n = 98)	7.5	4.6	12.1	2.8
EC2	Transferases (n = 126)	9.5	7.2	16.6	3.1
EC3	Hydrolases (n = 214)	12.1	10.7	22.8	2.7
EC4	Lyases (n = 72)	11.2	7.3	18.5	2.8
EC5	Isomerases (n = 43)	12.6	9.5	22.1	2.9
EC6	Ligases (n = 20)	9.7	8.3	18.0	3.0

Jimenez-Morales, Liang, Eisenberg

EC2: TRANSFERASES

Average Charged Density: 19.8 Molar

Example: UDP-N-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE (PDB:1UAE)

Functional Pocket Molecular Surface Volume: 1462.40 A³

Density Charge: 19.3 Molar (11.3 M+. 8 M-)

Green: Functional pocket residues

Blue: Basic = Positive charged = R+K+H

Red: Acid = Negative charged = E + Q

Brown URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE

Jimenez-Morales, Liang, Eisenberg

Crowded Charge is GOOD

It enables SIMPLIFICATION

by exploiting a biological fact (an adaptation)

Charges are Crowded where they are important!

Essence of Engineering is knowing What Variables to Ignore! WC Randels in Warner IEEE Trans CT 48:2457 (2001)

*Dimensional reduction = ignoring some variables

Three Channel Types RyR, Ca_V = EEEE, and Na_v = DEKA YouTube YouTube YouTube YouTube YouTube YouTube YouTube YouTube

'All Spheres' Primitive Model

Implicit solvent model of open channel

ions and protein side chains are hard spheres in this model

YouTube

* Many methods have been used in more than 30 papers since Nonner and Eisenberg, 1998 YouTube

YouTube

YouTube

Experiments have 'engineered' channels (5 papers) including Two Synthetic Calcium Channels

Atomic Scale

built by Henk Miedema, Wim Meijberg of <u>BioMade Corp</u>. Groningen, Netherlands 57 Miedema et al, Biophys J 87: 3137–3147 (2004); 90:1202-1211 (2006); 91:4392-4400 (2006)

Crowded lons

Ion Diameters 'Pauling' Diameters				
Ca++	1.98 Å			
Na+	2.00 Å			
K+	2.66 Å			
'Side Chain' Diameter				
Lysine K	3.00 Å			
D or E	2.80 Å			
Channel Diameter 6 Å				

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Experiments and Calculations done at pH38

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Ion 'Binding' in Crowded Channel

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Many methods

give nearly identical results:

Equilibrium Multiscale MSA (mean spherical approximation SPM (primitive solvent model) DFT (density functional theory of fluids), MC-loc (MC with localized side chains)

Non-equilibrium Multiscale DFT-PNP (Poisson Nernst Planck) EnVarA (Energy Variational Approach) DMC Dynamic Monte Carlo NP-LEMC (Nernst Planck Local Equilibrium Monte Carlo) Steric PNP Poisson Fermi; etc. 60

Charge-Space Competition

Monte Carlo Methods

Nonner

Dezső Boda

Doug Henderson

Wolfgang

Dirk Gillespie

- Nonner, W., D. P. Chen, and B. Eisenberg. 1998. Anomalous Mole Fraction Effect, Electrostatics, and Binding in Ionic Channels. Biophysical Journal 74:2327-2334.
- Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and Selectivity in L-type Ca Channels: a Mean Spherical Approximation. Biophysical Journal 79:1976-1992.
- Nonner, W., D. Gillespie, D. Henderson, and B. Eisenberg. 2001. Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Physical Chemistry B 105:6427-6436.
- Boda, D., W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie. 2008. Volume exclusion in calcium selective channels. Biophys. J.:biophysj.107.122796.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2006. Effect of Protein Dielectric Coefficient on the Ionic Selectivity of a Calcium Channel. Journal of Chemical Physics 125:034901.
- Boda, D., T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. 2004. Monte Carlo simulation study of a system with a dielectric boundary: application to calcium channel selectivity. Molecular Simulation 30:89-96.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2007. The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Physical Review Letters 98:168102.

More than 35 papers are available at

ftp://ftp.rush.edu/users/molebio/Bob Eisenberg/reprints

both the mean and the variance

MMC details

- 1) Start with Configuration A, with computed energy E_A
- 2) Move an ion to location *B*, with computed energy E_B
- 3) If spheres <u>overlap</u>, $E_B \rightarrow \infty$ and configuration is <u>rejected</u>
- 4) If spheres do <u>not</u> overlap, $E_B \neq 0$ and configuration may be <u>accepted</u>

(4.1) If $E_B < E_A$: accept new configuration.

(4.2) If $E_B > E_A$: accept new configuration with probability $\exp\left[-(E_A - E_B)/k_BT\right]$

Key idea

Instead of choosing configurations from uniform distribution, then weighting them with $\exp(-E/k_BT)$, *MMC* chooses them with a Boltzmann probability and weights them evenly.

DFT/PNP vs Monte Carlo Simulations

Nonner, Gillespie, Eisenberg

63

'All Spheres' Model of L-type Calcium Channel Crowded with Charge

Selectivity Filter

Nonner & Eisenberg

1/2

'Side Chains'

Na

Signature of Cardiac Calcium Channel Cav1.n

Anomalous* Mole Fraction (non-equilibrium)

*Anomalous because CALCIUM CHANNEL IS A SODIUM CHANNEL at [CaCl₂] < 10^{-3.4} Ca²⁺ is conducted for [Ca²⁺] > 10^{-3.4}, but Na⁺ is conducted for [Ca²⁺] <10^{-3.}

Liu & Eisenberg (2015) Physical Review E 92: 012711

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

Sodium Channel

Voltage controlled channel responsible for signaling in nerve and coordination of muscle contraction

Challenge

from channologists

Walter Stühmer and Stefan Heinemann

Göttingen Leipzig Max Planck Institutes

Can THEORY explain the MUTATION Calcium Channel into Sodium Channel?

Calcium Channel Sodium Channel

Nothing was Changed from the EEEA Ca channel except the amino acids

Calculated DEKA Na Channel Selects Ca²⁺ vs. Na⁺ and also K⁺ vs. Na⁺

Usually Complex Unsatisfying Answers*

How does a Channel Select Na⁺ vs. K⁺?

* Gillespie, D., Energetics of divalent selectivity in the ryanodine receptor. Biophys J (2008). 94: p. 1169-1184
* Boda, et al, Analyzing free-energy by Widom's particle insertion method. J Chem Phys (2011) 134: p. 055102-14

Independent[§] Control Variables* for DEKA Na⁺ channel

but only in a special case and not for other channels

Amazingly simple, not complex for the most important selectivity property of DEKA Na⁺ channels

*Control variable = position of gas pedal or dimmer on light switch § Gas pedal and brake pedal are (hopefully) independent control variables

OUTPUT of Calculations NOT Assumed or Manipulated

Both emerge from calculations *Control variables emerge as <u>outputs</u> Control variables are <u>not</u> inputs

Control Variable emerged as <u>output</u> Control Variables are <u>not</u> inputs

Monte Carlo calculations of the DEKA Na channel

Na+ vs K+ (size) Selectivity (ratio) Depends on Channel Size, *not dehydration (not on* Protein Dielectric Coefficient)*

^{*}in DEKA Na channel

Control Variable emerged as <u>output</u> Control Variables are <u>not</u> inputs

Monte Carlo calculations of the DEKA Na channel

Occupancy # Depends on Protein Dielectric

Protein Dielectric 'Amplifies' Charge & Electrostatic effects

What does the protein do?

Channel and Contents form a Self-Organized Structure with Side Chains at position of Minimum Free Energy Protein Fits the Substrate

'Induced Fit Model of Selectivity'

YouTub

for Biologists: a Word Picture

How does Calcium Selectivity Work? qualitatively

How does it work qualitatively? (for biologists)

Selectivity from Crowded Charges

2 Ca⁺⁺ are less crowded than 4 Na⁺

Ca Channel Filled with Na⁺

(not to scale)

Ca Channel Filled with Ca⁺⁺

Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$

> <u>Channel Protein</u> Glutamate Oxygens = 4e 8 of -½ charge each Volume 0.38 nm³ Dielectric Constant 64

Outside the Filter Bulk Solution NaCl and CaCl₂

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

4 Negative Charges of glutamates of protein

DEMAND 4 Positive Charges nearby

either 4 Na⁺ or 2 Ca⁺⁺

Nonner and Eisenberg 84

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

Simplest Version: MSA

2 Ca⁺⁺ are LESS CROWDED than 4 Na⁺,

Ca++ SHIELDS BETTER than Na+, so

Protein Prefers Ca⁺⁺ because Ca⁺⁺ is less crowded

Binding Sites* are **outputs** of our Calculations

This is the Self-organized Induced fit model of Koshland

and the founders of enzymology,

Made specific by Mathematics and Computation

Selectivity Depends on Structure

Structure is the Computed Consequence of Forces in these models

We can actually compute the structures that determine Selectivity

Best Evidence is from the

RyR Receptor

YouTube

Dirk Gillespie

Dirk_Gillespie@rush.edu

Gerhard Meissner, Le Xu, et al, not Bob Eisenberg

- More than <u>120 combinations of solutions</u> & mutants
- <u>7 mutants</u> with significant effects fit successfully

1. Gillespie, D., Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. *Biophys J, 2008.* 94(4): p. 1169-1184.

2. Gillespie, D. and D. Boda, Anomalous Mole Fraction Effect in Calcium Channels: A Measure of Preferential Selectivity. *Biophys. J., 2008.* 95(6): p. 2658-2672.

3. Gillespie, D. and M. Fill, Intracellular Calcium Release Channels Mediate Their Own Countercurrent: Ryanodine Receptor. *Biophys. J., 2008.* 95(8): p. 3706-3714.

4. Gillespie, D., W. Nonner, and R.S. Eisenberg, Coupling Poisson-Nernst-Planck and Density Functional Theory to Calculate Ion Flux. *Journal of Physics (Condensed Matter), 2002. 14: p. 12129-12145.*

5. Gillespie, D., W. Nonner, and R.S. Eisenberg, Density functional theory of charged, hard-sphere fluids. Physical Review E, 2003. 68: p. 0313503.

6. Gillespie, D., Valisko, and Boda, Density functional theory of electrical double layer: the RFD functional. *Journal of Physics: Condensed Matter, 2005.* 17: p. 6609-6626.

7. Gillespie, D., J. Giri, and M. Fill, Reinterpreting the Anomalous Mole Fraction Effect. The ryanodine receptor case study. Biophysical Journal, 2009. 97: p. pp. 2212 - 2221

8. Gillespie, D., L. Xu, Y. Wang, and G. Meissner, (De)constructing the Ryanodine Receptor: modeling ion permeation and selectivity of the calcium release channel. *Journal of Physical Chemistry*, 2005. 109: p. 15598-15610.

9. Gillespie, D., D. Boda, Y. He, P. Apel, and Z.S. Siwy, Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. *Biophys. J.*, 2008. 95(2): p. 609-619.

10. Malasics, A., D. Boda, M. Valisko, D. Henderson, and D. Gillespie, Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter. *Biochim Biophys Acta, 2010. 1798(11): p. 2013-2021.*

11. Roth, R. and D. Gillespie, Physics of Size Selectivity. *Physical Review Letters, 2005. 95: p.* 247801.

12. Valisko, M., D. Boda, and D. Gillespie, Selective Adsorption of Ions with Different Diameter and Valence at Highly Charged Interfaces. *Journal of Physical Chemistry C, 2007. 111: p. 15575-15585.*

13. Wang, Y., L. Xu, D. Pasek, D. Gillespie, and G. Meissner, Probing the Role of Negatively Charged Amino Acid Residues in Ion Permeation of Skeletal Muscle Ryanodine Receptor. *Biophysical Journal, 2005.* 89: p. 256-265.

14. Xu, L., Y. Wang, D. Gillespie, and G. Meissner, Two Rings of Negative Charges in the Cytosolic Vestibule of T Ryanodine Receptor Modulate Ion Fluxes. *Biophysical Journal, 2006. 90: p. 443-453.*

Ryanodine Receptor redrawn in part from Dirk Gillespie, with thanks!

Samsó et al, 2005, Nature Struct Biol 12: 539

Zalk, et al 2015 Nature 517: 44-49.

All Spheres Representation

- 4 negative charges D4899
- Cylinder 10 Å long, 8 Å diameter
- 13 M of charge!
- 18% of available volume
- Very Crowded!
- Four lumenal E4900 positive amino acids overlapping D4899.
- Cytosolic background charge

Solved by DFT-PNP (Poisson Nernst Planck)

DFT-PNP gives location of lons and 'Side Chains' as OUTPUT

Other methods

give nearly identical results

 DFT (Density Functional Theory of fluids, not electrons) MMC (Metropolis Monte Carlo)) SPM (Primitive Solvent Model) EnVarA (Energy Variational Approach)
 Non-equil MMC (Boda, Gillespie) several forms Steric PNP (simplified EnVarA)
 Poisson Fermi (replacing Boltzmann distribution)

The model <u>predicted</u> an AMFE for Na⁺/Cs⁺ mixtures <u>before</u> it had been measured

Divalents

Gillespie, Meissner, Le Xu, et al

The model predicted that AMFE disappears

Gillespie, Meissner, Le Xu, et al

Mixtures of THREE Ions

The model reproduced the competition of cations for the pore without <u>any</u> adjustable parameters.

Gillespie, Meissner, Le Xu, et al

Theory fits Mutation with Zero Charge

Experimental Detail

Recording Current from One Protein Molecule

Thousands of **Molecular Biologists Study Channels** every day,

One protein molecule at a time

This number is not an exaggeration. We have sold >10,000 AxoPatch amplifiers

AxoPatch 200B

lon_channel<u>newsletter</u>

5.

6.

Ion Channel Monthly

If you have been forwarded this newsletter and would like to

subscribe for yourself, please click here.

Share this message with colleagues

View this email in your browser (or link to it)

Popular publications for March (view most recent)

3. AMPA receptors--another twist? Science

STIM and ORAL Annu Rev Immunol

Targeted Life Science Advertising

Ion Channel Media Group

Sponsors:

- Bsys Swiss Quality in Ion Channel Services
- Automate Scientific -Electrophysiology Equipment
- Cellectricon Dynaflow: a quantum leap for electrophysiology
- Nanion Automated patch clamp
- Millipore Ion channel cell lines

Sponsorship slots are currently open. Visit our corporate webpage to learn about the most highly targeted life science advertising available.

fibrillation. Lancet 7. A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na(+) Channels during the Formation of Nodes of Ranvier. Neuron

1. Molecular basis of infrared detection by snakes. Nature

The Angelman Syndrome Protein Ube3A Regulates

Synapse Development by Ubiquitinating Arc. Cell

4. Molecular Basis of Calcium Signaling in Lymphocytes:

Neurological Channelopathies. Annu Rev Neurosci

New antiarrhythmic drugs for treatment of atrial

- 8 Small Molecule Activators of TRPML3. Chem Biol
- 9. Truncated {beta}-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome. Proc Natl Acad Sci U S A
- 10. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci

Patch clamp and Bilayer apparatus clamp ion concentrations in the baths and the voltage across membranes.

Patch Clamp Setup

Recordings from One Molecule

Channel Structure Does Not Change once the channel is open

Ca²⁺ Release Channel of Inositol Trisphosphate Receptor: slide and data from Josefina Ramos-Franco. Thanks!

Cardiac Muscle Cell

Ikeda et al, Physiology 23: 6 (2008)

Vocabulary

Life extends over many Scales

with a Hierarchy of Structures one on top of another

So Life Needs Many Words

to define the Structures And how they work

Extensive Vocabulary is Needed <u>Extensive Vocabulary is a Barrier for Students</u> I mark most of these in my lectures with a call out

YouTube

and I will provide a Vocabulary List
Vocabulary

Extensive Vocabulary is Needed Extensive Vocabulary is a Barrier for Students

Best Source for Vocabulary are Video Clips, often from YouTube

YouTube

or from educational websites like MIT

or from Wikipedia

Or from general Internet Search

and I will provide a Vocabulary List

Lecture 2 & 3 Vocabulary List

1) Kinase	20)Device Equation
2) Nerve Conduction	21)Boundary Conditions
3) Resting potential	22)Calibration
4) Action Potential	23)Correlation
5) Phospholipid	24)Adaptation
C) Diasma	25)Evolution
membrane	26)Inverse Problem
7) Ion Channel	27) Reverse
8) K ⁺ = potassium	Lingineering
ion	28) Reduced Model
9) Myelin	29)Side Chain
10)Glial Cell	30)Amino acid residue
11)Node of Ranvier	31)Induced Eit
12)Mvelinated	Enzymes
Nerve	,
12) Un muchtimeter d	32)Enzyme
Nerve	33)Active Site
14)Selectivity	34)Catalytic Active
15)Acid	Site
,	35) Dimensional
16)Base	Reduction
17) lons	36)Primitive Model
18) Valves	or ionic solutions
19)Power Supply	37)Electrolyte
	Shation

38)Implicit solvent

39)RyR channel

40)CaV channel

41)Nav channel

42)L type Calcium channel

43)Lysine

44)Donnan Equilibrium

45)Ion exchanger

46) Dielectric

47) Monte Carlo

48) Metropolis Monte Carlo

49)AMFE

50)Anomalous Mole Fraction Effect

51)Solvation

52) Dehydration

53) Dielectric Constant

54)Cardiac Muscle

55)Patch Clamp

56)Bilayer

57)Lipid