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1 Motivation

(Fluid Dynamics)

The motion of fluids (one-component) obeys conservation laws of

mass, momentum and energy:

∂ρ
∂t +∇ · (ρv) = 0,

∂(ρv)
∂t +∇ · (ρv ⊗ v) +∇ ·P = 0,

∂E
∂t +∇ · (Ev +Pv + q) = 0.

Here ρ is the density, v is the velocity, P the pressure tensor,

E = ρ(u+ |v|2/2),

u the internal energy, q represents the heat flux.
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In 3D, we have 5 equations for 14 unknowns ρ,v, u,P (symmetric)

and q. This is a unclosed system of time-dependent first-order PDEs.

Conventionally, one writes

P = pI + τ.

with p = p(ρ, u) the hydrostatic pressure (the equation of state) and τ

a symmetric deviatoric pressure tensor.

Then the system of 5 PDEs was closed with the following empirical

laws:
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1.1 Newtonian fluids

Newton’s law of viscosity:

τ = −µ
[
(∇v) + (∇v)T − 2

3
∇ · vI

]
− λ∇ · vI(≡ D[v]),

Fourier’s law of heat conduction:

q = −κ∇T.

(κ, µ and λ are the respective transport coefficients for heat

conduction, shear viscosity, and bulk viscosity)

=⇒ Compressible Navier-Stokes equations.

On the other hand, the empirical laws are not always valid.
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1.2 Maxwell fluids

Maxwell’s law of viscoelasticity (1867):

τ + ϵ1τt = −µ
[
(∇v) + (∇v)T − 2

3
∇ · vI

]
− λ∇ · vI.

Cattaneo’s law of heat conduction (1948):

q+ ϵ2qt = −κ∇T.

Here ϵ1 and ϵ2 are two positive (small) parameters.

=⇒ Time-dependent first-order PDEs!

Again, not always work well! There are many other constitutive

equations in the literature. What to do next?
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Mathematical modeling: to close the conservation laws, to discover

new PDEs.

• Criteria： Conservation laws + Empirical laws.

• Are there any other (empirical) laws?

• Can we learn something from available “data”?
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2 Observation

(Conservation-dissipation Principle)

Many years ago, I studied first-order PDEs of the form:

Ut +
d∑

j=1

Fj(U)xj = Q(U). (1)

Here t ≥ 0, x = (x1, x2, · · · , xd) ∈ Rd (d = 1, 2, 3),

U = U(x, t) ∈ G (open) ⊂ Rn,

Q(U), Fj(U) ∈ C∞(G,Rn).



2 OBSERVATION'

&

$

%

Such PDE describe a large number of (all?) irreversible processes.

Important Examples:

non-Newtonian fluid flows, chemically reactive flows/combustion,

dissipative relativistic fluid flows, kinetic theories (moment closure

systems, discrete-velocity kinetic models), multi-phase flows,

thermal non-equilibrium flows, radiation hydrodynamics, traffic

flows, neuroscience (axonal transport), nonlinear optics,

probability theory (the Master equation, also called

Chapman-Kolmogorov equation), complex (reaction) networks

(d=0), geophysical flows, ......

Ref.: [1]. Ingo Müller, A history of thermodynamics, Springer, 2007.

[2]. D. Jou & J. Casas-Vazquez & G. Lebon, Extended irreversible

thermodynamics, Springer, 1996.
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Example 1. Multi-D Euler equations of gas dynamics with damping:

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ) = −ρu.

Here ρ = ρ(x, t) stands for the density and u = u(x, t) is the velocity.

This system is of the form (1) with U = (ρ, ρu)T .
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Example 2. A 3-D quasilinear system for nonlinear optics:

D⃗t −∇× B⃗ = 0,

B⃗t +∇× E⃗ = 0,

χt = |E⃗|2 − χ

with D⃗ = (1 + χ)E⃗.

Example 3. 1-D Euler equations of gas dynamics in vibrational

non-equilibrium (in Lagrangian coordinates):

νt − ux = 0,

ut + px = 0,

(e+ q + u2

2 )t + (pu)x = 0,

qt = Q(ν, e)− q.
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I observed (2008): the systems of PDEs from different fields All possess

the following property (called “Conservation-dissipation Principle”)：

(i). There is a strictly convex smooth function η(U) such that

ηUU (U)FjU (U) is symmetric for all U ∈ G and all j.

(ii). There is a symmetric and nonpositive-definite matrix L(U) such

that for all U ∈ G,

Q(U) = L(U)(ηU (U))T .

(iii). The kernel space of L(U) is independent of U .
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Remark 1. Property (i) is the Lax entropy condition for hyperbolic

conservation laws, characterizes the existence of an entropy function

for the physical process and is consistent to the fundamental

postulates of classical thermodynamics (H. B. Callen, 1985).

Remark 2. Property (ii) is a nonlinearization of the celebrated Onsager

reciprocal relation in modern non-equilibrium thermodynamics：

Q(U) = L(Ue)(ηU (U))T

with fixed Ue satisfying Q(Ue) = 0.

Here Q(U) acts as the thermodynamic flux, while the entropy variable

ηU (U) stands for the thermodynamic force.
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In contrast: “There are difficulties in choosing the thermodynamic

fluxes and forces when applying the notion”(P. Perrot, A to Z of

Thermodynamics, Oxford Univ. Press, 1998, pp. 125–126).

Remark 3. Property (iii) describes the fact that the physical laws of

conservation hold true no matter what state the system is in.

Remark 4. Balance laws relate irreversible processes (of scalar type)

directly to the entropy change ηU :

Ut +
∑
j

Fj(U)xj = L(U)(ηU (U))T

and incorporate the second law of thermodynamics!
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Afterwards, I found that the Conservation-dissipation Principle is

satisfied also by other first-order systems of PDEs from neuroscience,

chemical engineering (multi-component diffusion) and so on.

A. Mielke (May 11, 2011): ”Meanwhile I also found a few other

sources, but none gives such a clear and general statement as yours.”
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3 Conservation-dissipation Formalism

(CDF)

Guided by the Conservation-dissipation Principle (nonlinear Onsager

relation), in 2015 we (Zhu & Hong & Yang & Y.) proposed a so-called

CDF theory of non-equilibrium thermodynamics.

The underlying idea is simple! We observed that so many existing

models all obey the principle. It is natural to respect the same principle

when constructing new PDEs!
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With fluid flows in mind, in CDF we assume that certain conservation

laws are known a priori:

∂tu+
3∑

j=1

∂xjfj = 0. (2)

Here x = (x1, x2, x3), u = u(t, x) ∈ Rn represents conserved variables

like u = (ρ, ρv, ρE) in fluid dynamics, and fj is the corresponding flux

along the xj-direction.

If each fj is given in terms of the conserved variables, the system (2)

becomes closed. In this case, the system is considered to be in local

equilibrium and u is also referred to as equilibrium variables.



3 CONSERVATION-DISSIPATION FORMALISM (CDF)'

&

$

%

However, very often fj depends on some extra variables in addition to

the conserved ones. The extra variables characterize non-equilibrium

features of the system under consideration and are called

non-equilibrium or dissipative variables.

In CDF, we choose a dissipative variable v ∈ Rr so that the flux fj in

(2) can be expressed as fj = fj(u, v) and seek evolution equations of

the form

∂tv +

3∑
j=1

∂xjgj(u, v) = q(u, v). (3)

This is our constitutive equation to be determined, where gj(u, v) is

the corresponding flux and q = q(u, v) is the nonzero source, vanishing

at equilibrium.



3 CONSERVATION-DISSIPATION FORMALISM (CDF)'

&

$

%

Together with the conservation laws (2), the dynamics of the

non-equilibrium process is then governed by a system of first-order

PDEs in the compact form

∂tU +
3∑

j=1

∂xj
Fj(U) = Q(U), (4)

where

U =

 u

v

 , Fj(U) =

 fj(U)

gj(U)

 , Q(U) =

 0

q(U)

 .
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For balance laws (4), the aforesaid conservation-dissipation principle

consists of the following two conditions.

(i). There is a strictly convex smooth function η = η(U), called

entropy (density), such that the matrix product ηUUFjU (U) is

symmetric for each j and for all U = (u, v) under consideration.

(ii). There is a negative definite matrix M = M(U), called dissipation

matrix, such that the non-zero source can be written as

q(U) = M(U)ηv(U).
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Remark 5. An Entropy-production Inequality (or called

a refined formulation of the 2nd law of thermodynamics) follows from

the conservation-dissipation principle.

It is direct to see that the entropy production

σ ≡ ηU (U) ·Q(U) = ηv(U) ·M(U)ηv(U)

≤ −λ(U)|ηv(U)|2 ≤ − λ(U)
|M(U)|2 |M(U)ηv(U)|2 = − λ(U)

|M(U)|2 |Q(U)|2,

where λ(U) is the smallest eigenvalue of the positive-definite matrix

−[M(U) +MT (U)]/2 .
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Freedoms of CDF: convex entropy function η = η(U) and

negative-definite matrix M = M(U)!

Having η = η(U), we compute the change rate η(U)t of entropy, use

the balance laws (4) to identify entropy flux J(U) and entropy

production σ(U), and obtain

η(U)t +∇ · J(U) = σ(U).

Finally, choose the gj(u, v)’s so that

σ(U) ≤ 0.
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4 Generalized Hydrodynamics

To see how CDF works, we return to the equations for fluid flows:

∂ρ
∂t +∇ · (ρv) = 0,

∂(ρv)
∂t +∇ · (ρv ⊗ v) +∇ ·P = 0,

∂E
∂t +∇ · (Ev +Pv + q) = 0.

Here ρ is the density, v is the velocity, E = ρ(u+ |v|2/2) with u the

internal energy, q represents the heat flux, and P the pressure tensor

P = pI + τ.

with p = p(ρ, u) the hydrostatic pressure (the equation of state) and τ

a symmetric deviatoric pressure tensor.
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(P1). Specify a smooth strictly convex function (called the

non-equilibrium specific entropy) s = s(ν, u, z) satisfying su > 0.

Since the extra unknown variables are q and τ , the non-equilibrium

variable z is chosen to be of the same size of the unknown fluxes, i.e.,

z = (w, c) ∈ Rd ×Md
s (d = 1, 2, 3).

Define

θ−1 = su, π = θsν , ζ = sz, τ = P− πI.

In other words, the generalized Gibbs relation is

ds = θ−1(du+ πdν) + ζ · dz.
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In order to be compatible with the classical theory, we introduce

θ: non-equilibrium temperature,

π: non-equilibrium pressure.

ζ: the entropic variable and related to the dissipative fluxes which

vanish at equilibrium

τ : non-equilibrium stress tensor.
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We calculate

∂t(ρs) +∇ · (ρsv)

= −∇ · (θ−1q) + sw · [∂t(ρw) +∇ · (v ⊗ ρw)] + q · ∇θ−1

+sTc : [∂t(ρc) +∇ · (v ⊗ ρc)]− θ−1τT : ∇v

≡ −∇ · J+ σ.

Here J = θ−1q as the entropy flux and the rest as the entropy

production σ. A nature choice of the unknowns is

q = sw, τ = θsc

and then the entropy production becomes

σ = q ·A+ θ−1τT : B



4 GENERALIZED HYDRODYNAMICS'

&

$

%

with

A = ∂t(ρw) +∇ · (v ⊗ ρw) +∇θ−1,

B = ∂t(ρc) +∇ · (v ⊗ ρc)−∇v.

This suggests the following constitutive equations

 A

B

 = M ·

 q

θ−1τ





4 GENERALIZED HYDRODYNAMICS'

&

$

%

or  ∂t(ρw) +∇ · (ρv ⊗w) +∇θ−1

∂t(ρc) +∇ · (ρv ⊗ c)− 1
2 (∇v +∇vT )

 = M ·

 q

θ−1τ



with M = M(ν, u, z) negative definite (P2). Consequently, the

entropy production rate is

σ = sz ·Msz.

It is always negative as long as sz is not zero. The system reaches to

equilibrium when sz is zero. In this context, the derivative of the

entropy with respect to the non-equilibrium variables is regarded as the

entropic force which drives the system to equilibrium.
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A typical choice of the generalized entropy function s and dissipation

matrix M. They are

s = s(ν, u,w, c) = −seq(ν, u) +
1

2α1(ν, u)
|w|2 + 1

2α2(ν, u)
|c|2

and

M ·

 q

θ−1τ

 =

 q
λθ2

1
2ξ

(
τ − 1

d tr(τ)I
)
+ 1

dκ tr(τ)I

 .

Here α1 and α2 are positive functions such that s(ν, u,w, c) satisfies

the convexity and monotonicity in (P1). The simplest choice is that

both α1 and α2 are constant.
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With such a choice of the entropy function and dissipation matrix, we

generalize Maxwell’s law for viscoelastic fluids. They give a reasonable

description of non-isothermal compressible viscoelastic fluid flows。
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5 Model for compressible viscoelastic

fluids (Y. 2014)

For isothermal flows, we have conservation laws of mass and

momnetum:

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v + pI + τ) = 0.

Here ρ is the density of the fluid, ⊗ denotes the tensorial product,

p = p(ρ) is the hydrostatic pressure, and τ is a tensor of order two.

On physical grounds, assume τ is symmetric and decompose

τ = τ̃1 + τ̃2I

with τ̃1 traceless and τ̃2 scalar.
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Denote by

τ1 a symmetric and traceless tensor of order two,

τ2 a scalar,

Id the unit tensor.

In CDF, take

η = η(ρ, ρv, τ1, τ2) = 4ρ

∫ ρ

1

p(y)

y2
dy + 2ρ|v|2 + |τ1|2 + 2τ22 ,

which is strictly convex w. r. t. U = (ρ, ρv, τ1, τ2)
T .
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Compute

ηt = ηρρt + ηρv(ρv)t + ητ1 : τ1t + ητ2τ2t

= −∇ · (· · ·) + ητ1 : τ1t + ητ2τ2t + 4τ : ∇v

= −∇ · (· · ·) + ητ1 : τ1t + ητ2τ2t + 4τ̃1 : ∇v + 4τ̃2∇ · v

= −∇ · (· · ·) + ητ2τ2t + 4τ̃2∇ · v

+ητ1 : τ1t + 2τ̃1 :
[
∇v + (∇v)T − 2

3∇ · v
]
.
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Take

τ̃1 =
ητ1
2ϵ1

=
τ1
ϵ1
, τ̃2 =

ητ2
4ϵ2

=
τ2
ϵ2

with ϵ1, ϵ2 two positive numbers.

Then

ηt = −∇ · (· · ·) + ητ2

[
τ2t +

∇·v
ϵ2

]
+ητ1 :

[
τ1t +

1
ϵ1

(
∇v +∇vT − 2

3∇ · v
)]

.
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In CDF，take

M = M(U) = −diag

(
Id

2νϵ21
,

1

4κϵ22

)
with ν, κ two positive numbers. We obtain

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v + pI) + 1
ϵ1
∇ · τ1 + 1

ϵ2
∇τ2 = 0,

∂tτ1 +
1
ϵ1

[
∇v + (∇v)T − 2

3∇ · vI
]

= − τ1
νϵ21

,

∂tτ2 +
1
ϵ2
∇ · v = − τ2

κϵ22
.
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In 2015, D. Chakraborty & J. E. Sader (PoF) showed that this model

can lead to the following classical results:

• Newton’s law of viscosity, at low frequency (Y. 2014)

• Hooke’s law of elasticity, at high frequency

• Landau-Lifshitz’ formula for the difference between

thermodynamic and mechanical pressures

• Landau-Lifshitz’ formula for the speed of sound in slow

compressible processes
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Consequently, they claimed:

unique correct model for compressible viscoelastic fluid flows.

”Abstract: ...... In this article, we review and critically assess the

available constitutive equations for compressible viscoelastic flows in

their linear limits—such models are required for analysis of the

above-mentioned measurements. We show that previous models, with

the exception of a very recent proposal, do not reproduce the required

response at high frequency. We explain the physical origin of this

recent model and show that it recovers all required features of a linear

viscoelastic flow. This constitutive equation thus provides a rigorous

foundation for the analysis of vibrating nanostructures in simple

liquids. The utility of this model is demonstrated by solving ......”
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J. E. Sader (2019): in good agreement with experiments.

B. Wu & Y. Gan & E. Carrera & W. Q. Chen (J. Fluid Mech. 2019):

solving its linearization.
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6 Maxwell iteration

To show the compatibility, we introduce the following transformation

U =

 u

v

 −→ W ≡

 u

z

 =

 u

ηv(u, v)

 . (5)

for balance laws (4).

Thanks to the strict concavity of η(U), the algebraic equation

z = ηv(u, v) can be globally and uniquely solved to obtain v = v(u, z).

Namely, this transformation is globally invertible.
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Under this transformation, the system (4) for smooth solutions can be

rewritten as

Wt +
d∑

j=1

(DUW )Fj(U)xj
=

1

ε

 0

ηvv(U)M(U)z

 (6)

with DUW =

 In 0

ηvu(U) ηvv(U)

 and Ik the unit matrix of order k.

Transformation (5) preserves the original conservation laws in (4):

ut +

d∑
j=1

fj(u, z)xj = 0. (7)

Here and below, the simplified notation fj(u, z) has been used to

replace fj(u, v(u, z)).
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The z-equation in (6) can be rewritten as

z = εM(U)−1ηvv(U)−1
[
zt+ηvu(U)

∑
j

fj(u, z)xj+ηvv(U)
∑
j

gj(u, z)xj

]
.

This indicates that z = O(ε). Iterating the last equation yields

z = εM̄(u)−1η̄vv(u)
−1

∑
j

[
η̄vu(u)fju(u, 0)+η̄vv(u)gju(u, 0)

]
uxj+O(ε2),

where M̄(u) = M(u, v(u, 0)) giving the meaning of the bar.

Moreover, fj(u, z) in (7) can be expanded into

fj(u, z) = fj(u, 0) + fjz(u, 0)z +O(ε2).
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Substituting the two truncations above into (7), we arrive at the

following second-order PDEs

ut +

3∑
j=1

fj(u, 0)xj = ε

3∑
j,k=1

(Bjk(u)uxk
)xj (8)

with

Bjk(u) = −fjz(u, 0)M̄(u)−1η̄vv(u)
−1

[
η̄vu(u)fku(u, 0)+η̄vv(u)gku(u, 0)

]
.

This procedure in deriving (8) from (6) is called Maxwell iteration and

gives the exactly same result as the Chapman-Enskog expansion does.
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Denote by W ε
h ≡ (uε

h, z
ε
h) and uε

p the solutions to systems (6) and (8),

respectively. It was proved in (Y. 1999, JDE) for sufficiently smooth

initial data that the expansion

uε
h − uε

p = O(ε2)

holds in a certain Sobolev space.

This result indicates that the second-order PDEs (8) is a good

approximation to the CDF-based first-order system (4) when the

dissipative variables evolve much faster than the conserved ones.

Consequently, the Maxwell iteration makes up for the shortcoming of

CDF that only first-order PDEs can be obtained.
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It was shown in (Y. 2020，Phil.Trans.R.Soc.A 378:20190177) that

the derived second-order PDEs (8) preserve the gradient structure and

strong dissipativeness of the CDF-based first-order ones.

Namely, the Maxwell iteration preserves both the

Conservation-dissipation Principle and the Entropy-production

Inequality (the refined formulation of the 2nd law of thermodynamics).

The gradient structure corresponds to nonlinear Onsager reciprocal

relations for scalar processes (described with the first-order PDEs) and

for vectorial or tensorial processes (described with the second-order

PDEs).
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7 Compatibility

For simplicity, we only consider the isothermal model for compressible

viscoelastic fluids (Sec. 4)

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v + pI) + 1
ϵ1
∇ · τ1 + 1

ϵ2
∇τ2 = 0,

∂tτ1 +
1
ϵ1

[
∇v + (∇v)T − 2

3∇ · vI
]

= − τ1
νϵ21

,

∂tτ2 +
1
ϵ2
∇ · v = − τ2

κϵ22
.
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Rewrite the last two lines and iterate them once

τ1 = −ϵ1ν
[
∇v + (∇v)T − 2

3∇ · v
]
− ϵ21ντ1t

= −ϵ1ν
[
∇v + (∇v)T − 2

3∇ · v
]
+ ϵ31O(1),

τ2 = −ϵ2κ∇ · v − ϵ22κτ2t

= −ϵ2κ∇ · v + ϵ32O(1).

Substituting the truncations into the first two lines (conservation laws)

yields the classical Navier-Stokes equations.

The above formal process can be justified and the result can be stated

as follows.
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Theorem 7.1 Suppose the density ρ and velocity v are continuous

and bounded in (x, t) ∈ Ω× [0, t∗] with t∗ < ∞, and satisfy

inf
x,t

ρ(x, t) > 0 and

ρ,v ∈ C([0, t∗],H
s+3) ∩ C1([0, t∗],H

s+1(Ω))

with integer s ≥ [d/2] + 2. Then there exist positive numbers

ϵ0 = ϵ0(t∗) and K = K(t∗) such that for ϵ ≤ ϵ0 the compressible

viscoelastic model, with initial data in Hs(Ω) satisfying

∥(ρϵ, ρϵvϵ)|t=0 − (ρ, ρv)|t=0∥s = O(ϵ2), has a unique classical solution

satisfying

(ρϵ, ρϵvϵ, τ ϵ1 , τ
ϵ
2) ∈ C([0, t∗],H

s(Ω))

and

sup
t∈[0,t∗]

∥(ρϵ, ρϵvϵ)− (ρ, ρv)∥s ≤ K(t∗)ϵ
2.
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6. Summary

• It was observed that many many existing and well-validated PDE

models from different fields all obey the Conservation-dissipation

Principle—a nonlinearization of the Onsager reciprocal relation.

Thanks to this, it is natural to respect the same principle when

constructing new models.

• With the simple idea above, we developed a so-called

Conservation-dissipation Formalism (CDF) of non-equilibrium

thermodynamics and proposed a novel generalized hydrodynamics

for non-isothermal compressible viscoelastic fluid flows.
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• Within the CDF, a new model for isothermal compressible

viscoelastic fluid flows was proposed. It was shown to be the

unique correct model for viscoelastic fluid flows.

• The CDF has two freedoms (or called details): the strictly convex

function η and the dissipation-matrix M. The freedoms are

problem-dependent and can be fixed with machine learning. PDEs

thus discovered automatically possess “good”properties:

robustness or well-posedness, irreversibility, long-time tendency to

equilibrium, compatibility with classical theories

（4 fundamental requirements）！

Ref.：W.-A. Yong (2020)，Phil.Trans.R.Soc.A 378:20190177.

http://dx.doi.org/10.1098/rsta.2019.0177



7 COMPATIBILITY'

&

$

%

THANK You for Your Attention!


