Zu Chong－zhi Distinguished Lecture Math－Physics Series
Duke Kunshan University，July 09， 2020

Group Locomotion in Fluids

Jun Zhang（张骏）
Courant Inst \＆Dept Phys of New York Univ． and NYU Shanghai（Math \＆Physics programs）

An astronomer，mathematician，politician，inventor，and writer Zu Chong－zhi（祖沖之 429－500 AD）once a county governor of Kunshan

Asteroid 1964 VO1 was named 1888 Zu Chong－Zhi

2

4

Schooling / flocking (of fish/birds)
$=$ Social behavior + Physical interaction

\longrightarrow

6

8

9

11

Question: Can a symmetric, rigid, flapped "wing" generate a lateral thrust and take a spontaneous forward flight?
The (physical) origin of flapping flight.

Vandenberghe, Zhang and Childress, Journal of Fluid Mechanics, 2004 Alben and Shelley, PNAS, 2005
Vandenberghe, Childress and Zhang, Physics of Fluids, 2006

10

Spontaneous symmetry breaking bifupcation: A "symmetric bird" would still fly "forward"..

12

Inverted von Kármán vortex street
Vandenberghe, Zhang and Childress, Journal of Fluid Mechanics, 2004

13

15

What pattern(s) do they form? What is the interaction with their neighbors?

16

Daniel Weihs, Nature (1973)
A moving "diamond crystal" in fluids..

Fig. 1 Part of a horizontal layer of fish in a school, from above Arrows near vortex streets show direction of induced flow
relative to the vortices. The dotted line shows a "diamond" pattern.

17

18

We can change amplitude or amplitude to change wavelength λ

Romananarivo, Fang, Oza, Zhang, and Ristroph, Phys. Rev. Fluids 2016

20

21

So far the flapping hydrofoils/airfoils have exactly the same "gaits" (i.e., same freq and amp/t), and we have observed coherent motions and the pair takes stable locking positions.

What about two independent (different f and a) flapping foils that are placed in tandem?

How did we do it?

Romananarivo, Fang, Oza, Zhang, and Ristroph, Phys. Rev. Fluids 2016

22

24

25

27

26

28

29

For fluid drag: $\quad F_{D}=\frac{1}{2} \rho_{f} l^{2} C_{D} U^{2}$
For thrust generated by a flapping wing (in quiescent fluid):

$$
F_{T}=\frac{1}{2} \rho c s C_{T} V^{2}=\frac{1}{2} \rho c s C_{T}(\pi A f)^{2}
$$

Thrust generated in an unsteady flow:

$$
F_{T}=\frac{1}{2} \rho c s C_{T} \pi^{2}\left(V_{\text {wing }}-v_{\text {flow }}\right)^{2}
$$

The periodic wake after a flapping wing (\#1), seen by a follower (\#2):

$$
v_{\text {flow }}=\pi A_{1} f_{1} e^{-\Delta t / \tau} \cos [2 \pi f(t-\Delta t)]
$$

Stable states for tandem, flapping foils

Supporting movie for
"Flow interactions between uncoordinated flapping swimmers give rise to group cohesion"
J. W. Newbolt, J. Zhang, \& L. Ristroph

30

The core of the wake-interacting model (tandem formation): $F_{T}=\frac{1}{2} \rho \operatorname{cs} C_{T} v^{2}=\frac{1}{2} \rho \operatorname{cs} C_{T}(\pi A f)^{2} \Rightarrow \frac{1}{2} \rho \operatorname{cs} C_{T} \pi^{2}\left(v_{2}-v_{1}\right)^{2}$

$$
F_{T, 2}=\frac{1}{2} \rho c s C_{T} \pi^{2}\left[A_{2} f_{2} \cos \left(2 \pi f_{2} t-\phi\right)-A_{1} f_{1} e^{-\Delta t / \tau} \cos \left(2 \pi f_{1}(t-\Delta t)\right)\right]^{2} .
$$

The average thrust over a flapping period, $\left\langle F_{T, 2}\right\rangle \equiv \frac{1}{T_{2}} \int_{t}^{t+T_{2}} F_{T, 2} d t$ may be approximated if we assume that Δt is constant over a flapping period and $f_{2} \approx f_{1}$

$$
\left\langle F_{T, 2}\right\rangle \approx \frac{\rho \operatorname{cs} C_{T} \pi^{2}}{2}\left[\frac{1}{2}\left(A_{2} f_{2}\right)^{2}+\frac{1}{2}\left(A_{1} f_{1} \mathrm{e}^{-\Delta t / \tau}\right)^{2}-A_{2} f_{2} A_{1} f_{1} \mathrm{e}^{-\Delta t / \tau} \cos \left\{2 \pi f_{2} t-\phi-2 \pi f_{1}(t-\Delta t)\right\}\right]
$$

"Flow interactions between uncoordinated flapping swimmers give rise to group cohesion"
"Flow interactions betv
116,2419, PNAS 2019
by J. Newbolt, J. Zhang, L. Ristroph

32

33

NOW, we further relax on the tandem conditions, studying lateral interactions between flapping wings.

Joel Newbolt, Leif Ristroph, JZ 2020 Submitted..

35

Can we ever see a fish school or bird flock that resembles a crystal (in the Weihs' model)?

34

36

37

Messages....reflections

Physics/math models provide a solid base for biological locomotion systems (well, nobody escapes physics laws). The dynamics, kinematics and thus behaviors can be better understood by means of "simple" biomimetic experiments theory, and simulations.
"Social behaviors" should not act against physical interactions.

Collaborators

Flight bifurcation (experiments)
Flight bifurcation (DNS)

Schooling of flapping flyers / swimmers (experiments)

38

40

