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+ Granular material
A granular material is a conglomeration

of discrete solid, macroscopic particles
characterized by a loss of energy whenever

the particles interact.

+« Granular flows
Flows formed by Granular materials
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+ Oblique deflectoré-]such 5‘ >

as deflecting dams are
usually employed to divert
particle avalanches.

The design of passive
protection methods often
does not have a solid
theoretical underpinning.

Average force experienced
by the oblique wall.

Investigate the system at the particle scale to understand the
dynamics of the deflection process.



important

jals.

Gener;IIy believed that dilute flows are very
simple
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particle flux

The particle stream consists of identical smooth spheres of
radius and mass.

All incoming particles move in the same direction and have the
same initial velocity.



Density distribution of the
Z-location of particles

+ Y-direction: distance between adjacent particles has a given distribution
(eg. Non-random)

+ Z-direction: input location has a given distribution (eg. Gaussian) with
standard deviation






+ We consMeWmain t is much larger
than x4, and o, ' v -
+ Two methods for propagatlng particles
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Numerical results or Force on Ba a:ﬁgarferT--v

§=20 and e=¢,,=0.8

S=transverse separation
V=longitudinal separation
Theta=barrier angle
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Numerical results for Force on Barrier
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Numerical resut--fo ------- Barrier
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+ Three possible outcomes for the two pai*ticles passing through
the system




+ We will derive the formula for the probability of a given
particle experiencing a particle-particle collision under
our assumption, and hence derive an exact expression
for the mean force on the wall.

+ Let B denote the n-th particle in the particle stream.
Let C,. and D, (Vn, jeZ) denote the following events:
C,, =B, collides with B, }

D, ={B, collides with any of the previous particles}

Then we obtain

D,=\JC,, and C, NC,, =0 (Vj#k, njkel).



= (2<j<n, ‘v’n ]EZ)
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+ Inthis case, notethat C,, , <D, , 4
then we obtain

,,1) (1-P(D,.)).

+ Define p, to be the probability of a single particle colliding with its
previous nearest neighboring particle in a steady state. Then

P(Dn):P(DCn,j):P( nl) P( nnl

n=limp0)="—.  p =p(c,,|D,)

n—>+00 1 i pT
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+ Let F denote the ir =‘ /lgpé"on the s%when we onIy include
the mteractlo SW|th nearest nelghborS/ T :

FO = F lim P(D)+F,, lim P(D )

mean
W n—+o0

~(1-lim P(D,))-(F, + F,,)

n—>+00

F.).

:(1_p1)(F +F )_
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—41teractions with next nearest neighb

+ B may collide with its two previous particles B,_, and B, , or two later
particles B ., and B, . ThatisC,, , =9 (3<j<n,Vn,jeZ). Then

n—1
P(Dn):P(U ) P( n,n— 1 ,n—2):P(Cn,n—1)+P(Cn,n—2) -
j=0
+ Let p, be the probability of a single particle colliding with its previous

nearest and next nearest neighboring particles in a steady state.

— lim P(D,) = lim P(C,, )+ lim P(C,, ) = L=~
L g 1+pT+B

2
where s BN} @ . . —B(€ |~ C...,"D.3).
I=p.p,. +(1_pr) Do,

+ Let £ denote the mean force on the wall when the interactions with
the nearest and the next nearest neighbors are both included. Then
@ _ 1 1-p.p,, (I_PT)Z(HPzT)
F:nean Fw+ ) Fvcwl + )
1+p7+B l_prp2z'+(1_pf) p2z’ 1_pz'p2r+(1_pr) er

cw?2 *
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Theoretical results
B et

+ In our theoretical derivation, we only consider the interaction
with the nearest neighboring particles. Then by analyzing pair-
wise particle-particle collisions, we can obtain the following
formula for calculating the mean force F

= (PR

=g, (Vb (2,2, )) pig _UA r, (Vp (2, 22)),0(21 ,2,)dz,dz,

where 4 = {(21,22)EN2|C2,1} . F, Denotes the directly impact
on the wall, F, denotes the impact on the wall following a
particle-particle collision and p(z,,z,) is the joint distribution
density of the initial heights of the two particles.



e

Soean = "4+ 2erf(C.

H((1-¢)-¢ (1+e))[eif&) erf(C )(e L )(erf(K) erf(K- ))}

\
2 4 1+e’

(ert(k,)-enf K )+ DS 6 oo et - =) e )

+(1+e)(1+e, ){(S sin” ¢ V2°°§ 0)(erf(C) erf(C,)+erf(D,)—erf(D )+ H(e, g

N

S2 Sin2 H _C? _C? _D? _D? _K2 —K2
+ \/_ (C+e ~=CleyrtPher —De ++H(ew—1+ )(Ke ~—Ke ))

H “ i = de

= — W=
where erf(x) \/;IOe i = an
_,_Veoso 1\/(1+e)—ew(1—e)_Vcosév 1\/ew(1+e)—(1—e)_Vcos@

C. = A o= (1+€)(1+‘ew) 2 - (1+e)(1+‘€w) 2

- S'sin @ - S'sin @ N Ssiné
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+ Our theory gives a good approximation when the fraction of particles
that experience at least two particle-particle collisions is low.

+ if Vcos@>1,then the probability of a particle experiencing a particle-
particle collision is low. Thus the probability of particles experiencing
at least two particle-particle collisions must also be low, and so our
theory will be valid.

+ Figures of f,...vs. V for different 6 (S=35, e=¢,=0.8).
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—JGeometric effects g

+ When the particle-wall restitution coefficient is unity (e =1), then we obtain
1+ le-(+e)q’ | p(&)de

fmean :fg J(s where fg = ZSina, fS =

1+ p(£)d
Vecos@—2 VcosO+2 V cos @ —2ESsin @ 1 S
Q= ) — = exXpl——).
[\/ESsinH \/ESsiné’], g 2 > 25 N2 p( 2)

+ Larger deflector angle implies a larger velocity component perpendicular to
the wall, and hence larger impulse. \We refer to this as geometric effects.
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shielding.

+ The simplest example of shielding effect

N
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/71 NS

Net impulse = 4v,

" VAl V.

H

M

Net impulse = 2v,



Mechanism

V=55=1e=08¢,=1

Mean Force
Mean Force
Mean Force
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Before glancing collision After glancing collision
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Before head - on collision After
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_/Glancing and h;ggd--onmcollisj.

Glancing collision (rotated frame)

Before glancing collision After glancing collision
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—/G-Iancing and head-on collisions

Head-on collision (rotated frame)

Before head-on collision

After head-on collision




+ We have considered a system where a dilute stream of parti-
cles collides with an oblique planar wall (application: diverting
particle avalanches).

+ For dilute particle streams, large deflector angle may actually
decrease the mean force (opposite of intuition).

+ We derived an exact solution for the mean force on the wall.

Good agreement with our numerical results if the system is
dilute.

+ Explicitly quantify both of the geometric and shielding effects.
Explain the interesting features we have found.

+ Understand how geometric effect and the shielding effect
compete with each other.



Inelastic particles falling
through a hopper

Joint work with Qiang ZHANG, Yuan FANG and Ming GAO
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Particles are randomly dropped into a hopper from the
top.

The particles fall under gravity.

When the particle falls through the hole, it leaves the
hopper.

How does the residence duration depend on various
physical parameters?




\ A .
—/ One-particle System

We consider a simple one-particle system.
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Intuitive phenomenon

The steeper the slope is, the shorter the particle will stay in the
system
e=0.3;H=80:hole ratio=3.5

c
e
ot

©

o

=3
o

)

o

©

E o

o

>

©




: -

Surprising phenomenon

e=0.8;H=80:hole ratio=3.5

c
.
e
©
o
=
o
[}
o
©
E o
o
>
©




Surprising phenomenon

e=0.99;H=80;hole ratio=3.5

average duration
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Because we input the particles uniformly on the top boundary of the
hopper, we draw the following figures to help us analyze.
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e=1;H=80;hole ratio=3.5
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_/Slmplest perloqglvg-orbl-t\ T

Location and velocities of this orbit:
 H(3—tan?0)(5tan?6 + 1)
3tan®°@d — 18 tan® 6 — 5tan @

V/29(H + x* tan @) sin 26

' "< """" Constraint 2
v" = \/2g9(H + x* tan @) cos 260 o

Constrains

constrain 1: «
constrain 2:



—/ Stability analysis -'

There are three variables:

Eliminate x from energy conservation,
we only need to focus on
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e=1;H=80;hole ratio=3.
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1256 cos® §— 768 cos® @+ 752 cos* §—264 cos® 6+ 26| <2

6 < (7 ,arccos \ 3_4\"2 )=(45°,50.97°)
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We analyze more patterns of periodic orbits and
every 0 in the ranges marked with red, there exists at least one
stable periodic orbit



**For small e, the reS|dece time decreases
uniformly with wall angle (intuitive)

“*For larger e, there are small windows of wall
angles that have anomalously long residence
times

“*Developed a analytical theory that predicts
anomalous behavior and shows the
underlying mechanism is the existence of
stable periodic orbits



