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Introduction

Granular material
A granular material is a conglomeration 
of discrete solid, macroscopic particles 
characterized by a loss of energy whenever
the particles interact.

Granular flows
Flows formed by Granular materials



Granular materials
Granular materials are everywhere



Rapid Granular flows
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Motivation and goal

Oblique deflectors such 
as deflecting dams are 
usually employed to divert 
particle avalanches.

The design of passive 
protection methods often 
does not have a solid 
theoretical underpinning.

Average force experienced
by the oblique wall.

Investigate the system at the particle scale to understand the 
dynamics of the deflection process.



Enormous amount of work of very important 
work on dense granular materials. 

But dilute granular materials have been studied 
much less. 

Generally believed that dilute flows are very 
simple

I hope to convince you that this is completely
untrue



Simple Model System

The particle stream consists of identical smooth spheres of 
radius and mass. 
All incoming particles move in the same direction and have the 
same initial velocity.



Geometric Parameters

θIncoming 
particle flux

Barrier

Y

Z

Density distribution of the 
Z-location of particles

μYμY

Y-direction: distance between adjacent particles has a given distribution 
(eg. Non-random)       V=(Mean Separation in Y)/radius

Z-direction: input location has a given distribution (eg. Gaussian) with 
standard deviation      S=(standard deviation Separation in Z)/radius



Particle Parameters

Collisions between particles are inelastic with a 
restitution coefficient

Collisions between particles and the wall are also 
inelastic with a restitution coefficient             
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Numerical methods
We consider a finite domain that is much larger 
than     and     .
Two methods for propagating particles

Yµ Zs

Exact Method
Hard spheres
Binary events
Rapid
Relative dilute 
system

Potential Method
Soft spheres
Potential force
Slow
Relative dense 
system



Numerical results for Force on Barrier

v S=transverse separation
v V=longitudinal separation
v Theta=barrier angle

increase barrier angle => increase the force on wall
No surprise



Numerical results for Force on Barrier
But, for more focused jets we 

can get very surprising 
phenomomena



Numerical results for Force on Barrier



Theoretical approach
We Assume that any given particle may experience at most 
one particle-particle collision. After this collision, one or both 
of the two particles can hit the wall again, but we will neglect
further particle-particle collisions.

Three possible outcomes for the two particles passing through
the system
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Theoretical approach
We will derive the formula for the probability of a given   
particle experiencing a particle-particle collision under      
our assumption, and hence derive an exact expression      
for the mean force on the wall.

Let    denote the n-th particle in the particle stream.   
Let       and                     denote the following events:

.
Then we obtain
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θIncoming 
particle flux

Barrier

Y

Z

Interactions with nearest neighbors
may only collide with its nearest  

neighbors         or         , that is

In this case, note that                     , 
then we obtain

Define      to be the probability of a single particle colliding with its  
previous nearest neighboring particle in a steady state. Then 
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Interactions with nearest neighbors

Let           denote the mean force on the surface when we only include 
the interactions with nearest neighbors.
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Interactions with next nearest neighbors
may collide with its two previous particles        and         or two later 

particles         and         . That is                                               . Then

Let      be the probability of a single particle colliding with its previous 
nearest and next nearest neighboring particles in a steady state.

where

Let         denote the mean force on the wall when the interactions with      
the nearest and the next nearest neighbors are both included. Then
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Theoretical results
In our theoretical derivation, we only consider  the interaction 
with the nearest neighboring particles. Then by analyzing pair-
wise particle-particle collisions, we can obtain the following 
formula for calculating the mean force ,

where                              .     Denotes the directly impact 
on the wall,     denotes the impact on the wall following a
particle-particle collision and             is the joint distribution 
density of the initial heights of the two particles.
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Theoretical results
Performing some integral and algebra , the analytical solution of 
dimensionless mean force        is given by 

where                        ,                       and
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Validity
Our theory gives a good approximation when the fraction of particles  
that experience at least two particle-particle collisions is low.
if                  , then the probability of a particle experiencing a particle-
particle collision is low. Thus the probability of particles experiencing 
at least two particle-particle collisions must also be low, and so our 
theory will be valid.
Figures of        vs.     for different                                 . 
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Comparison 



Comparison 
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Geometric effects
When the particle-wall restitution coefficient is unity            , then we obtain

Larger deflector angle implies a larger velocity component perpendicular to 
the wall, and hence larger impulse. We refer to this as geometric effects.
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Shielding effects 
The impulse experienced by the wall is the net change of momentum 
experienced by the particles. When particles rebound from the wall 
they can collide with incoming ones and be scattered. This scattering 
may reduce the net impulse on the wall. We refer to this effect as 
shielding.
The simplest example of shielding effect
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Mechanism



Mechanism



Glancing and head-on collisions

Before glancing collision
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After glancing collision
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Glancing and head-on collisions

Glancing collisions: 
larger e  => the 2nd particle is deflected at a larger 

=> less impact on the barrier 

Glancing collision (rotated frame)



Glancing and head-on collisions

Head-on collision (rotated frame)

Head-on collisions: 
larger e  => the 1st particle bounces back faster

=> more impact on the barrier 



Conclusion
We have considered a system where a dilute stream of parti-
cles collides with an oblique planar wall (application: diverting 
particle avalanches). 
For dilute particle streams, large deflector angle may actually 
decrease the mean force (opposite of intuition). 
We derived an exact solution for the mean force on the wall. 
Good agreement with our numerical results if the system is 
dilute. 
Explicitly quantify both of the geometric and shielding effects. 
Explain the interesting features we have found. 
Understand how geometric effect  and the shielding effect 
compete with each other. 
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Inelastic particles falling 
through a hopper

Joint work with Qiang ZHANG, Yuan FANG and Ming GAO 



Physical system

Particles are randomly dropped into a hopper from the 
top. 
The particles fall under gravity.
When the particle falls through the hole, it leaves the 
hopper.

How does  the residence duration depend on various 
physical parameters?



One-particle System

We consider a simple one-particle system.
What could be simpler that this?

Anomalous behavior of a single particle falling through a funnel

Yuan Fang, Ming Gao, Jonathan J. Wylie, and Qiang Zhang
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

!Received 16 August 2007; revised manuscript received 24 December 2007; published 3 April 2008"

We show several surprising phenomena that occur in an extremely simple system of a single frictionless,
inelastic, spherical particle falling under gravity through a symmetric funnel. One might naively expect that
particles would fall through funnels with steeper sides more quickly, exert a smaller total impulse on the funnel
walls, and lose less energy. However, we show that there are special ranges of angles of the funnel walls for
which exactly the opposite occurs. Typically, the particle will experience a sequence of collisions that is highly
sensitive to the location at which it enters the funnel and nearby particle trajectories become widely dispersed.
However, in the special angular ranges this is not the case and the particle can experience sequences of
collisions that have a highly coherent structure. We provide a theoretical analysis that can predict and explain
this surprising behavior.

DOI: 10.1103/PhysRevE.77.041302 PACS number!s": 81.05.Rm, 45.50.!j

I. INTRODUCTION

There are a broad range of industrial applications in
which particles fall under gravity and interact inelastically
with rigid boundaries. In many applications devices are de-
signed to take falling particles and guide them into a thin slot
or hole. We consider an extremely simple example of a
single inelastic particle falling under gravity through a sym-
metric funnel. Despite the simplicity of the system we show
that surprising dynamics can occur for funnels whose walls
are inclined at certain angles.

In applications there are a number of objectives that such
devices may be required to achieve. These include reducing
the speed of particles exiting the machine or minimizing the
time that particles spend in the device so that interactions
with other particles and jamming are less likely. Details of
the particle trajectories and the impulses experienced by such
devices are critical for understanding how these objectives
can be best achieved. This knowledge is also required to
develop strategies for minimizing excessive wear on devices.

Flows with large numbers of particles in funnels have
been widely studied and a number of important results have
been obtained #1–10$. A wide range of work has been done
that includes cases in which the stresses are dominated by
frictional forces and cases in which the stresses are domi-
nated by interparticle collisions #11$. However, despite its
obvious importance in many applications, the case of a
single particle falling through a hopper has received much
less attention.

Systems that contain only a single particle or a small
number of particles appear to be extremely simple, but can
contain surprisingly subtle and complex dynamics. Studies
of this type of system have led to important insights into the
way in which granular materials behave. Mehta and Luck
#12$ and Luck and Mehta #13$ showed that a single particle
moving under gravity on a vibrating plate can give rise to
highly unexpected behavior, such as abrupt termination of
period-doubling sequences. McNamara and Young #14$
showed that a finite number of particles is required to obtain
an infinite number of collisions in a finite time. Wylie and
Zhang #15$ have shown that two driven inelastic particles

can experience a bifurcation in which large numbers of com-
plicated periodic orbits collapse onto a single simple orbit.

II. FORMULATION

In this paper, we consider a frictionless, inelastic particle
of radius a falling under gravity g through a symmetric fun-
nel with walls aligned at an angle " to the horizontal and a
gap of size d at the bottom of the funnel. The particle is
released with zero initial velocity with its center at a height
H above the bottom of the funnel and at a horizontal location
x0 measured from the central axis of the funnel !see Fig. 1".
When the particle collides with the walls it experiences an
inelastic collision with coefficient of restitution e. Here e is
defined as the ratio of the velocity normal to the wall imme-
diately after to that immediately before the collision.

We will consider the case where particles are dropped into
the funnel at a random horizontal location x0. For simplicity
we consider the distribution in which all locations have uni-
form probability of being chosen. Other distributions yield
similar behavior. We note that the dynamics of the particle
are identical for both a two-dimensional funnel and a radially

FIG. 1. Sketch of a system in which a particle falls through a
funnel with an angle ".

PHYSICAL REVIEW E 77, 041302 !2008"

1539-3755/2008/77!4"/041302!9" ©2008 The American Physical Society041302-1



Intuitive phenomenon
The steeper the slope is, the shorter the particle will stay in the 
system

Seems obvious! What else could possibly happen?



Surprising phenomenon



Surprising phenomenon



e=1

Because we input the particles uniformly on the top boundary of the 
hopper, we draw the following figures to help us analyze.   



Duration versus injection location

x

e=1, θ=46

e=1, θ=45



Samples of trajectories 



e=1



Duration versus injection location
v e=1, θ=59

v

v
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Samples of trajectories



Simplest periodic orbit
Location and velocities of this orbit:

Constrains

constrain 1:
constrain 2:



Stability analysis 

There are three variables:

Eliminate x from energy conservation, 
we only need to focus on



Eigenvalues of  J





v We analyze more patterns of periodic orbits and find that for 
every θ in the ranges marked with red, there exists at least one 
stable periodic orbit

v



Conclusion
vSingle inelastic particle falling through a 

hopper has highly nontrivial behavior
vFor small e, the residence time decreases 

uniformly with wall angle (intuitive)
vFor larger e, there are small windows of wall 

angles that have anomalously long residence 
times

vDeveloped a analytical theory that predicts 
anomalous behavior  and shows the 
underlying mechanism is the existence of 
stable periodic orbits


