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Abstract

This paper constructs a two-period model where the monopolist invests in product and process
flexibilities and research capabilities in the first period and decides whether to innovate in the
second period. By considering that the product design innovation will not only shift but also
rotate the demand curve, this paper re-characterizes the conditions for the investment choices to be
complementary to each other. Also, by introducing the decision variable that determines how much
and in which direction the consumer dispersion will change after the product design innovation,
this model provides a method for the firm to decide how to design its product characteristics in the
first period so as to achieve the most favorable dispersion level in the second period.

1 Introduction

Several important papers have analyzed the class of supermodular games which has a similar idea as
the "strategic complementary" in Bulow et al. (1985). In a supermodular game, the marginal payoffs
to increase one’s strategy rise as the competitors’ strategies increase, and if a player’s strategies are
multidimensional, then an increase in one component increases the marginal returns of increasing
another component. The concept of supermodular games was first introduced by Topkis (1979) and
later was formally analyzed by Milgrom and Roberts (1990). The model in Milgrom and Roberts
(1990) incorporates complementarities between many organizational and technological variables. Athey
and Schmutzler (1995) further identify the complementarities between the short-term and long-term
decision variables under an innovation environment and explicitly model the dynamics in a firm’s
decision problem.

Athey and Schmutzler (1995) build a two-period model with a monopolist producing a single prod-
uct. They categorize the firm’s long-run choices into four categories, including product and process
flexibilities as well as product and process research capabilities. In brief, product and process flex-
ibilities refer to how adaptable the manufacturing is to the possible changes in product design and
production process, they determine how costly the adjustment would be. Product and process re-
search capabilities refer to the capabilities of conducting research in innovating the product design and
production process, they determine how profitable the adjustment would be. Athey and Schmutzler
(1995) identify that those four long-run choices exhibit complementarities, with the increase in one
choice increasing the return to increase the others. They also identify that the short-run decisions,
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including whether or not to innovate, as well as the production quantity, are complementary to each
other. Further, they show that the short-run complementarities lead to long-run complementarities.

Although Athey and Schmutzler (1995) provide sharp insights about the complementarities between
the monopolist’s decision variables in an innovative environment, their results are based on the strict
assumptions that the adjustment of product design innovation always raises prices and the marginal
revenues. Putting it in the terminologies in Johnson and Myatt (2006), that is, the shift of the
distribution of consumer valuation always outweighs the change in its shape, resulting in the inverse
demand curve that always moves outward after the adjustment and does not cross with the original
one. This is the main force that leads to the complementarities in the short-run choices and further
leads to the complementarities in the long-run variables.

These assumptions seem reasonable for those tech-heavy products such as computers, whose de-
mand roots in the product’s functionality. For this type of product, the product design innovation
mostly focuses on improving the functionality and thus making most of its consumers prefer such an
innovation, shifting the distribution of consumer valuation but not changing its dispersion. However,
this may not be the case for those fast-moving consumer goods, especially the fashion industry, whose
demand roots highly in product’s sensory characteristics, e.g., fragrance and color. For those products,
for example, perfume, the product design innovation will be very likely to make those who love it do
so even more intensely, and those who dislike it very much dislike it, or conversely, make everyone has
similar perceptions.

In Johnson and Myatt (2006), this phenomenon is called the change in the dispersion of consumer
valuation. Such changes will make the distribution of consumer valuation more or less dispersed and
result in a rotation of the inverse demand curve and marginal revenue curve, thus affecting the firm’s
profit. The authors also suggest that a firm’s product design decisions, for example, the combination
of different characteristics, will affect the dispersion of consumer valuation.

Therefore, this paper tries to incorporate the change in consumer dispersion into the analysis of
the complementarities among manufacturing choices. As in Athey and Schmutzler (1995), I set up a
two-period model with a monopolist producing a single product. In the first period, the monopolist
invests in product and process flexibilities as well as process research capabilities. For its investment
in product research capabilities, I split it into two parts, one is for shifting the mean of the distribution
of consumer valuation, which is most related to factors that determine the product’s functionality; the
other part is for changing the dispersion, which is most related to factors that determine the product’s
sensory characteristics. In the second period, the monopolist decides whether to perform product
design and process innovation as well as the production quantity, depending on the realization of the
return to adjustment and how much it will change the consumer dispersion.

The main contribution of this paper is that, by considering product innovation will not only shift
the distribution of consumer valuation but also increase its this dispersion, this paper incorporates the
possibility that the prices and marginal revenues might decrease for some production quantity after ad-
justment, and therefore re-characterizes the conditions for the investment choices to be complementary
in each other.

The remainder of the article is organized as follows. Section 2 sets up the model and analyzes the
short-run decision problem; section 3 analyzes the long-run decision problem; section 4 concludes this
paper.
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2 The second-period decision problem

Following the definition in Athey and Schmutzler (1995), I denote the product and process adjustment
as η ∈ {D,T}, where D refers to the product design dimension and T refers to the process dimension.
The monopolist faces a binary adjustment decision in each dimension: it either innovates or does not
innovate. Its decision choice is denoted by aη ∈ {0, 1}, where 0 means not to innovate while 1 means
to innovate. I also assume that, in the second period, together with aD and aT , the monopolist also
chooses the production quantity z.

Though lots of factors affect the monopolist’s decision, for simplicity, as Athey and Schmutzler
(1995) suggests, I only consider the most relevant factor, the returns from adjustment. The returns
can be decomposed into two aspects: how will the product adjustment change the consumer demand
and how will the process adjustment change the production cost. As discussed in the introduction,
the change in consumer demand can be further decomposed into how the adjustment will change the
product’s functionality and sensory characteristics that correspond to the change in mean and disper-
sion of consumer valuation. Therefore, I introduce three variables, rT , rD, and γM to parameterize
how the production cost and consumer demand will react to the adjustment decision. More detailed
explanations are as follows.

Returns to process innovation. In this paper, process innovation directly relates to the reduction
in the cost of production. In terms of the production cost, for simplicity, I assume that the monopoly
has no fixed cost and faces a constant marginal cost C(aT , rT ), which is also the constant average cost.
As in Athey and Schmutzler (1995), I impose two assumptions on this constant average cost. First, a
process innovation would reduce the constant marginal cost:

C(1, rT )− C(0, rT ) ≤ 0. (1)

Second, the variable rT ∈ R+ parameterizes the average cost in a way that:

∂

∂rT
[C(1, rT )− C(0, rT )] ≤ 0 and

∂

∂rT
C(aT , rT ) ≤ 0, (2)

meaning that a higher rT is associated with a higher cost reduction induced by implementing process
innovation.

Consumer demand. In terms of consumer demand, I model how the consumer demand will react
to the product design adjustment following the notion of changing in the shape of the inverse demand
curve in Johnson and Myatt (2006). Assume there is a unit mass of consumers, and a consumer is
willing to pay up to θ for a single unit of the monopolist’s product. A consumer’s willingness to
pay follows a distribution Fs(θ) with support on (θs, θ̄s). The parameter s ∈ S = [sL, sH ] indexes a
family of distributions, which will be explained more in Definition 1. Further assume Fs(θ) is twice
continuously differentiable in θ and s on its support and denote fs(θ) as the strictly positive density of
Fs(θ). For a given price p, consumers with θ > p will choose to buy the product, then the demand will
be z ≡ P(θ ≥ p) = 1− Fs(p). Then the inverse demand function is p = Ps(z) ≡ F−1

s (1− z), meaning
that if z units are to be sold, the market clearing price should satisfy Ps(z) ≡ F−1

s (1− z). Thus, s ∈ S

also indexes a family of inverse demand curves.
Now comes to how the parameter s parameterizes the distribution of consumer valuation. Johnson

and Myatt (2006) define it in a way that the change in s corresponds to the change in the shape of
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the cumulative distribution function (CDF). In particular, they consider the case that an increase in s

results in a distribution that is "more dispersed." Specifically, an increase in s will result in a spread
in a sense that it moves density away from the center of fs(θ) and toward the upper and lower tails
(not necessarily mean-preserving). Such a spread will result in a clockwise rotation of the CDF: there
is a rotation point θ†s such that Fs(θ) is increasing in s for θ < θ†s and decreasing in s for θ > θ†s. A
formal definition is as follows.

Definition 1. A local change in s leads to a rotation of Fs(θ) if, for some θ†s and each θ ∈ (θs, θ̄s),

θ ≷ θ†s ⇔
∂Fs(θ)

∂s
≶ 0.

If this holds for all s, then {Fs(θ)} is ordered by a sequence of rotations.

Following this definition, in this paper, I will characterize the distribution of consumer valuation
with its mean and standard deviation. I use rD ∈ R+ to measure how much the product design
innovation would shift the mean of the distribution of consumer valuation and γM where γ ∈ [1, γ̄] and
M ∈ {−1, 1} to measure how much and in which direction the adjustment would change the consumer
dispersion. Assume that before the adjustment, consumers’ valuation towards the product follows a
distribution Fµ0,s0(θ) with mean µ0 and standard deviation s0. The adjustment will shift the mean to
µ0 + rD and scale the standard deviation upward to γ1s0 or scale it down to γ−1s0. This means that
the decision variable γM is actually a joint outcome of how much and in which direction the consumer
dispersion would be scaled. When γM = γ1, the product adjustment would increase the consumer
dispersion, and when γM = γ−1, it will decrease the dispersion. A formal definition is as follows.

Definition 2. The family of distributions of consumer valuation is determined by its mean µ and
standard deviation s in a way such that

Fµ,s(θ) = F

(
θ − µ

s

)
,

where F (·) is a continuous distribution with zero mean, unit variance, and strictly positive density.
The corresponding inverse-demand curve satisfies Pµ,s(z) = µ+ sP (z) where P (z) = F−1(1− z).

As discussed earlier, before any adjustment, θ follows the distribution Fµ0,s0(θ), and the corre-
sponding inverse demand function is Pµ0,s0(z) = µ0 + s0P (z). After the adjustment, the distribution
of θ becomes Fµ0+rD,s0γM (θ) with mean µ0 + rD and standard deviation s0γ

M . The inverse demand
function after adjustment would then become Pµ0+rD,s0γM (z) = (µ0 + rD) + s0γ

MP (z). To ease nota-
tion burden, I denote the inverse demand curve as PaD(z) = (µ0 + aDrD) + s0γ

aDMP (z), thus when
aD = 0, PaD(z) = Pµ0,s0(z) and when aD = 1, PaD(z) = Pµ0+rD,s0γM (z).

Lemma 1 presents how Definition 2 falls in the class of distribution family in Defintion 1.

Lemma 1. The family of consumer distribution is rotation-ordered. When γM = γ1, the CDF rotates
clockwise at the rotation point θ† after adjustment and when γM = γ−1, the CDF rotates counter-
clockwise after adjustment. In a special case when γ = 1, meaning that the adjustment only shifts the
mean of consumer valuation but does not change its dispersion, the CDF after adjustment will lie below
the original one, which is the case of first-order stochastic dominance.

Proof. Take partial derivative of Fµ,s with respect to s, ∂Fµ,s

∂s = f(·)(θ − µ)(− 1
s2
). Therefore, as the

standard deviation increases, there exists a rotation point θ† such that when θ < θ†, ∂Fµ,s(θ)/∂s is
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positive and when θ > θ†, ∂Fµ,s(θ)/∂s is negative, meaning that the cumulative distribution function
(CDF) rotates clockwise as the variance increases. Observe that when γM = γ1, the variance will
increase after adjustment, and it will decrease if γM = γ−1, so the proof of the first part is complete.
The second part of the lemma can be obtained directly from Definition 2.

Since the inverse demand functions are inverse functions of the CDF, the rotation results of the
CDF immediately apply to the inverse demand curve.

Corollary 1. The inverse demand function after adjustment rotates clockwise at the rotation point z†

when γM = γ1, and counter-clockwise when γM = γ−1. That is,

z ≷ z† ⇔ ∂PaD(z)

∂aD
≶ 0 when γM = γ1

z ≷ z† ⇔ ∂PaD(z)

∂aD
≷ 0 when γM = γ−1

In a special case when γ = 1, the inverse demand curve will only shift outward but does not rotate.

Corollary 1 establishes similar results in Johnson and Myatt (2006) and states that if the product
innovation increases consumer dispersion, it will rotate and steepen the demand curve, making the
price more sensitive to quantity. The following lemma gives the expressions of the rotation pair and
its relationship with the scale magnitude.

Lemma 2. The rotation pair is θ† = µ0− rD
γM−1

and z† =
{
z : P (z) = rD

s0(1−γM )

}
. The rotation quantity

z† is increasing in the original dispersion s0 and decreasing in the scale magnitude γ if γM = γ1 while
increasing in γ if γM = γ−1.

Proof. Observe that at the rotation point the value of F (·) and price do not change after rotation.
Therefore, F

(
θ†−µ0

s0

)
= F

(
θ†−µ0−rD

s0γM

)
and (µ0 + rD) + s0γ

MP (z†) = µ0 + s0P (z†). Solving these

equations gives the expression of θ† and z†. Since P (z) is decreasing in z and γ ∈ [1, γ̄], observing the
expression of z† gives the second part of the lemma.

The intuition behind Lemma 2 is that, since the rotation point z† is the quantity at which the
price remains unchanged after rotation, and because the fraction of consumers with extremely high
willingness-to-pay would be higher if the dispersion increases more, therefore the same price could be
obtained with a lower quantity. Thus the rotation quantity would be decreasing in the scale magnitude
in the case where the dispersion is scaled upward. Similar logic applies to the case when the dispersion
is scaled downward.

Below is an example illustrating the rotation of the inverse demand curve as the consumer dispersion
changes. In this example, consumer valuation θ ∼ N(µ, s2), the initial distribution is θ ∼ N(14.9, .22),
γM = γ1 = 2 and rD = 0.1. Thus, after adjustment, θ ∼ N(15.0, .42). This adjustment results in
an increase in consumer dispersion, corresponding with a distribution that is more widely spread, as
illustrated in the first figure. The resulting rotation of the CDF and inverse demand function is shown
in Figure 2 and Figure 3, which is an illustration of Lemma 1 and Corollary 1.
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Marginal Revenue. Following the establishment of the inverse demand function, I derive the ex-
pression of the marginal revenue curve. From the inverse demand function Pµ,s(z) = µ + sP (z),
standard calculation yields the expression of the monopolist’s marginal revenue MRµ,s(z) = µ +

s[P (z) + zP ′(z)] = µ + sMR(z), where MR(z) is the marginal revenue associated with the inverse
demand curve P (z). To ease notation burden, write MRaD(z) = (µ0 + aDrD) + s0γ

aDMMR(z) to
synthesize the notation of the marginal revenue before and after adjustment. Assume the marginal
revenue is decreasing in z.

With the rotation of the inverse demand curve, the marginal revenue curve will also rotate in a
similar way. Lemma 3 describes how the marginal revenue curve rotates as the consumer dispersion
changes.

Lemma 3. The marginal revenue curve after adjustment will rotate clockwise when γM = γ1, and
counter-clockwise when γM = γ−1. That is,

z ≷ z‡ ⇔ ∂MRaD(z)

∂aD
≶ 0 when γM = γ1

z ≷ z‡ ⇔ ∂MRaD(z)

∂aD
≷ 0 when γM = γ−1

In a special case when γ = 1, the marginal revenue curve will only shift outward but not rotate.
The rotation quantity z‡ =

{
z : MR(z) = rD

s0(1−γM )

}
is increasing in the original dispersion s0 and

decreasing in the scale magnitude γ if γM = γ1 while increasing in γ if γM = γ−1.

Proof. Observe that ∂2MRµ,s(z)
∂z∂s = ∂MR(z)

∂z < 0 since I assume marginal revenue is decreasing in z.
Therefore, as the standard deviation increases, there exists a rotation point z‡ such that when z < z‡,
∂MRµ,s(θ)/∂s is positive and when z > z‡, ∂MRµ,s(θ)/∂s is negative, meaning that the marginal
revenue curve rotates clockwise as the variance increases. Observe that when γM = γ1, the variance
will increase after adjustment, and it will decrease if γM = γ−1, so the proof of the first part is
complete. Observe that the value of marginal revenue at the rotation point remains unchanged after
the adjustment, thus, µ0+rD+s0γ

MMR(z) = µ0+s0MR(z). Solving the equation gives the expression
of the rotation quantity. The second part of this lemma can be obtained by observing this expression
and by the assumption that MR(z) is decreasing in z.

The underlying logic that generates Lemma 3 is exactly the same as the one in Lemma 2. The
results in Lemma 2 and 3 that the rotation quantity of the inverse demand curve and the marginal
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revenue curve would be higher if the original dispersion level is higher are the same results as in Johnson
and Myatt (2006). What is new here is that the location of the rotation quantity is shown to also
depend on the magnitude and the direction of rotation.

Observe that MR(z‡) = P (z†), then z‡P ′(z‡)+P (z‡) = P (z†). By the fact that the inverse demand
curve is downward sloping, Corollary 2 can be immediately obtained.

Corollary 2. The rotation quantity of the marginal revenue curve z‡ is always less than the rotation
quantity of the inverse demand curve z†.

The intuition behind Corollary 2 is that, when the dispersion increases, at the rotation quantity
z†, the inverse demand curve becomes steeper, and thus the marginal revenue decreases at this point.
Thus it must lie to the right of the marginal revenue rotation quantity z‡.

Returns to product innovation in functionality. Observing the expression of the marginal rev-
enue and inverse demand function gives the important properties of the parameter rD, which represents
the shift in the mean of consumer valuation as discussed earlier. First, given quantity and the change in
dispersion, a higher rD is associated with a higher incremental price induced by implementing product
design innovation:

∂

∂rD
[PaD=1(z)− PaD=0(z)] = 1 ≥ 0. (3)

Second, given quantity and the change in dispersion, a higher rD is associated with a higher incremental
marginal revenue induced by implementing product design innovation:

∂

∂rD
[MRaD=1(z)−MRaD=0(z)] = 1 ≥ 0. (4)

Adjustment costs. The last pieces to introduce before establishing the first-period profit function
are the costs of adjustment. Denote the adjustment cost function as Aη(aη, fη) where fη represents
product or process flexibility. Notice that the product design innovation cost is a joint cost of product
functionality and sensory characteristic innovation because they are assumed to be adjusted together
in this paper. Following Athey and Schmutzler (1995), I assume that flexibility lowers the costs of
adjustment:

∂

∂fη
[Aη(1, fη)−Aη(0, fη)] ≤ 0. (5)

Second-period profits. Combining together, the second-period profit function is:

Π2(a, z,f ; r, γ
M ) ≡

[
PaD(z, aD; rD, γ

M )− C(aT , rT )
]
· z −AD(aD, fD)−AT (aT , fT ) (6)

This profit function helps establish the following lemmas and propositions about the characteristics of
the second-period decision variables.

Lemma 4. When γM = γ1, Π2 is supermodular in (aD, aT , z) for z ≤ z‡. When γM = γ−1, Π2 is
supermodular in (aD, aT , z) for z ≥ z‡. When γ = 1, Π2 is supermodular in (aD, aT , z) for all z.

Proof. The supermodularity in (aD, aT ) is obtained for free because they do not have interaction terms
in Π2. The supermodularity in (aT , z) for all z is obtained from condition (1). The supermodularity
in (aD, z) is obtained from Lemma 3.
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Lemma 4 presents the complementarities in the second-period choice variables as in Athey and
Schmutzler (1995). The decision of product design innovation and process innovation are mutually
reinforcing, meaning that the increase in one variable increases the return of increasing the others.
Where Lemma 4 is different from the result in Athey and Schmutzler (1995) is that the supermodularity
results are not applicable for all ranges of production quantity. This means that jointly expansionary
innovation is not optimal all the time. Such differences come from the change in the shape of the inverse
demand curve. By considering that product innovation will not only shift the consumer valuation
but also increase its dispersion, this paper considers the possibility that the marginal revenue might
decrease for some production quantity after adjustment, and therefore increasing quantity might reduce
the return to implement innovations.

Following the establishment of the complementarities in the second-period choice variables, Propo-
sition 1 characterizes the range of monotonicity of these variables.

Proposition 1. When γM = γ1, for all z∗ ≤ {z : MR(z) = 0}, the optimal second-period choices of
product adjustment, process adjustment, and quantity (a∗D, a

∗
T , z

∗) are monotonically non-decreasing in
the returns associated with product functionality and process innovation, rD and rT , and product and
process flexibility, fD and fT , as well as the magnitude of dispersion change γ. The same arguments
hold for (a∗D, a

∗
T , z

∗) when γM = γ−1 and z∗ ≥ {z : P (z) = 0}.

Proof. See Appendix A.

Proposition 1 implies that under the specified condition, if one of the flexibility, the return to
process innovation, the scale magnitude of consumer dispersion, or the shift in the mean of consumer
valuation increases, then the firm will be more likely to implement innovations in both dimensions,
and further, the firm produces a larger quantity. For similar reasons in Lemma 4, compared to Athey
and Schmutzler (1995), the monotonicity in Proposition 1 is not applicable for all ranges of production
quantity, because the innovation might decrease the marginal revenue at some production quantity.

One important implication from Proposition 1 is that it coincides with the "monopolist’s preference
for extreme" in Johnson and Myatt (2006). Proposition 1 states that when the operation quantity is
less than a certain threshold, which is similar to the "niche market player", its decision choices are
non-decreasing if the dispersion is scaled upward, meaning that she is more willing to innovate so as
to increase dispersion. This coincides with the result in Johnson and Myatt (2006) which shows that
niche-market monopolist prefers an extremely high level of dispersion. When the operation quantity
is higher than a certain threshold, which is similar to the "mass market player", its decision choices
are non-decreasing if the dispersion is scaled downward, meaning that she is more willing to innovate
to decrease the dispersion. This coincides with the result in Johnson and Myatt (2006) which shows
that mass-market monopolist prefers an extremely low level of dispersion.

The following lemma formally characterizes the relationship between the optimal operation quantity
and the scale magnitude.

Lemma 5. When γM = γ1, the optimal production quantity z∗ is non-decreasing in γ. When γM =

γ−1, the optimal production quantity z∗ is non-increasing in γ.

Proof. The monopolist sets the production quantity based on the condition that marginal revenue
equals marginal cost. Thus, (µ0 + aDrD) + s0γ

aDMMR(z∗) = C(aT , rT ). Taking the derivative
with respect to γ on both sides and treating z∗ as a function of γ give s0aDMγaDM−1MR(z∗) +

s0γ
aDMMR′(z∗)∂z

∗

∂γ = 0, and ∂z∗

∂γ = −aDMγ−1MR′(z∗)−1MR(z∗). Since MR(z) is decreasing in z,
then when γM = γ1, z∗ is non-decreasing in γ, and when γM = γ−1, z∗ is non-increasing in γ.
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The intuition behind Lemma 5 is that, for example, in the case where the monopolist decides to
increase consumer dispersion and set γM = γ1, it is profitable to increase the output since the right tail
of the distribution will become thicker, meaning that more consumers will have high willingness-to-pay
after the innovation. Thus the optimal production quantity z∗ is non-decreasing in γ when γM = γ1.
Similar logic applies to the case where γM = γ−1.

When γM = γ1, after adjustment, the inverse demand curve will rotate clockwise. When the
optimal quantity z∗ is less than the rotation quantity of the inverse demand function z†, profit will
increase after rotation because the price level will rotate up. The higher the γ is, the more it will rotate
up. Therefore, profit is increasing in γ if γM = γ1 and z∗ < z†, as well as when γM = γ−1 and z∗ > z†.
Lemma 2 gives the relationship between the rotation quantity on the inverse demand curve z† and the
scale magnitude γ, and Lemma 5 gives the relationship between the optimal operation quantity z∗ and
the scale magnitude γ. With these results, it is straightforward to list all the possible situations about
the relative magnitude of z∗ and z† and obtain the results in the following proposition.

Proposition 2. When γM = γ1, z∗ is a non-decreasing function in γ while z† is decreasing in γ, then
Π2 would be a quasi-concave (inverse-U-shape) function and thus the optimal scale magnitude will be
either 1 or γ̄ or an interior point in [1, γ̄]. When γM = γ−1, z∗ is a non-increasing function in γ

while z† is increasing in γ, then Π2 would be a quasi-concave (inverse-U-shape) function and thus the
optimal scale magnitude will be either 1 or γ̄ or an interior point in [1, γ̄].

Proposition 2 lists different situations that the monopolist might face under different behavior of
the optimal quantity and the rotation quantity. Which case that the monopolist will face depends on
the exact distribution of consumer valuation in the market. In practice, if the monopolist knows the
exact distribution of consumer valuation in the first period, and the exact form of the marginal cost
function, it is possible for her to determine whether γM should be γ or γ−1 as well as the optimal level
of γ by comparing the profits in different cases in Proposition 2. Then by this backward induction, the
monopolist can obtain the most favorable γM and set it as a goal when investing in the first period.

Considering that a monopolist typically would have been operated in the market for years and
knows the taste of her customers. From this point on, for simplicity, assume the monopolist can
always accurately control the direction of the change in consumer dispersion, that is, she can fully
determine whether the realization of M equals to 1 or -1. Therefore, in the first period, when the
monopolist invests in the product design research capabilities in terms of sensory characteristics, she
only needs to be concerned with the uncertainty of how much the innovation would scale the consumer
dispersion, but not concerned in which direction that the scale would happen, because she can fully
determine it. Therefore, from this point on, I drop the superscript of γM and denote the monopolist’s
favorite level of γ as γ̂.

3 The first-period decision problem

In the first period, the monopolist faces uncertainty regarding the realization of rD, rT , and γ. The
distribution of the possible realizations can be characterized by the joint distribution denoted as
G(rD, rT , γ). The monopolist can achieve a more favorable probability distribution by investing in
its research capabilities. Mathematically speaking, that is, she invests in shifting the parameters that
govern G(rD), G(rT ) and G(γ). Denote these three parameters as iD, iT , iγ ∈ R+ and the corre-
sponding marginal distribution as G(rD; iD), G(rT ; iT ) and G(γ; iγ). Denote the second-period value
function as Π∗

2(f ;, rD, rT , γ) = Π∗
2(a

∗, z∗,f ; , rD, rT , γ), then the expected profits in the second period
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can be written as:

ErD,rT ,γ [Π
∗
2(f ;, rD, rT , γ)] =∫

rD,rT ,γ

[
[P (z∗, a∗D, rD, γ, )− C(a∗T , rT )] · z∗−

AD(a
∗
D, fD)−AT (a

∗
T , fT )

]
· dG(rD, rT , γ; iD, iT , iγ)

For simplicity, as in Athey and Schmutzler (1995), I assume that the joint distribution G(rD, rT , γ)

is separable. That is, G(rD, rT , γ) = G(rD; iD)G(rT ; iT )G(γ; iγ). Also, I parameterize the marginal
distribution of research capabilities in iT and iD in a sense of first-order stochastic dominance (FOSD):

∂

∂iη
Gη(rη; iη) ≤ 0 for η ∈ {D,T} (7)

This assumption means that the more effort that the monopolist puts into research, the more likely
that she can obtain a higher realization of rD or rT .

For the research capabilities that determines γ, recall as discussed in Section 2, the monopolist has
an exact favorite level, it is not necessarily the higher the better. Thus, I parameterize the marginal
distribution of G(γ; iγ) in a way that a higher iγ moves the mean of γ closer to the optimal γ̂, and also
shrinks the variance of γ. By this assumption, the more effort that the monopolist puts into research
in designing the product’s sensory characteristics with the aim of achieving her favorite γ̂, the more
likely that she can achieve the optimal realization of γ. This assumption is similar to Definition 2, and
by applying similar arguments as in Lemma 1, it can be shown that the characterization of G(γ; iγ)

fits in Definition 1. Therefore, there exists a γ† such that

γ ≷ γ† ⇔ ∂G(γ; iγ)

∂iγ
≷ 0.

As in Athey and Schmutzler (1995), for simplicity, I assume all costs of investment in the first
period are separable. Assume the costs of investments into flexibility are given as FD(fD) and FT (fT ).
Further, assume the costs of the firm’s investments into research capabilities are given as ID(iD),
IT (iT ), and Iγ(iγ). Then the first-period profit function can be written as

Π1(fD, fT , iD, iT , iγ) ≡
∫
rD

∫
rT

∫
γ
[Π∗

2(f ; rD, rT , γ)]dG(rD; iD)G(rT ; iT )G(γ; iγ)

− FD(fD)− FT (fT )− ID(iD)− IT (iT )− Iγ(iγ)

The following proposition establishes the conditions for this first-period profits to be supermodular in
the first-period decision variables.

Proposition 3. Π1(f, i) is supermodular in (fD, fT , iD, iT , iγ) when γ < γ† and z ≤ {z : MR(z) = 0}
if γM = γ1 or when γ < γ† and z ≥ {z : P (z) = 0} if γM = γ−1.

Proof. In Appendix A, it is shown that when z ≤ {z : MR(z) = 0} if γM = γ1 or when z ≥
{z : P (z) = 0} if γM = γ−1, Π2 is supermodular in (aD, aT , z, fD, fT , rD, rT , γ). Then by Theorem
2 in Appendix B, the value function Π∗

2(f ;, rD, rT , γ) is supermodular in (fD, fT , rD, rT , γ) when
z ≤ {z : MR(z) = 0} if γM = γ1 or when z ≥ {z : P (z) = 0} if γM = γ−1. Then by Lemma 6 in
Appendix B, Π1(f, i) is supermodular in (fD, fT , iD, iT , iγ) when γ < γ† and z ≤ {z : MR(z) = 0} if
γM = γ1 or when γ < γ† and z ≥ {z : P (z) = 0} if γM = γ−1.
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Athey and Schmutzler (1995) establish the result that increases in product and process flexibility
and research capability are mutually reinforcing and therefore conclude that the short-run complemen-
tarities leads to the long-run complementarities. However, in this paper, these choice variables are
only complementary under a certain output range, and therefore the first-period complementaries are
based on the outcome in the second period. However, in the first period, the monopolist cannot foresee
the outcome and therefore it is difficult to use Proposition 3 as guidance for investment. However, it
is important for the firm to notice that as the first-period profit is not always supermodular in her in-
vestment, it is possible that the increase in one research dimension will reduce the return to increasing
the other.

4 Conclusion

This paper constructs a two-period model with a monopolist making short-run innovation decisions
and long-run investment decisions. In the long run, the monopolist invests in product and process
flexibilities as well as product and process research capabilities. Firms’ investments usually interact
with each other, and it is not necessarily that investing in one dimension is always favorable for
investments in other dimensions. As a result, understanding in what situations investment choices
would be complementary to each other is important for a firm to maximize its return to investment.

Athey and Schmutzler (1995) show that these four investment variables are complementary to
each other if the product design innovation always raises prices and marginal revenues. However,
since product design innovation might result in a change in the dispersion of consumer valuation, it
is possible that the innovation will reduce prices and marginal revenues. To model such changes, this
paper introduces a decision variable that determines how much and in which direction the consumer
dispersion will change after the adjustment, allowing product design innovation to not only shift but
also rotate the demand curve.

With this model, this paper re-characterizes the conditions for the investment choices to be com-
plementary in each other and provides a framework for the firm to decide how to design its product
characteristics related to functionality and sensory in the first period so as to achieve the most favorable
dispersion level in the second period.

A Omitted Proof

Proof of Proposition 1. The proof can be split into two parts, first prove that Π2 is supermodular in
(aD, aT , z, fD, fT , rD, rT , γ) when z ≤ {z : MR(z) = 0} if γM = γ1 or when z ≥ {z : P (z) = 0} if
γM = γ−1, then prove the monotonicity of (a∗D, a

∗
T , z

∗).
Observing the expression of Π2, to prove the supermodularity in (aD, aT , z, fD, fT , rD, rT , γ), we

need to show the supermodularity in (aD, z), (aD, fD), (aD, rD), (aD, γ), (aT , z), (aT , fT ), (aT , rT ),
(z, rD), (z, rT ), (z, γ). The suupermodularity in (aT , rT ) and (aD, rD) can be obtained from condition
(2) and condition (3). Supermodularity in (aD, fD) and (aT , fT ) can be obtained from condition (5).
Condition (1) guarantees the supermodularity in (aT , z). Condition (2) and (4) gives supermodularity
in (z, rT ) and (z, rD). Conditions for the supermodularity in (aD, z), (z, γ) and (aD, γ) are shown
below.

When γM = γ1, by Lemma 4, Π2 is supermodular in (aD, z) when z ≤ z‡. To find the condition of
supermodularity in (z, γ), we need to find the condition that ∂MRaD(z)/∂γ = s0MR(z)aDγ

aD−1 ≥ 0.
Thus, to ensure the supermodularity in (z, γ), we need MR(z) ≥ 0 and thus z ≤ {z : MR(z) = 0}. To
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ease notation burden, denote z0MR = {z : MR(z) = 0}. To find the condition of supermodualrity in
(aD, γ), we need to find the condition that ∂

∂γ

(
∂PaD

(z)

∂aD

)
= P (z)s0 ≥ 0. Then we need P (z) ≥ 0 and

thus z ≤ {z : P (z) = 0}. To ease notation burden, denote z0P = {z : P (z) = 0}. From the equality
MR(z) = zP ′(z) + P (z), we can see that z0MR < z0P . From the inequality MR(z‡) = rD

s0(1−γ) ≤ 0, we
can see that z0MR ≤ z‡. Therefore, when γM = γ1, the condition that can ensure the supermodularity
in (aD, z), (z, γ) and (aD, γ) is that z ≤ z0MR.

When γM = γ−1, by Lemma 4, Π2 is supermodular in (aD, z) when z ≥ z‡. To find the condition of
supermodularity in (z, γ), we need to find the condition that ∂MRaD(z)/∂γ = −s0MR(z)aDγ

−aD−1 ≥
0. Thus, to ensure the supermodularity in (z, γ), we need MR(z) ≤ 0 and thus z ≥ {z : MR(z) = 0}.
To find the condition of supermodualrity in (aD, γ), we need to find the condition that ∂

∂γ

(
∂PaD

(z)

∂aD

)
=

−P (z)s0γ
−2 ≥ 0. Thus, to ensure the supermodularity in (aD, γ), we need P (z) ≤ 0 and thus

z ≥ {z : P (z) = 0}. From the inequality MR(z‡) = rD
s0(1−γ−1)

≥ 0, we can see that z0MR ≥ z‡.
Therefore, the condition that can ensure the supermodularity in (aD, z), (z, γ) and (aD, γ) is that
z ≥ z0P .

Applying Theorem 1 in Appendix B completes the proof.

B Definition, Theorems, and Lemmas

Definition 3. A function f : Rn → R is supermodular if for all x, x′ ∈ Rn, f(x)+f(x′) ≤ f(x ∨ x′)+

f(x ∧ x′).

Theorem 1 (Topkis (1978)). Let f : Rn×Rm → R such that f(x, t) is supermodular in (x, t). Then if
S is a sublattice of Rn, argmax{x∈S}f(x, t) is monotone nondecreasing in t (in the strong set order).

Theorem 2 (Milgrom and Roberts (1990)). Let S2 be a sublattice of Rn2. Further, let f : Rn1 ×
Rn2 × Rm → R such that f(x, y, t) is supermodular in (x, y, t). Then g(x, t) ≡ max{y∈S2}f((x,y,t) is
supermodular in (x, t)

Lemma 6 (Athey (1995)). The following two conditions are equivalent: (i)∫
r
π(x, r) dG(rD; iD)G(rT ; iT )

is supermodular in (x, i) for all payoff function π : Rn × R2 → R that are supermodular. (ii)
∂Gη(rη; iη)/∂iη ≤ 0 for all rη (η ∈ {D,T}).
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