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Abstract

We examine the informational content of historical and implied measures of variance through

an evaluation of forecasts over horizons ranging from 1 to 22 days. These forecasts use heteroge-

neous autoregressive (HAR) regressions which are constructed with high-frequency data. Our

results show that the �t and forecasting ability of models based on historical realized variance

(RV) increases with the addition of implied volatility in the regression model. We �nd that

robust regression is better than OLS in forecasting RV outside of the estimation sample. The

paper evaluates data from individual equities and the S&P 500. 1
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1 INTRODUCTION

1 Introduction

The volatility of asset returns is of crucial importance in the academic study of �nancial markets,

asset pricing, and risk management. Furthermore, �nancial instruments based on volatility have

become an integral part of the day-to-day business of major corporations. The increased importance

of these instruments has coincided with the increased availability of high-frequency data on asset

returns. Advancements in asset pricing and volatility modeling have allowed for the information

contained in high-frequency data to be used more e�ectively. Speci�cally, models based on high-

frequency measures of volatility have been found to produce forecasts of volatility that are superior

to forecasts done with low-frequency volatility measures. For some of these results see Andersen,

Bollerslev, Diebold, and Labys (2003). The implied volatility obtained from option prices provides

an alternate way to forecast the future volatility of asset returns.

The implied volatility is an expectation of future volatility under the assumptions of risk neutral

preferences and constant volatility. It is often viewed as the market's expectation of future volatility

and theoretically incorporates all relevant information including the information contained in high

frequency returns.

There is a large literature on the e�ciency and general performance of historical forecasts of vari-

ance. This literature tests models which use generalized autoregressive conditional heteroskedastic-

ity (GARCH), parametric, non-parametric, and Mincer-Zarnowitz frameworks to forecast variance.

Important papers on the subject of volatility forecasts using historical volatility are discussed and

thoroughly analyzed in Andersen, Bollerslev, Diebold, and Labys (2003). These papers conclude

that simple linear models are as good or better in forecasting than more complex GARCH type

models. Andersen, Bollerslev, and Diebold (2006), and Forsberg and Ghysels (2007) test the per-

formance of various forms of these heterogenuous autoregressive (HAR) forecasts. We expand on

this literature by being one of the �rst to test these models on a high-frequency data set which

contains individual stocks and the whole market. This paper con�rms the earlier �nding that real-

ized absolute variation provides the best basis for a HAR forecast and that the e�ect of jumps, as

�agged by the method pioneered by Barndor�-Nielsen and Shephard (2004), on future variance is

not signi�cant. Furthermore, we compare a robust regression estimation method to the traditional
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2 MODEL OF VOLATILITY AND JUMPS

OLS estimation method used for these forecasts. The robust method consistently outperforms the

OLS method across all models and time periods used.

We empirically explore the extent to which the implied volatility contains information about

high-frequency return volatility. This is done by comparing in-sample �t and out-of-sample perfor-

mance for estimated models using implied volatility, historical variables, and combinations of the

two. Furthermore, using high-frequency data available for individual stocks, this paper compares

informational content of the implied volatility on stocks to the informational content of implied

volatility of the market. The results provide support for the hypothesis that implied forecasts for

individual stocks have more informational content than implied forecasts for the market. Further-

more, implied forecasts generally outperform historical forecasts out-of-sample. A combination of

implied and historical forecasts is the best of all the models tested, suggesting that historical fore-

casts and implied forecasts have mutually exclusive information. There are several papers that have

explored similar topics. See Jiang and Tian (2007), Fleming (1998), and Andersen, Frederiksen,

and Staal (2007). These papers �nd con�icting results on issues such as the relative informational

content of volatility forecasts, implied volatility measures, and historical models. This paper's ad-

vantage is that it uses previously untested models and generates results on a larger data sample

that includes high-frequency returns for both stocks and the market.

The rest of the paper proceeds as follows. Section 2 contains a discussion of the relevant models

of volatility and jumps. Sections 3 and 4 discusses the HAR-RV and Mincer-Zarnowitz classes of

models. Section 5 describes the manner in which the realized variance and implied volatility data

were obtained and �ltered. Section 6 describes the method and justi�cation for robust regressions

done in this paper. Section 7 discusses the outcomes from the regressions preformed. Section 8

summarizes the paper and draws attention to the most important results.

2 Model of Volatility and Jumps

In this section we use a model of price movement that incorporates jumps. Consider a log price,

p(t), that changes over time as
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2 MODEL OF VOLATILITY AND JUMPS

dp(t) = µ(t)d(t) + σ(t)dw(t) 0 ≤ t ≤ T (1)

where µ(t)dt represents the time-varying drift component of the stock. The time-varying volatility

of the price movement is represented by σ(t) and the dw(t) term is standardized Brownian motion.

This is a standard, continuous model of price movements which does not include jumps. Recent

literature has suggested that the addition of jumps in the price process is important for theoretical

and empirical modeling. The jump processes are added into the following equation.

dp(t) = µ(t)d(t) + σ(t)dw(t) + κ(t)dq(t), 0 ≤ t ≤ T (2)

The non-continuous portion of the price movement is added with the κ(t)dq(t) term where q(t)

a counting process and κ(t) is the magnitude of the jump. There are multiple ways to estimate

variation of this process using high frequency �nancial data. We use realized variance and bipower

variation, the two most common and easy to calculate measures of variance. These measures are

calculated daily and intraday geometric returns are denoted as, rt,j = p(t−1+ j
M )−p(t−1+ j−1

M ),

j=1,2,...M , where M is the sampling frequency and t is the day. Throughout this paper the sampling

frequency is M=78 which corresponds to 5 minute returns. The �rst measure of quadratic variation

is the Realized Variance

RVt =
M∑

j=1

r2t,j (3)

and the alternate measure is the Bipower Variation

BVt = µ−2
1 (

M

M − 1
)

M∑
j=2

|rt,j−1||rt,j | =
π

2
(

M

M − 1
)

M∑
j=2

|rt,j−1||rt,j | (4)

where µa = E(|Z|a), a > 0. These two measures were thoroughly investigated in Barndor�-Nielsen

and Shephard (2004, 2005) to produce asymptotic results that allow for the separate identi�cation

of the continuous and jump components of the quadratic variation. Speci�cally, they show that as

1
M → 0, BVt+1 →

∫ t+1

t
σ2(t) and RVt+1 →

∫ t+1

t
σ2(s)ds+

∑
t<s≤t+1 k

2(s). Thus, RVt+1−BVt+1 →∑
t<s≤t+1 k

2(s).
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3 THE HAR CLASS OF MODELS

The di�erence between the RV and the BV isolates the jump component of the daily volatility.

This result can be used to test the hypothesis that a jump occurred on any particular day. The

test can be expressed as a z-statistic.

zt =
RVt−BVt

RVt√
(vbb − vqq) 1

M max(1, TPt

BV 2
t

)
, vbb − vqq = (

π

2
)2 + π − 5 (5)

TPt = Mµ−3
4/3(

M

M − 2
)

M∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j |4/3 (6)

The TP is used in this test because, as shown in Barndor�-Nielsen and Shephard (2004), it converges

to the integrated quarticity of the price process. That is, TPt+1 →
∫ t+1

t
σ4(t)dt . This provides a

scale for the di�erence between RV and BV. It follows that, zt → N(0, 1) as M → ∞. The test

operates under the assumption that there are no jumps. This means that high values of the test

suggest the presence of jumps on a particular day. When zt is su�ciently high then we can reject

the hypothesis that there are no jumps. Throughout this paper, a z-statistic at the .999 quartile is

used to distinguish a day with jumps from a day without jumps. Huang and Tauchen (2005) use

Monte Carlo simulation to demonstrate that the z-statistic shown above is of appropriate size, has

good power, and has good jump detection abilities.

3 The HAR Class of Models

This paper relies on a variance forecasting model that forecasts well and is based purely on historical

price data. The class of models used in this analysis has become widely used for the purposes of

variance forecasting and risk management. These models represent the expectation of future vari-

ance if all non-variance data is ignored. Recent literature on forecasting variance has highlighted

the fact that simple models often outperform more sophisticated parametric models formally incor-

porating long-memory processes in out-of-sample forecasts. For example, empirical tests performed

in Andersen, Bollerslev, Diebold, and Labys (2003) show that both realized variation vector and

univariate autoregression models outperform GARCH type models out-of-sample. These models
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3 THE HAR CLASS OF MODELS

are linear regressions with past values of variation as independent variables and with current values

of variation as dependent variables. This paper uses a variety of heterogeneous autoregressive re-

alized variance (HAR-RV) type models to forecast variance. These models were �rst developed in

Müller et. al (1997) and Corsi (2003) and work by linearly parametrizing the conditional variance

of discretely sampled returns. These models have two main advantages over other models. They

are very easy to estimate and they capture the long-memory of the variance in a manner which is

intuitive.

HAR type models use averaged future RV as the dependent variable and use averages of past

values of variance measures as the independent variables. This allows the models to take advantage

of information from past price variation. Let the multi-period normalized realized variation over h

discrete periods be de�ned as

RVt,t+h = h−1[RVt+1 +RVt+2 + ...+RVt+h] (7)

In this paper, the values 1, 5, and 22 are used for h, referring to daily, weekly, and monthly

frequencies respectively. The HAR-RV model can then be expressed as,

RVt,t+h = β0 + βDRVt−1,t + βWRVt−5,t + βMRVt−22,t + εt+1 (8)

This variable is generally serially correlated up to at least an order of h-1 and possibly more. In order

to obtain heteroskedasticity robust standard errors for the HAR-RV type models this paper uses the

Newey-West covariance matrix estimator with a lag of 60 days. The standard HAR-RV model can

be expanded to include jumps. The results in Section 2 allow for the separation of the continuous

component of the variance from the jump component of the variance. This separation was �rst

introduced in Andersen, Bollerslev, and Diebold (2006) which de�ned the separate components

over a period of time as an average of daily observations where,

Ct+1,α = I[ZTP,t+1 ≤ Φγ ] ∗ [RVt] + I[ZTP,t+1 > Φγ ] ∗ [BVt] (9)
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3 THE HAR CLASS OF MODELS

Jt+1,α = I[ZTP,t+1 > Φγ ] ∗ [RVt −BVt] (10)

Ct,t+h = h−1[Ct+1 + Ct+2 + ...+ Ct+h] (11)

Jt,t+h = h−1[Jt+1 + Jt+2 + ...+ Jt+h] (12)

I[.] is the indicator function and Φγ is the signi�cance level which is set at .999 as suggested in

previous papers. With the continuous and jump component separated, the HAR-RV-CJ model is

de�ned as the regression of RV on the lagged averaged normalized continuous and jump components,

RVt,t+h = β0 +βCDCt−1,t +βCWCt−5,t +βCMCt−22,t +βJDJt−1,t +βJWJt−5,t +βJMJt−22,t +εt,t+h

(13)

Andersen, Bollerslev, and Diebold (2006) do not �nd much persistence in the jump component and

they also do not �nd a large improvement in explanatory power from dividing the continuous and

jump components. This paper reaches a similar conclusion from more series of data. Another form

of the HAR regression that is used in this paper substitutes the realized absolute value (RAV) as

the regressor for the realized variation where RAV is de�ned as:

RAVt = µ−1
1 M−1/2

M∑
j=1

|rt,j | (14)

RAVt,t+h = h−1[RAVt+1 +RAVt+2 + ...+RAVt+h] (15)

RVt,t+h = α+ βDRAVt−1,t + βWRAVt−5,t + βMRAVt−22,t + εt+1 (16)

The HAR model using RAV (HAR-RV-RAV) was shown empirically to be superior both in-sample

and out-of-sample to the HAR-RV and HAR-RV-CJ models on a set of S&P 500 data by Forsberg

and Ghysels (2007). Theoretically, the advantage of using RAV is that it is highly robust to jumps

and sampling error. Forsberg and Ghysels claim that the asymptotic analysis done by Barndor�-

Nielsen, Jacod, and Shephard (2004) shows that jumps do not a�ect RAV asymptotically and that

the sampling error for RAV depends on the second moment whereas the sampling error for RV
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4 MINCER-ZARNOWITZ REGRESSIONS

depends on the fourth moment. It is important to note that RAV has di�erent units than RV.

Thus, we also set up a similar model for RAV 2(HAR-RV-RAV 2).

Analogous models are can be used to forecast transformations of RV such as log (RV) and the

square root of RV.

log(RVt,t+h) = β0 + βDlog(RVt−1,t) + βW log(RVt−5,t) + βM log(RVt−22,t) + εt+1 (17)

(RVt,t+h)1/2 = β0 + βD(RVt−1,t)1/2 + βW (RVt−5,t)1/2 + βM (RVt−22,t)1/2 + εt+1 (18)

It is worth noting that the R2's of these transformed models are not directly comparable to the

R2's of the level RV regressions. That is, the �t of a regression with a dependent variable of RV

cannot be directly compared to the �t of a regression with a dependent variable of log(RV). Thus

the empirical analysis will examine each of the transformation regressions independently.

4 Mincer-Zarnowitz Regressions

Multiple papers have tried to ascertain whether the implied volatility on a stock option is an

unbiased and e�cient estimator of future volatility once the risk-premium is taken into account.

The standard framework for testing volatility based forecast was �rst developed in a model by

Mincer and Zarnowitz (1969). A regression of the form seen below is usually used. Here α is

traditionally considered the bias and β is considered the e�ciency. IVt,t+k is the implied volatility

at a horizon of k periods forward scaled to a daily level. The horizon of the forecast and the horizon

of the implied volatility may di�er since implied volatility data are not available for all horizons.

RVt,t+h = α+ βIVt,t+k + εt+1 (19)

A completely e�cient and unbiased forecast would have α = 0 and β = 1. However, multiple

studies have showed that a standard Black-Scholes at the money implied volatility does not �t

these criteria. The reasons for this lack of �t are not considered in this paper, which is only

concerned with the forecasting ability of the models. One important study of the relative e�ciency
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5 DATA PREPARATION

of implied volatility is Jiang and Tian (2005). That paper shows that model-free implied volatility

is superior to Black-Scholes implied volatility in forecasting future variance. However, it does not

use HAR type models for historical forecasting which makes a comparison between implied and

historical forecasts di�cult. Furthermore, the paper does not test forecasts out-of-sample, which

makes its methodology questionable. Another study, Andersen, Frederiksen, and Staal (2007),

shows that historical and implied forecasts contain independent information about future variance.

This paper responds to these results by including two forms of combined forecasts which lump

together historical price variables with implied variables.

RVt,t+h = α+βIVt,t+k+βCDCt−1,t+βCWCt−5,t+βCMCt−22,t+βJDJt−1,t+βJWJt−5,t+βJMJt−22,t+εt+1

(20)

RVt,t+h = α+ βIVt,t+k + βDRAVt−1,t + βWRAVt−5,t + βMRAVt−22,t + εt+1 (21)

The above regressions are simply combinations of HAR-RV-CJ with IV and HAR-RAV with IV.

5 Data Preparation

The high-frequency data for individual stocks and the SPY index was obtained from the Trade and

Quote Database (TAQ) that is available at the Wharton Research Database Service (WRDS). The

SPY is an exchange traded fund (ETF) which replicates the performance of the S&P 500. The SPY

is traded on the American Stock Exchange (AMEX) and has the same returns as the S&P 500.

The high-frequency data was �rst formatted into a manageable size by Tzou Hann Law. Law

used data for 40 stocks, 10 of which were used in this paper. These 10 stocks were chosen on

the basis of the reasonably high open interest on their at-the-money call options throughout the

period. The data was checked for anomalies such as non-full trading days which were then removed.

Furthermore, it was structured to provide prices at uniform time intervals of 30 seconds. In order

to get a more manageable number of observations and to eliminate microstructure noise this paper

samples the prices of the securities at 5 minute intervals. The formatted data was then used to
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6 ROBUST REGRESSIONS

construct the RV, RAV, C and J components in accordance with the theory in sections II and

III. The time span of the data is from the beginning of 2001 to the end of 2005. The data from

2001-2004 was used to estimate the models while the data from 2005 was used for the forecast

evaluation.

Options data was obtained from the OptionMetrics Database accessible on WRDS. Ten equities

were chosen for this analysis. For a list of stocks and summary statistics see Table 1. These

equities all had an open interest on their options that was high relative to the other stocks that

were available for analysis from Law's data. We then selected a unique implied volatility for each

day for each stock. This implied volatility was taken directly from OptionMetrics, was at the

money, and expired close to a month in the future. This was done so that the implied volatilities

re�ected the market's expectations of volatility over the next month. The implied volatility from

OptionMetrics is approximately equal to the Black-Scholes value of a call for American options.

Two di�erent implied volatilities were obtained for the SPY, the S&P 500 index tracker. The

�rst implied volatility was obtained from the model-free VIX volatility index. The other implied

volatility, denoted as SPX, was obtained from the implied volatilities on S&P 500 options found

on OptionMetrics. The volatilities were then converted into a daily implied variance measure. It

is worth noting that implied volatility includes information about overnight volatility whereas the

historical measures used in this paper are based solely on the trading day.

6 Robust Regressions

The data used in this paper, like other variance data (see Granger and Poon(2005)) is prone to

leverage points and sampling error. Leverage points are individual points which have an extremely

large e�ect on the coe�cient estimates of a regression model. Sampling errors may be caused

by the absence of non-full trading days which were removed from the sample. These may create

small disturbances in the data. The amount of data in the paper is so large that searching for

highly in�uential points manually and trying to �nd their cause is not likely to yield much insight.

Furthermore, the variety of multivariate regressions done in this paper means that some models

may be spuriously well �t in-sample and that the distributional assumptions may be wrong. These
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7 EMPIRICAL RESULTS

factors suggest that standard OLS may not be the best way to estimate the parameters. OLS

su�ers from sensitivity to leverage points and deviations of the data generating process from the

model. A sample leverage versus residual plot from a HAR-RV-CJ regression is shown in Figure

1. It is clearly visible that a single point has much more leverage than the others. This point may

cause the estimates to be o�. Robust regressions o�er a way to mitigate the e�ects of such points.

There exists a large literature on robust regressions that is unexplored and untapped by the �eld

of academic �nance, speci�cally as it applies to variance forecasting. Robust estimation methods

should seek to accomplish three main goals according to Huber (2004). Firstly, they should have

a good e�ciency for the assumed model. Secondly, small deviations from the model assumptions

should only have a small e�ect on performance. Thirdly, larger deviations from the model should

not completely ruin the model.

This paper seeks to correct for these problems by comparing the performance of a robust regres-

sion method based on iteratively reweighed least squared based on M-estimators to the performance

of an OLS regression. This paper uses a form of robust regression that is easy to implement in

STATA using the "rreg" command. The theoretical justi�cation and explanation of this method is

outlined in the Appendix. Further reference on this and similar methods can be found in Huber

(2004) and Rousseuw and Leroy (1987). An example of the performance of robust regression ver-

sus ordinary least squares is shown in Figure 2. This plot shows the regression of the line y = x

where the y variables are augmented with random uniform disturbances and where seven points

are modi�ed to be completely o� of the trend. In this case the robust regression performs more

in accordance with the model. It has a slope of 1.01 and a constant of -.319. On the other hand,

the OLS regression has a coe�cient of .885 and a constant of 3.01. The robust regression achieves

estimates that are closer to the original model. This suggests that robust regression may be better

at forecasting variance. This hypothesis is tested in the empirical results section.

7 Empirical Results

The empirical results in this paper are split into three sections. Firstly, we analyze the signi�cance,

size, and frequency of jump terms in the individual stock and the market. Secondly, we analyze �t
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for the in-sample time period of the models and estimation techniques described previously in this

paper. Thirdly, we analyze the out-of-sample performance of these models.

7.1 Jumps

Possible jump days can be �agged using the z-statistic shown earlier.The results in sections 2 and 3

are used to separate the jump component of the realized variance from the continuous component

on days in which jumps were �agged. The amount of jumps �agged by the z-statistic in individual

stocks ranges from 21 to 51. This is a wide variation and suggests that some types of stocks

may be more prone to jumps than others. For example Bristol-Meyer Squibb, a pharmaceutical

company, has the most jumps. This may be because the stocks of pharmaceutical companies are

signi�cantly in�uenced by information about the successes and failures of speci�c clinical trials.

This information, when announced, could be the cause of the excess jumps.

The average number of jumps for the stocks and for the market is close suggesting that there are

no signi�cant di�erences in the frequency of jumps in markets and individual stocks (See Table 1).

On days in which jumps were �agged, jumps comprised 35% of the total daily variance. We examine

the signi�cance of the jump component in the HAR-RV-CJ regressions for each of the individual

stocks. The �ndings for the individual stocks con�rm the analysis in Andersen, Bollserslev, Deibold

(2006) that the jump components are not statistically signi�cant and slightly increase the R2 of the

regression. Furthermore, the jump coe�cients are often of opposite signs. This further suggests

that the jump terms are not useful in this regression because there is no obvious reason that one

jump term term would be positive and another negative. These results are shown in Tables 2, 3,

and 4 for monthly, weekly, and daily regressions. The signi�cance results are based on Newey-West

errors with a lag of 60 days in order to control for autocorrelation and heteroskedasticity in the

error term. Similar results were obtained for the log and square root forms of these regressions. It

is worth noting that the constant term in these regressions is always signi�cant, suggesting that the

HAR-RV-CJ regressions are biased.
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7.2 In-Sample Results

The informational content of di�erent variance measures is assessed by comparing the success of

forecasts. The in-sample results are important for this evaluation because they produce easily

comparable adjusted R2's for each model. Furthermore, the �t of the models for individual stocks

can be directly compared to the �t of the stocks for the index as a whole. Multiple models are

estimated based on historical data, implied data, and a combination of the two. These models are

estimated for three horizons, 1 day, 5 days, and 22 days. The �t is best for the 5 days ahead forecast

and lowest for the 1 day ahead forecast. This con�rms the intuition that forecasting the smoothed

variables averaged over 5 or 22 days is easier than forecasts daily realized variation. The models are

estimated using the robust regression technique outlined earlier as well as through standard OLS.

The �t for the market and the average of the stocks for the 22 day horizon is shown in Table 5.

Additional information can be found in the technical appendix. More detailed values for individual

stocks can be found in the technical appendix. There are several interesting �ndings in the in-sample

regressions. Firstly, combined regressions using both implied and historical variables have the best

�t. This suggests that there is unique information in both the implied and historical variables.

Secondly, when just the historical models are compared, the HAR-RAV and HAR-RAV2 models

outperform the RV based models. This con�rms Forsberg and Ghysels (2007) �nding that the

realized absolute value is a better forecaster of future realized variance then realized variance itself.

Additionally, the HAR-RV-CJ model increases the �t by at most .03 showing that the addition of

the jump components does not yield much bene�t even in-sample.

There is no clear indication that the �t of implied volatility is better than that of the HAR-RAV

model. The average improvement from the historical measure to the combined measure is smaller

for the market than for individual stocks (See Table 5 and Figures 4-5). Furthermore, the increase

in �t from from the implied model to the combined model is greater for the market than for the

individual stocks. This suggests that the implied volatility from options is a better predictor for

individual stocks than for the market. Closer analysis shows that historical measures are better

for some of the stocks while implied measures are better for others. Equivalently, this result states

that the implied volatility contributes more to combined forecasts of equity variance than it does
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to combined forecasts of market variance. For forecasts 22 days in advance, the magnitude of the

increase in R2 from implied volatility to the combined forecast is less than the increase from the

historical variance to the combined forecast if the HAR-RV-CJ model is used. However, this result

vanishes when the HAR-RV-RAV is used in the combined forecast. This suggests that the implied

volatility contains more information than the RV-CJ model but less than the RV-RAV model.

Furthermore, when forecasts of time periods 5 days and 1 day in advance are used, the implied

volatility becomes much worse. This is expected because the implied volatility was constructed to

be an expectation over a month long period rather than over smaller periods.

7.3 Out-of-Sample Results

In this section we report the results from the out-of-sample prediction of realized variance calculated

from the previously discussed regressions. It is worth noting that the evaluation period, 2005, is

only a year long. Thus, there are at most 12 independent month-long periods to test the forecast.

Furthermore, 2005 was a remarkable year for its low volatility and even more importantly its low

variance of volatility. This suggests that the mean squared errors (MSE) are probably lower than

if another, more volatile, period was used to evaluate the forecasts. However, the fact that the

variance is low in 2005 does not pose a serious problem for the following analysis. There is no

reason to think that the performance of robust regression compared to OLS would change in a

higher volatility period.

There are several important empirical relationships which we investigate in the out-of-sample

analysis. We �rst look at the di�erence in performance between robust and OLS regressions. The

mean squared errors for both estimation periods are reported for all three horizons in tables 6

through 8. These tables also report the ratio of the mean squared error of the robust regression to

the mean squared error of the OLS regression. Values for which the ratio is less than one signify that

the robust regression performed better. There is a striking pattern across all of the time horizons

and models that the robust regressions have smaller mean squared errors than the OLS regressions.

The ratios of robust mean squared error to OLS mean squared error are sometimes as low as .260

even for the best performing models. For example, the robust HAR-RAV forecast for Nokia over
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a 22 day period produced a mean squared error that was about a quarter of the mean squared

error produced by the OLS forecast of the same model. This suggests that previous studies using

OLS estimates may have signi�cantly underestimated the forecastability of variance. Furthermore,

they may have evaluated the informational content in these forecasts inaccurately by not using the

information in the best manner. The disparity between robust and OLS estimates is smallest for the

1 day ahead forecasts. This is expected because daily realized variances are not smoothed and are

thus the least predictable. Considering the superior performance of the robust estimation method,

we base our conclusions about informational content mainly on the robust results. Preliminary

work suggests that other robust estimation methods such as quantile regression produced similar

increases in forecasting accuracy.

For the 22 day horizon forecasts, the implied volatility Mincer-Zarnowitz regression usually

outperforms all the other non-combination forecasts. While the pattern does not hold for all of

the stocks analyzed, it holds for most of them. This suggests that the implied volatility has more

information about future variance than historical measures. The implied volatility is even a good

predictor of the future values of the market indices. It is worth noting that the model-free, VIX,

implied volatility has a slightly lower mean squared error than the Black-Scholes implied volatility.

This is an indicator that the VIX has more information about future market volatility than the

implied volatility from at-the-money SPX options. The results also show that the mean squared

error on market forecasts is much smaller than the mean squared error on individual stock forecasts.

This suggests that the variance of the market is generally much more predictable than the variance

of individual stocks.

One of the curious �ndings from these forecasts is that the estimates of some of the historical

models have a large constant. This constant causes a bias which is seen most clearly for the HAR-

RV-CJ model estimated for Citigroup in Figures 6 and 7. The forecast overestimates the realized

variance out-of-sample by a large amount. The robust regression mitigates this e�ect but does

not eliminate it. The problems occurs because the in-sample estimation �ts the early part of the

sample using a constant at the expense of �t during the later part of the sample. The model then

overestimates during the later part of the sample and this extends into the forecast. This lack of
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8 CONCLUSION

�t towards the end of the sample continues into the forecast. This problem occurs to a much lesser

extent in the HAR-RV-CJ model for the SPY as show in in Figures 8 and 9. The distributions of

the forecast errors are the most centered and densely concentrated for implied volatility forecasts.

Two abnormally large forecast errors for the implied volatility model occur when there is a jump

which the implied volatility predicts but overshoots. After the jump, the implied volatility adjusts

to prior levels.

Most of the results from the in-sample analysis hold up out-of-sample. Adding jumps o�ers

little, if any, bene�t in forecasting. RAV based measures outperform the realized variance based

measures as independent variables in these regressions. For the 22 day forecast horizon, implied

volatility based forecasts often have lower mean squared errors than combined forecasts. This further

bolsters the case that implied measures generally have more information about future variance than

historical measures.

In order to address the low volatility in the 2005, out-of-sample results were obtained for another

period. The same models were estimated using the years 2001 and 2002. Mean squared forecast

errors were then calculated for the year 2003. These errors are presented in table 9. The most

striking result is that the superiority of the robust regressions over OLS remains. Furthermore, it

still remains much easier to forecast the variance of the market than it is to forecast the variance

of individual equities. These results provide a strong indicator that the conclusions from the full

sample are valid over more volatile periods.

8 Conclusion

This paper explores the relative behavior of a set of variance forecasting models in order to better

understand the informational content of implied volatility. We �nd that the magnitude and oc-

currence of jumps in price does not have signi�cant e�ects on future variance. This suggests that

it is not necessary to separate the continuous and jump component of volatility for the purpose

of forecasting. Furthermore, it supports the intuition that discontinuous movements in price are

idiosyncratic and thus do not a�ect the future volatility of returns. Models based on RAV perform

the best in �t and in forecasting of all the models using past price data. We �nd that robust estima-
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tion methods outperform OLS in forecasting in almost all cases. The decrease in MSE from using

the robust regression over the OLS is often more than �fty percent. This suggests that both HAR

and Mincer-Zarnowitz forecasting models su�er from an extreme sensitivity to leverage points.

The estimation of OLS regressions shows that combined models using both historical and implied

measures have the best �t. In most cases, the implied volatility provides a better forecast of future

volatility over a month long horizon than historical measures. These results suggest that the implied

volatility contains unique information about future price movements. The increase in �t between

implied and historical models also shows that the implied volatility does not contain all of the

information found in historical price data. Furthermore, an analysis of the changes in �t between

models indicate that the implied volatility contains more information about individual stocks than it

does for the market. We hypothesize that this is because there are possibly predictable idiosyncratic

shocks to equities, such as drug trial results or law suits, whereas there are no comparable shocks

to the S&P 500 as a whole. A comparison of out-of-sample forecasts using the VIX and the implied

volatility of at-the-money calls shows that the VIX is better at forecasting.

These results provide strong evidence that the implied volatility is a good predictor of future

volatility. Even though we cannot make claims about e�ciency, we can safely say that implied

volatility contains important information about future volatility that is not found in historical

variance measures. Furthermore, the results show that future variance in individual equity is less

determined by past variance than future variance in the market.
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10 Appendix

Consider a multivariate regression with unknown parameters θ1, ..., θp that are estimated from

observations y1, ..., yn through the equation

yi =
p∑

j=1

xijθj + ui (22)

where xij are observed coe�cients and ui is the independently distributed error term. Traditionally,

the coe�cient estimates of θ are obtained by minimizing the sum of squares

min
θ

∑
i

(yi −
∑

xijθj)2 (23)
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In order to correct for this problem this paper uses robust regression. The version used in this paper

is implemented as 'rreg' in STATA. This regression weighs separate observations using an interated

procedure. First, it obtains an OLS estimate for the equation. It then drops points with a very high

leverage as indicated by a value of Cook's distance2 greater than unity. Afterwards, it iteratively

computes weights based on absolute residuals using Huber weighing where the minimization problem

becomes

min
θ

∑
i

ρ(
yi −

∑
xijθj

σ
)σ (24)

In the above equation, σ and θ are iteratively recalculated estimate from the residual, ri =

yi −
∑
xijθj , and the minimum is characterized by the solution to the system of equations below:

∑
i

ψ(
ri
σ

) =
∑

i

wirixij = 0, wi =
ψ( ri

σ )
ri

σ

(25)

∑
i

χ(
ri
σ

) = 0, χ(x) = xψ(x)− ρ(x) (26)

These equations are then solved using a recursive procedure. First trial values of the θ and σ

are selected. Then, the scale step σm can be de�ned as follows:

(σm+1)2 =
1
na

∑
χ(

ri
σm

)(σm)2 (27)

This can be considered the ordinary variance estimate calculated from metrically Winsorized resid-

uals in the case of the Huber weighing function. The location step can then be written using the

solution for τ in the below equation.

XTWXτ = XTWr, (28)

θm+1 = θm + τ (29)

2Cook's Distance is de�ned as:

D =
∑ (ŷi − ŷj(i))

p · MSE

where p is the number of parameters, ŷiis the �tted value of the observation i and ŷj(i)is the �tted value of the

observation i for a regression which is estimated without the observation i.
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W is the diagonal matrix with the diagonal elements wi calculated from the previous values of the

location and scale. The Huber weight functions are de�ned below.

ρ(x) =


x2

2 |x| < c

c(2x−c)
2 |x| ≥ c

(30)

ρ
′
(x) = ψ(x) =


x |x| < c

c x ≥ c

−c x ≤ −c

(31)

These are run until the maximum change in weights is below a speci�c threshold. Afterwords,

another set of iterations is done using Tukey's bisquare weighting which takes care of the previous

function's problems with severe outliers. For bisquare weighting the relevant equation is:

ψ(x) = x[1− (
x

R
)2]2 (32)

Bisquare weights often have trouble converging and may lead to multiple solutions. This is one

of the reasons that a Huber estimate for the equation is needed �rst. The iterative process stops

after the di�erence in bisquare weights is below a threshold. The constants c=1.345 and R=4.685

used by STATA produce an estimate which is about 95% as e�cient as the OLS estimates.

11 Tables

Table 1: Abbreviations and Summary Statistics

Ticker BMY C GE GS HD KO

Actual Name Bristol-Meyer Squibb Citigroup General Electric Goldman Sachs Home Depot Coca Cola

Number of Jumps in Data 51 21 24 25 34 32

Mean RV 3.17 2.98 2.65 2.54 3.26 1.69

Ticker MDT MOT NOK TXN SPY SPX

Actual Name Medtronic Motorola Nokia Texas Instruments SPY with VIX SPY with Imp. Vol.

Number of Jumps in Data 47 38 33 45 37 37

Mean RV 2.7 8.89 4.98 8.35 1.3 1.3
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Table 2: Coe�cient Estimates and Signi�cance of Jump Terms in HAR-RV-CJ Regression - 22 Days Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY

βCD 0.075** 0.148*** 0.121*** 0.153*** 0.172*** 0.184** 0.108** 0.081* 0.156*** 0.152*** 0.148***

βCW 0.449*** 0.125 0.256* 0.257** 0.266** 0.171* 0.338** 0.313*** 0.398*** 0.439*** 0.328***

βCM 0.236 0.348*** 0.277** 0.407*** 0.191** 0.333*** 0.214 0.260** 0.242** 0.112 0.212***

βJD 0.117 0.378** 0.237 -0.064*** 0.013 0.185** -0.094** 0.034 0.052 0.15 -0.135***

βJW -1.284 -0.052 1.472 -0.148 3.444* 0.876 0.509* -0.507 -0.590* -0.631 -0.424**

βJM 8.317 1.388 5.596 -1.300*** 3.114 -1.945** 2.380*** 2.72 -0.684 4.908 0.046

β0 0.500* 1.065** 0.797** 0.454** 0.996** 0.532** 0.633*** 2.187** 0.821** 1.732** 0.326**

* p<0.05, ** p<0.01, *** p<0.001

Table 3: Coe�cient Estimates and Signi�cance of Jump Terms in HAR-RV-CJ Regression - 5 Days Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY

βCD 0.097*** 0.296*** 0.190*** 0.257*** 0.245*** 0.318** 0.132** 0.104* 0.192** 0.186*** 0.208**

βCW 0.499*** 0.161* 0.317*** 0.259*** 0.455*** 0.325** 0.553*** 0.501*** 0.468*** 0.544*** 0.447***

βCM 0.286** 0.326*** 0.299*** 0.423*** 0.107 0.192* 0.154 0.217* 0.263** 0.15 0.211**

βJD 0.315** 0.884* -0.09 -0.143*** -0.039 0.329** -0.204*** 0.015 0.166*** 0.336 -0.177**

βJW -0.271 -0.008 2.994* -0.244** 0.671 0.719 0.423 0.493 -0.684* -0.606 -0.617***

βJM 2.491 -0.299 3.539 -0.678* 6.846 -0.669 1.413*** 0.034 -0.78 1.83 -0.167

β0 0.289* 0.634* 0.416* 0.189 0.422** 0.279** 0.314*** 1.235** 0.365* 0.802** 0.159**

* p<0.05, ** p<0.01, *** p<0.001

Table 4: Coe�cient Estimates and Signi�cance of Jump Terms in HAR-RV-CJ Regression - 1 Day Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY

βCD 0.155*** 0.576*** 0.326*** 0.550*** 0.352*** 0.349* 0.116 0.082 0.352*** 0.394*** 0.329

βCW 0.485*** 0.084 0.307*** 0.096 0.447*** 0.448*** 0.627*** 0.579*** 0.359* 0.355*** 0.400*

βCM 0.278** 0.221*** 0.244*** 0.339** 0.086 0.105 0.15 0.217* 0.250* 0.181* 0.202*

βJD 0.575* 0.600** 1.583 -0.024 -0.821*** -0.062 -0.372*** 0.443** 0.387*** 0.616 -0.249

βJW 0.305 1.351* -0.965 -0.482*** 1.308 1.289*** 0.278 -0.051 -0.415 -0.091 -0.541**

βJM 0.84 -0.392 4.057 -0.374 4.76 -0.584* 1.210*** 0.119 -0.793 0.852 -0.287

β0 0.213* 0.330* 0.259* 0.078 0.238* 0.167** 0.224*** 0.857** 0.209* 0.463** 0.097**

* p<0.05, ** p<0.01, *** p<0.001
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Table 5: In-Sample Adjusted R2 for OLS Regressions 22 Days Ahead

OLS - 22 Days Ahead SPY SPX AVG

HAR-RV 0.45 0.45 0.51

HAR-RV-CJ 0.47 0.47 0.52

HAR-RAV 0.56 0.56 0.58

HAR-RAV2 0.48 0.48 0.52

Implied Volatility 0.47 0.46 0.56

HAR-RV-CJ + IV 0.52 0.51 0.59

HAR-RAV + IV 0.57 0.57 0.61

% From RV to CJ 0.02 0.02 0.01

% From RAV to CJ -0.01 -0.01 0.00

% From CJ to Combo 0.05 0.04 0.07

% From IV to Combo 0.05 0.05 0.03

% From RAV to Combo2 0.01 0.01 0.03

% From IV to Combo2 0.10 0.11 0.05

AVG is the average value over all 10 individual stocks

% Signi�es Percentage Change in Adjusted R2 from one model to another

Combo is a model where the regressors from the HAR-RV-CJ Model are combined with IV

Combo2 is a model where the regressors from the HAR-RAV Model are combined with IV

Bold values signify the highest adjusted R2 in the non-combo models
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Table 6: Out-of-Sample Mean Squared Errors for OLS and Robust Regressions 22 Days Ahead

OLS Regression BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX

HAR-RV 0.510 1.330 0.891 0.289 0.919 0.262 0.360 5.886 1.028 3.841 0.110 0.110

HAR-RV-CJ 0.419 1.316 0.879 0.273 0.783 0.252 0.364 5.776 0.909 4.232 0.107 0.107

HAR-RAV 0.338 0.190 0.168 0.448 0.551 0.096 0.195 1.242 0.366 1.748 0.054 0.054

HAR-RAV2 0.699 0.991 0.933 0.262 0.926 0.274 0.411 4.140 0.913 3.563 0.118 0.118

Implied Volatility 0.288 0.102 0.092 0.288 0.260 0.073 0.315 3.620 0.357 1.046 0.023 0.030

HAR-RV-CJ + IV 0.235 0.063 0.118 0.241 0.311 0.060 0.216 2.798 0.287 1.722 0.036 0.042

HAR-RAV + IV 0.250 0.091 0.078 0.331 0.379 0.058 0.186 1.026 0.310 1.395 0.041 0.043

Robust Regression

HAR-RV 0.262 0.184 0.134 0.201 0.214 0.113 0.150 2.202 0.220 1.399 0.041 0.041

HAR-RV-CJ 0.257 0.175 0.139 0.197 0.207 0.109 0.155 2.257 0.205 1.478 0.041 0.041

HAR-RAV 0.165 0.071 0.059 0.232 0.202 0.051 0.106 0.656 0.095 0.938 0.027 0.027

HAR-RAV2 0.330 0.142 0.139 0.190 0.215 0.112 0.139 1.636 0.217 1.285 0.044 0.044

Implied Volatility 0.237 0.037 0.043 0.212 0.142 0.046 0.219 1.843 0.305 0.753 0.016 0.018

HAR-RV-CJ + IV 0.145 0.043 0.053 0.207 0.157 0.040 0.120 1.719 0.122 0.976 0.020 0.021

HAR-RAV + IV 0.141 0.055 0.036 0.214 0.182 0.037 0.101 0.591 0.070 0.855 0.019 0.019

Robust
OLS

HAR-RV 0.514 0.138 0.151 0.696 0.233 0.433 0.416 0.374 0.214 0.364 0.375 0.375

HAR-RV-CJ 0.613 0.133 0.159 0.720 0.264 0.430 0.426 0.391 0.226 0.349 0.383 0.383

HAR-RAV 0.489 0.375 0.352 0.517 0.366 0.533 0.542 0.528 0.260 0.537 0.491 0.491

HAR-RAV2 0.472 0.143 0.149 0.724 0.232 0.408 0.337 0.395 0.238 0.361 0.368 0.368

Implied Volatility 0.823 0.364 0.473 0.734 0.545 0.629 0.695 0.509 0.854 0.720 0.706 0.600

HAR-RV-CJ + IV 0.614 0.674 0.453 0.859 0.506 0.655 0.555 0.614 0.425 0.567 0.572 0.495

HAR-RAV + IV 0.565 0.605 0.464 0.648 0.481 0.633 0.542 0.576 0.227 0.613 0.463 0.433

Bold values denote the lowest MSE of any non-combination model
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Table 7: Out-of-Sample Mean Squared Errors for OLS and Robust Regressions 5 Days Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX

HAR-RV 0.217 0.529 0.296 0.268 0.461 0.095 0.253 2.710 0.301 1.407 0.044 0.044

HAR-RV-CJ 0.205 0.533 0.291 0.271 0.400 0.094 0.258 2.712 0.242 1.448 0.042 0.042

HAR-RAV 0.427 0.594 0.244 0.504 0.802 0.116 0.289 2.544 1.181 3.227 0.047 0.047

HAR-RAV2 0.331 0.314 0.328 0.248 0.441 0.107 0.245 1.597 0.233 1.280 0.048 0.048

Implied Volatility 0.236 0.307 0.123 0.463 0.281 0.048 0.276 1.306 0.339 1.860 0.022 0.018

HAR-RV-CJ + IV 0.141 0.178 0.061 0.320 0.255 0.030 0.166 1.056 0.083 0.889 0.017 0.017

HAR-RAV + IV 0.320 0.504 0.222 0.429 0.540 0.095 0.281 1.860 1.020 2.763 0.043 0.042

Robust Regression

HAR-RV 0.131 0.089 0.056 0.246 0.280 0.047 0.198 1.583 0.136 0.912 0.027 0.027

HAR-RV-CJ 0.132 0.086 0.060 0.245 0.277 0.046 0.198 1.554 0.129 0.918 0.030 0.030

HAR-RAV 0.212 0.108 0.069 0.272 0.309 0.039 0.163 1.256 0.316 1.499 0.020 0.020

HAR-RAV2 0.129 0.070 0.054 0.229 0.258 0.049 0.158 1.267 0.110 0.865 0.032 0.032

Implied Volatility 0.178 0.065 0.038 0.299 0.167 0.048 0.207 1.079 0.156 0.816 0.017 0.019

HAR-RV-CJ + IV 0.111 0.051 0.034 0.230 0.228 0.030 0.152 1.024 0.061 0.638 0.016 0.017

HAR-RAV + IV 0.140 0.096 0.057 0.248 0.271 0.033 0.142 1.104 0.267 1.342 0.017 0.018

Robust
OLS

HAR-RV 0.601 0.169 0.189 0.915 0.608 0.494 0.782 0.584 0.453 0.648 0.611 0.611

HAR-RV-CJ 0.646 0.162 0.207 0.904 0.692 0.488 0.769 0.573 0.534 0.634 0.711 0.711

HAR-RAV 0.497 0.183 0.281 0.540 0.385 0.337 0.564 0.494 0.267 0.465 0.434 0.434

HAR-RAV2 0.390 0.224 0.164 0.922 0.585 0.460 0.648 0.793 0.474 0.676 0.655 0.655

Implied Volatility 0.756 0.212 0.308 0.646 0.595 1.021 0.751 0.826 0.460 0.439 0.787 1.031

HAR-RV-CJ + IV 0.782 0.286 0.550 0.720 0.894 1.006 0.914 0.970 0.737 0.718 0.983 0.980

HAR-RAV + IV 0.438 0.191 0.258 0.577 0.502 0.342 0.506 0.594 0.262 0.486 0.399 0.420

Bold values denote the lowest MSE of any non-combination model
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Table 8: out-of-sample Mean Squared Errors for OLS and Robust Regressions 1 Day Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX

HAR-RV 0.338 0.218 0.175 0.513 0.656 0.100 0.577 3.278 0.253 1.535 0.059 0.059

HAR-RV-CJ 0.312 0.148 0.105 0.558 0.655 0.093 0.593 2.815 0.208 1.500 0.052 0.052

HAR-RAV 0.680 1.363 0.484 0.807 1.232 0.218 0.677 4.942 1.792 5.026 0.092 0.092

HAR-RAV2 0.417 0.143 0.202 0.483 0.626 0.109 0.556 2.485 0.220 1.466 0.059 0.059

Implied Volatility 13.718 13.366 13.139 15.269 15.309 3.409 6.062 91.126 98.531 94.381 3.497 2.314

HAR-RV-CJ + IV 1.807 2.437 1.886 2.996 2.513 0.624 1.801 16.075 17.558 13.352 0.748 0.438

HAR-RAV + IV 0.583 1.227 0.501 0.773 0.988 0.206 0.681 4.128 1.592 4.516 0.091 0.088

Robust Regression

HAR-RV 0.294 0.124 0.098 0.496 0.565 0.083 0.536 2.614 0.184 1.311 0.052 0.052

HAR-RV-CJ 0.293 0.113 0.087 0.544 0.634 0.087 0.578 2.591 0.186 1.411 0.049 0.049

HAR-RAV 0.395 0.140 0.114 0.513 0.595 0.101 0.529 2.790 0.386 2.242 0.049 0.049

HAR-RAV2 0.288 0.113 0.107 0.477 0.538 0.080 0.496 2.321 0.177 1.353 0.047 0.047

Implied Volatility 7.897 9.070 10.832 11.102 10.462 2.476 4.139 67.224 88.152 81.552 2.480 1.590

HAR-RV-CJ + IV 0.908 0.887 0.766 2.366 1.706 0.179 1.025 12.004 12.360 9.808 0.475 0.235

HAR-RAV + IV 0.344 0.146 0.097 0.505 0.562 0.095 0.511 2.694 0.337 2.085 0.049 0.048

Robust
OLS

HAR-RV 0.868 0.570 0.559 0.967 0.862 0.829 0.929 0.798 0.728 0.854 0.885 0.885

HAR-RV-CJ 0.938 0.762 0.822 0.976 0.967 0.931 0.973 0.921 0.897 0.940 0.930 0.930

HAR-RAV 0.581 0.103 0.235 0.636 0.483 0.464 0.782 0.565 0.215 0.446 0.532 0.532

HAR-RAV2 0.690 0.787 0.531 0.988 0.860 0.737 0.892 0.934 0.803 0.923 0.800 0.800

Implied Volatility 0.576 0.679 0.824 0.727 0.683 0.726 0.683 0.738 0.895 0.864 0.709 0.687

HAR-RV-CJ + IV 0.502 0.364 0.406 0.790 0.679 0.287 0.569 0.747 0.704 0.735 0.635 0.536

HAR-RAV + IV 0.591 0.119 0.194 0.653 0.568 0.461 0.750 0.653 0.212 0.462 0.531 0.546

Bold values denote the lowest MSE of any non-combination model
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Table 9: Test of Previous Results for 22 Days Ahead for the year 2003

OLS Regression BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX

HAR-RV 2.307 8.029 7.260 1.263 5.590 0.864 1.963 49.261 9.723 39.034 0.339 0.339

HAR-RV-CJ 6.062 8.477 7.258 1.063 5.221 0.901 1.679 48.181 9.756 36.752 0.347 0.347

HAR-RAV 2.049 3.865 5.062 0.595 4.128 0.684 1.695 35.938 4.942 26.572 0.221 0.221

HAR-RAV2 2.680 7.309 6.816 1.159 5.597 0.922 2.525 45.894 9.353 39.319 0.316 0.316

Implied Volatility 2.517 5.665 3.542 0.557 3.372 0.564 0.795 37.057 4.945 30.439 0.269 0.343

HAR-RV-CJ + IV 3.921 6.333 4.724 0.490 4.060 0.587 0.861 47.567 7.590 32.638 0.278 0.308

HAR-RAV + IV 2.310 4.996 4.239 0.404 3.883 0.556 0.714 45.291 4.485 27.353 0.215 0.227

Robust Regression

HAR-RV 1.199 1.812 2.580 0.884 1.009 0.273 0.967 26.707 3.565 18.816 0.101 0.101

HAR-RV-CJ 2.102 1.859 2.503 0.739 1.223 0.288 0.662 21.287 3.502 18.805 0.093 0.093

HAR-RAV 1.078 1.355 2.331 0.538 0.974 0.243 0.922 21.677 2.699 13.904 0.074 0.074

HAR-RAV2 1.402 1.702 2.641 0.798 1.164 0.264 1.385 25.205 3.627 19.394 0.086 0.086

Implied Volatility 2.046 2.981 1.615 0.556 1.185 0.235 0.550 22.364 2.411 19.770 0.080 0.099

HAR-RV-CJ + IV 2.028 2.558 1.686 0.339 1.227 0.186 0.373 26.869 2.950 19.248 0.084 0.069

HAR-RAV + IV 1.677 1.838 1.922 0.369 0.935 0.182 0.333 28.209 1.969 15.905 0.065 0.063

Robust
OLS

HAR-RV 0.520 0.226 0.355 0.700 0.180 0.315 0.315 0.493 0.542 0.367 0.482 0.298

HAR-RV-CJ 0.347 0.219 0.345 0.695 0.234 0.320 0.320 0.394 0.442 0.359 0.512 0.267

HAR-RAV 0.526 0.351 0.460 0.903 0.236 0.355 0.355 0.544 0.603 0.546 0.523 0.334

HAR-RAV2 0.523 0.233 0.387 0.689 0.208 0.286 0.286 0.548 0.549 0.388 0.493 0.271

Implied Volatility 0.813 0.526 0.456 0.998 0.351 0.416 0.416 0.691 0.604 0.487 0.649 0.298

HAR-RV-CJ + IV 0.517 0.404 0.357 0.690 0.302 0.317 0.317 0.434 0.565 0.389 0.590 0.301

HAR-RAV + IV 0.726 0.368 0.453 0.914 0.241 0.328 0.328 0.466 0.623 0.439 0.581 0.301

Bold values denote the lowest MSE of any non-combination model
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12 Figures

Figure 1: Leverage Versus Residual Plot for a Sample HAR-RV-CJ Regression
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Figure 2: Robust and OLS forecasts of Illustrative Data Set
0

50
10

0
15

0

0 20 40 60 80 100
Independent Variable

OLS Fitted Values Robust Fitted values
Dependent Variable

30



12 FIGURES

Figure 3: Plots of Functions Used In Robust Regression
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Figure 6: Plot of Actual 22 Day Variance Against Di�erent Forecasts for Citigroup Stock
0

10
20

30

Jan 2005
date

Realized Variance  OLS RV−CJ

0
10

20
30

Jan 2005
date

Realized Variance  Robust RV−CJ

0
5

10
15

20
25

Jan 2005
date

Realized Variance  OLS RAV

0
5

10
15

20

Jan 2005
date

Realized Variance  Robust RAV

0
10

20
30

Jan 2005
date

Realized Variance  OLS IV

0
5

10
15

20

Jan 2005
date

Realized Variance  Robust IV

34



12 FIGURES

Figure 7: Histograms of Forecast Errors for 22 Day Forecasts of the Variance of Citigroup Stock
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Figure 8: Plot of Actual Variance Against Di�erent Forecasts for SPY
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Figure 10: Histograms of Forecast Errors for 22 Day Forecasts of the Variance of the SPY
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13 Technical Appendix

Additional Table 1: Summary Statistics

Variable Mean Std. Dev. Min Max Variable Mean Std. Dev. Min Max

RV 3.17 4.11 0.27 45.28 RV 2.24 2.7 0.22 34.9

Imp. Vol. 4.04 3.25 0.45 21.27 Imp. Vol. 2.89 1.86 0.59 12.29

BMY RAV 1.42 0.73 0.44 6.32 MDT RAV 1.23 0.57 0.3 5.4

Jump 0.04 0.27 0 6.7 Jump 0.05 0.56 0 17.33

RV 2.98 5.26 0.17 97.38 RV 6.99 8.89 0.34 175.37

Imp. Vol. 3.6 3.4 0.1 34.81 Imp. Vol. 9.9 7.18 1.17 46.31

C RAV 1.39 0.84 0.3 9.29 MOT RAV 2.17 1.04 0.41 10.05

Jump 0.02 0.21 0 5.9 Jump 0.09 0.8 0 19.92

RV 2.65 3.69 0.11 53.55 RV 4.17 4.98 0.2 43.54

Imp. Vol. 3.54 2.92 0.4 17.24 Imp. Vol. 9.21 6.86 1.38 38.54

GE RAV 1.34 0.75 0.23 6.21 NOK RAV 1.69 0.91 0.32 6.41

Jump 0.01 0.17 0 4.29 Jump 0.04 0.65 0 21.5

RV 2.54 2.88 0.1 39.5 RV 7.8 8.35 0.51 62.92

Imp. Vol. 4.3 3.35 0.8 20.99 Imp. Vol. 10.14 7.1 1.39 41.08

GS RAV 1.36 0.61 0.23 4.58 TXN RAV 2.33 1.14 0.51 8.07

Jump 0.03 0.7 0 24.09 Jump 0.12 0.9 0 17.12

RV 3.26 4.01 0.21 50.42 RV 1.03 1.3 0.05 16.25

Imp. Vol. 4.43 3.42 1 20.56 Imp. Vol. 1.89 1.39 0.42 8.06

HD RAV 1.49 0.74 0.26 6.06 SPY RAV 0.85 0.43 0.16 3.54

Jump 0.03 0.24 0 4.83 Jump 0.01 0.23 0 7.94

RV 1.69 1.9 0.15 25.48 RV 1.03 1.3 0.05 16.25

Imp. Vol. 2.13 1.56 0.29 11.41 Imp. Vol. 1.58 1.23 0.28 7.3

KO RAV 1.11 0.49 0.25 4.98 SPX RAV 0.85 0.43 0.16 3.54

Jump 0.02 0.18 0 4.18
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Additional Table 2: Adjusted R2 Values for OLS Regressions 1 Day Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX AVG

HAR-RV 0.49 0.52 0.45 0.58 0.59 0.56 0.48 0.36 0.62 0.63 0.46 0.46 0.53

HAR-RV-CJ 0.48 0.52 0.45 0.62 0.60 0.56 0.49 0.36 0.62 0.63 0.49 0.49 0.53

HAR-RAV 0.48 0.53 0.48 0.59 0.61 0.56 0.49 0.39 0.61 0.63 0.50 0.50 0.54

HAR-RAV2 0.50 0.56 0.48 0.63 0.62 0.57 0.48 0.38 0.62 0.64 0.51 0.51 0.55

Implied Volatility 0.45 0.52 0.49 0.56 0.56 0.50 0.44 0.35 0.55 0.62 0.42 0.43 0.50

HAR-RV-CJ + IV 0.50 0.54 0.50 0.63 0.61 0.58 0.51 0.39 0.63 0.66 0.49 0.50 0.56

HAR-RAV + IV 0.50 0.57 0.52 0.62 0.63 0.59 0.52 0.41 0.62 0.67 0.51 0.51 0.56

% From RV to CJ 0.00 0.00 0.00 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.01

% From RAV to CJ -0.01 -0.03 -0.03 -0.01 -0.02 -0.01 0.01 -0.02 0.01 -0.01 -0.03 -0.03 -0.01

% From CJ to Combo 0.02 0.02 0.05 0.01 0.01 0.02 0.02 0.03 0.01 0.03 0.01 0.01 0.02

% From IV to Combo 0.06 0.03 0.02 0.06 0.05 0.08 0.07 0.04 0.08 0.04 0.07 0.07 0.05

% From RAV to Combo2 0.02 0.04 0.04 0.03 0.02 0.03 0.04 0.02 0.01 0.04 0.01 0.01 0.03

% From IV to Combo2 0.05 0.05 0.03 0.06 0.07 0.08 0.08 0.05 0.07 0.05 0.09 0.09 0.06

AVG is the average value over all 10 individual stocks

% Signi�es Percentage Change in Adjusted R2 from one model to another

Combo is a model where the independent variables from the HAR-RV-CJ Model are combined with Implied Volatility

Combo2 is a model where the independent variables from the HAR-RAV Model are combined with Implied Volatility

Bold values signify the highest adjusted R2 in the non-combo models
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Additional Table 3: Adjusted R2 Values for OLS Regressions 5 Day Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX AVG

HAR-RV 0.67 0.45 0.53 0.66 0.65 0.59 0.66 0.53 0.71 0.70 0.58 0.58 0.62

HAR-RV-CJ 0.67 0.45 0.54 0.69 0.65 0.59 0.67 0.53 0.72 0.71 0.60 0.60 0.62

HAR-RAV 0.67 0.52 0.60 0.68 0.70 0.62 0.67 0.58 0.72 0.72 0.65 0.65 0.65

HAR-RAV2 0.68 0.47 0.56 0.68 0.66 0.60 0.66 0.56 0.71 0.71 0.61 0.61 0.63

Implied Volatility 0.67 0.53 0.60 0.68 0.66 0.55 0.64 0.52 0.66 0.71 0.54 0.53 0.62

HAR-RV-CJ + IV 0.73 0.54 0.62 0.73 0.71 0.64 0.71 0.58 0.74 0.75 0.63 0.63 0.68

HAR-RAV + IV 0.72 0.55 0.64 0.72 0.72 0.64 0.73 0.61 0.74 0.75 0.65 0.65 0.68

% From RV to CJ 0.00 0.00 0.01 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.03 0.01

% From RAV to CJ -0.01 -0.02 -0.02 0.01 -0.01 0.00 0.01 -0.03 0.01 0.00 -0.01 -0.01 -0.01

% From CJ to Combo 0.06 0.09 0.08 0.04 0.06 0.05 0.05 0.05 0.03 0.05 0.03 0.03 0.05

% From IV to Combo 0.06 0.01 0.02 0.05 0.05 0.08 0.08 0.06 0.08 0.05 0.10 0.10 0.05

% From RAV to Combo2 0.05 0.03 0.04 0.04 0.03 0.03 0.06 0.03 0.02 0.04 0.01 0.01 0.04

% From IV to Combo2 0.05 0.02 0.04 0.03 0.07 0.09 0.09 0.08 0.08 0.05 0.12 0.12 0.06

AVG is the average value over all 10 individual stocks

% Signi�es Percentage Change in Adjusted R2 from one model to another

Combo is a model where the independent variables from the HAR-RV-CJ Model are combined with Implied Volatility

Combo2 is a model where the independent variables from the HAR-RAV Model are combined with Implied Volatility

Bold values signify the highest adjusted R2 in the non-combo models
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Additional Table 4: Adjusted R2 Values for OLS Regressions 22 Days Ahead

BMY C GE GS HD KO MDT MOT NOK TXN SPY SPX AVG

HAR-RV 0.60 0.38 0.44 0.64 0.45 0.43 0.53 0.42 0.61 0.59 0.45 0.45 0.51

HAR-RV-CJ 0.62 0.38 0.45 0.67 0.46 0.43 0.56 0.43 0.62 0.61 0.47 0.47 0.52

HAR-RAV 0.64 0.51 0.55 0.66 0.53 0.49 0.55 0.52 0.68 0.64 0.56 0.56 0.58

HAR-RAV2 0.61 0.41 0.46 0.66 0.46 0.43 0.50 0.46 0.62 0.59 0.48 0.48 0.52

Implied Volatility 0.71 0.50 0.55 0.68 0.50 0.46 0.58 0.46 0.60 0.58 0.47 0.46 0.56

HAR-RV-CJ + IV 0.73 0.50 0.56 0.72 0.52 0.50 0.62 0.49 0.66 0.63 0.52 0.51 0.59

HAR-RAV + IV 0.73 0.53 0.59 0.70 0.55 0.51 0.63 0.54 0.69 0.65 0.57 0.57 0.61

% From RV to CJ 0.02 0.00 0.01 0.03 0.02 0.00 0.03 0.01 0.01 0.01 0.02 0.02 0.01

% From RAV to CJ 0.01 -0.03 -0.01 0.01 0.01 0.00 0.06 -0.03 0.00 0.02 -0.01 -0.01 0.00

% From CJ to Combo 0.11 0.12 0.10 0.05 0.06 0.07 0.06 0.06 0.03 0.03 0.05 0.04 0.07

% From IV to Combo 0.02 0.00 0.00 0.05 0.02 0.04 0.04 0.03 0.06 0.05 0.05 0.05 0.03

% From RAV to Combo2 0.10 0.02 0.03 0.04 0.02 0.02 0.08 0.02 0.01 0.01 0.01 0.01 0.03

% From IV to Combo2 0.02 0.03 0.03 0.02 0.04 0.05 0.05 0.08 0.09 0.07 0.10 0.11 0.05

AVG is the average value over all 10 individual stocks

% Signi�es Percentage Change in Adjusted R2 from one model to another

Combo is a model where the independent variables from the HAR-RV-CJ Model are combined with Implied Volatility

Combo2 is a model where the independent variables from the HAR-RAV Model are combined with Implied Volatility

Bold values signify the highest adjusted R2 in the non-combo models
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