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Abstract 

This paper attempts to explore two recent statistics used to identify jumps in stock 

prices, as well as to propose a modification to one of the statistics to increase its accuracy by 

adding a second stage with a different estimator of local volatility.  After identifying 

potential jump days, a study of Bristol-Myers Squibb Co. stock was performed, identifying 

the types of company-specific events that occurred on these days that seemed to cause jumps 

in the price.  Also, the new proposed statistic was found to be more accurate by a using 

method of changing the significance levels used in each stage, as well as in samples with an 

extremely high jump frequency. 
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For many years, financial economists assumed that security returns followed a 

continuous random walk, which could be described by a normal distribution.  Many key 

models used this assumption, such as the Black-Scholes model for pricing options (Black and 

Scholes, 1973).  However, as these returns were examined further, it seemed clear that they 

were not normally distributed; the distributions of the returns seemed to have “fat tails,” 

meaning large moves in prices were more common than a normal distribution would predict.  

Also, statisticians found that there were in fact jumps, very large either positive or negative 

changes in prices (Andersen, Bollerslev, and Diebold, 2002), which contradicted models 

such as the Black-Scholes.  Recently, financial economists have begun to attempt to identify 

and quantify these random jumps in returns by using high-frequency stock data.  One of the 

major statistics used to try to identify such jumps, discussed in Barndorff-Nielsen and 

Shephard (2004) and Huang and Tauchen (2005), claims to identify which trading days 

contain at least one jump.  While the results from this statistic are well documented, other 

economists sought to overcome the limitation that the statistic cannot identify multiple jumps 

in a day, or the exact time of a jump; it merely attempts to determine whether or not at least 

one jump was present during the trading day. 

 

 Two of these economists were Lee and Mykland (2006), who propose a statistic that 

not only determines whether or not at least one jump was present during the trading day, but 

would also identify multiple jumps in a day, as well as their exact times.  The two economists 

used a statistic that attempts to label the specific returns where jumps occurred by 

constructing a ratio of the return to a measure of local volatility that is created by using a 

trailing average of the Bipower Variation (a statistic that will be defined in depth later in the 

paper).  By using this method, large jumps in the stock price could be identified. 
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 This paper attempts to determine if Lee-Mykland’s statistic might be modified so that 

it becomes more efficient.  While the Bipower Variation is robust to jumps, Huang and 

Tauchen (2005) document that the Realized Variance (a statistic which will also be defined 

later) is a more efficient estimator, although it is not robust to jumps.  Therefore, it is 

hypothesized that a more efficient estimator can be used, namely the Realized Variance, and 

a new statistic is proposed.   

 

 This new statistic is similar to Lee and Mykland’s but conducted twice, slightly 

modifying the statistic during the second step.  First, the original Lee-Mykland statistic is 

calculated, identifying returns as potential jumps.  The second iteration then uses the 

Realized Variance to estimate local volatility; however, since it is not robust to jumps, all 

jumps flagged by the Lee-Mykland statistic in the first stage are removed through processes 

that will be described later, and the Realized Variance is used to compute the new estimate of 

the local variance using this smoother, jump-free set of returns.  Finally, the t-statistic is re-

computed, using the original returns in the numerator and the new jump-free estimator of 

local variance in the denominator.  It is hypothesized that this new method creates a statistic 

that is a more accurate jump detector, since it might slightly smooth out the estimated local 

volatility and cause jump returns to stand out.  It is proposed that if the new statistic is able to 

detect jumps more accurately, then it would be a useful addition to Lee and Mykland’s 

statistic; on the other hand, if it is not significantly more accurate in flagging jumps, then it 

would uphold and strengthen Lee and Mykland’s original statistic.  This paper will describe 

the process that led to the proposed statistic, and the results of testing the accuracy of both 

the Lee-Mykland statistic and the new two-stage approach in correctly flagging jumps in data 

simulated using various models.   
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 First, the paper will begin with a brief discussion of the high-frequency stock data 

used throughout the research.  Next, it will outline the methods and models used to conduct 

the three jump detection tests and outline the statistics presented by Barndorff-Nielsen and 

Shephard (BNS), the Lee-Mykland statistic (L-M), and the modified, two-stage process 

described above.  Next, the results of applying these statistics to actual high-frequency stock 

data will be presented.  In addition, this section will give an overview of the results obtained 

when each day flagged by the Barndorff-Nielsen and Shephard statistic as containing a jump 

was examined using the Factiva news service, attempting to identify any company-specific 

events that might have caused a jump in stock prices. The final section will present two price 

models used to create simulated series of stock returns, and the results when both the original 

Lee-Mykland statistic and the modified two-stage statistic are applied to these returns. 

 

I.  Data 

 

This research examines high-frequency stock data from the New York Stock 

Exchange.  Specifically, the research was primarily performed on the stock of Bristol-Myers 

Squibb Co (ticker symbol BMY).  The actual data sets, containing 30-second returns from all 

full trading days from January 2001 through December 2005, were acquired from the Trade 

and Quote Database (TAQ), which was obtained through Wharton Research Data Services.  

While this paper will provide a brief overview, a more thorough description of this data can 

be found in Law (2007).   

 

While these data are quite reliable, there are some entry errors in some of the data 

sets; therefore, the data needs to be cleaned up.  Even though only the 40 most actively 
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traded stocks on the NYSE are even considered to be analyzed since high liquidity is desired, 

there are still some erroneous trades and data entry errors that need to be corrected.  Tzuo 

Law performed the initial work, using an adapted version of the previous tick method from 

Dacorogna, Gencay, Muller, Olsen, and Picter (2001).  This method excludes the first five 

minutes of the trading day, so that trading is more uniform.  Therefore, there are 771 

observations for each of the 1241 days examined, going from 9:35 am to 4:00 pm.  However, 

since market microstructure noise increases as the sampling intervals become smaller, 5-

minute returns were examined throughout the research to lessen its effect.  Finally, two 

methods are used to manually clean up the data.  First, whenever there are two consecutive 

returns over 1.5% in opposite directions, both returns are set equal to zero.  This is used 

because it was decided that two such offsetting returns are most likely the result of a data 

entry error, as such a move would be very unlikely to occur within normal trading conditions.  

Also, in some cases, simple manual inspection is used.  If there seemed to be a spurious 

return whose magnitude made no sense within a series of returns, it is also set equal to zero.  

By using these two methodologies to clean up the data set, it is believed that most errors 

within the data sets can be eliminated. 

 

II.  Methods Used in Statistics 

 

 This section will seek to provide a step-by-step explanation of how each statistic is 

constructed and conducted.  First, it will describe the statistic found in Barndorff-Nielsen and 

Shephard (2004) and Huang and Tauchen (2005), Lee and Mykland’s statistic, and finally the 

modified two-stage approach. 
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A.  The Statistic Presented by Barndorff-Nielsen and Shephard to Identify Jump Days 

 

 The analysis is performed under the assumption that the log-price p(t) is defined in 

continuous time as follows (Huang and Tauchen 2005): 

 

This model consists of a drift term added to a standard Brownian motion multiplied by the 

instantaneous volatility.  The final term shows a pure jump Levy process, with increments 

Lj(t) – Lj(s)  = Σs≤τ≤t κ(τ), where κ(τ) is the jump size.  The specific Levy process examined 

is a Compound Poisson-Process (CPP), where jump intensity is constant, and jump size is 

independently identically distributed. 

 

 The statistic presented by Barndorff-Nielsen and Shephard and later examined by 

Huang and Tauchen utilizes several statistics, as presented below.  First, the return rt,j is 

defined as simply the difference in each consecutive log-price, as defined above.  Next, the 

Realized Variance, as presented in Andersen, Bollerslev, and Diebold (2002), is defined as 

 

and the Bipower Variation is defined as 

. 

What is very important about these two estimators of integrated variance is that, 
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and, according to Barndorff-Nielsen and Shephard (2004a), together with Barndorff-Nielsen, 

Graversen, Jacod, Podolskij, and Shephard (2005) and Barndorff-Nielsen, Graversen, Jacod, 

and Shephard (2005), under reasonable assumptions,  

                             

These limits show that the Realized Variance is a consistent estimator of integrated variance 

summed with the jump contribution, while Bipower Variation is a consistent estimator of the 

integrated variance, regardless of the presence of jumps.  Therefore, by using the difference 

of these two limits, a consistent estimator of the jump contribution,  RVt - BVt , can be used, 

since  

 

Also, Huang and Tauchen (2005) defined the Relative Jump, RJt as the contribution of jumps 

to the total variance, as follows: 

 

Through this definition, 100*RJt is equal to the percentage contribution of jumps, if any, to 

total price variance.  All of these quantities, RVt, BVt, and RJt , are then totaled cumulatively 

throughout each trading day.  For example, if 5-minute returns are used, there are 77 returns 

in each day; therefore all 77 values are used to generate a summation series for each statistic 

for each of the 1241 trading days in the sample.   
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 Again, these values are calculated cumulatively over each trading day.  These 

statistics are combined to calculate the z-statistic for each day, testing the null hypothesis that 

there were no jumps present during the day: 

, 

where  

 

and 

 

The z-statistic also utilizes the Tri-Power Quarticity, TPt, which is defined as: 

 

where  

  

Barndorff-Nielsen and Shephard also show that the Tri-Power Quarticity is jump-robust as an 

estimator of the integrated variance squared, as shown: 

. 

Therefore, by using the ratio of the Tri-Power Quarticity to the Bipower Variation, the z-

statistic simply follows the general form of any z-statistic, as defined below: 
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In this case, the z-statistic tests the null hypothesis that RJt is equal to 0.  Therefore, the 

denominator of the z-statistic represents the square root of the variance of RJt.  This version 

of the z-statistic is the recommended statistic presented in Huang and Tauchen’s analysis of 

the theoretical statistic presented by Barndorff-Nielsen and Shephard.  These z values are 

taken at the .1% significance level, in order to flag only large jumps.  As stated before, these 

statistics only identify days on which there is evidence of at least one jump; they cannot show 

how many jumps are in each of these days.   

 

B.  The Lee-Mykland Return-to-Volatility Ratio Statistic 

 

 As stated before, the Lee-Mykland test relies on constructing a ratio of the current 

return and the local volatility.  Using the price model, with S(t) being the price at time t,  

 

where Y(t) is the jump size, and dJ(t) is a non-homogenous Poisson-type jump process. The 

first two terms are defined as a drift term, added to a Brownian motion term.  

 

  Therefore a t-statistic is proposed to test the null hypothesis that there is no jump at a 

given return, constructed as follows: 
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where the z-statistic contains a moving average of the Bipower Variation to estimate the local 

volatility, constructed as 

||||
1

1
2

1,,

0
, −−−

=
∑×+

×= ijtijt

K

i
jt rr

K
πσ . 

K in this formula represents the backward-looking window size, and 
2
π is a constant used to 

normalize the statistic so that a z-table can be used.  The subscript t is used to denote the day, 

while j shows the return on a given day.  When the value of j is negative, the term then refers 

to a return on the previous day.  Lee and Mykland recommend window sizes of 7, 16, 78, 

110, 156, and 270 returns for sampling intervals of 1 week, 1 day, 1 hour, 30 minutes, 15 

minutes, and 5 minutes, respectively.   

 

 Throughout this research, five minute returns were analyzed, so a window size of 270 

was used.  One important step in evaluating this statistic points out that a lower significance 

level must be used to account for Type I errors due to the much higher number of returns, a.  

Therefore, using a binomial distribution, setting .999 = Pr (k=0) = ( )( ) ( ) ( )n
n

kknn
k ααα =−

−
1 , where 

n is equal to the number of statistics in each sample, alpha is solved for, which becomes the 

adjusted significance level.  Table 1 in Appendix B shows the suggested values for various 

sampling intervals.  By using these values, it will be equivalent to using a .1% significance 

level on the daily level, as was used in the Barndorff-Nielsen and Shephard statistics.  This 

table will be used later when applying this statistic to actual stock data. 

 

 

C.  Introduction of the Two-Stage Process 
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 After examining the L-M test, which simply constructs a ratio of the current return to 

an estimate of the local volatility, it is proposed that it might be possible to make the statistic 

slightly more efficient.  As Huang and Tauchen (2005) found, the Realized Variance is a 

more efficient estimator of local volatility than the Bipower Variation; however, this is only 

the case when a sample with no jumps is considered, since Realized Variance is not robust to 

jumps, as previously discussed.  Therefore, it is reasoned intuitively that, if the Lee-Mykland 

statistic is able to flag enough jumps, the Realized Variance can possibly then be used to re-

compute a more efficient estimate of local volatility after these potential jumps are removed. 

 

 The new statistic is constructed according to the following steps.  First, the ratio of 

the current return to the local volatility estimate, computed using Bipower Variation, is 

calculated.  This generates a series of returns flagged as jumps, which are then set to zero.  

Next, the local volatility throughout the sample is recalculated using Realized Variance with 

this new set of returns.  Finally, another z-statistic is created, using a ratio of the original set 

of returns to the new estimate of local volatility.  In this statistic, the estimate of local 

volatility will be defined as: 

2
,

0
, ||

1
1' ijt

K

i
jt r

K
−

=
∑×+

=σ . 

 The application of this new test to Bristol-Myers stock data, as well as simulated data 

sets of returns, will be reviewed later in this paper. 

 

III. Results of Application to Observed Stock Data 

 

A.  Analyzing High-Frequency Stock Data with the Barndorff-Nielsen Shephard 

Statistic 



 

 14  

 

 This section, as discussed in the introduction, will discuss the various analyses 

performed on actual BMY high-frequency stock.  These analyses consisted of the Barndorff-

Nielsen Shephard statistic, the Factivas news search on the flagged jump days, the Lee-

Mykland statistic, and the new two-stage statistic. 

 

 First, the price of Bristol-Myers Squibb Co. stock is displayed.  This graph is 

presented below (Figure 1a). 

 
Figure 1a: Graph of BMY Stock Price from Jan. 2001 to Dec. 2005 

 
 

Obviously, the enormous drop in the stock price stands out, and it is also noted that volatility 

seems to dramatically decrease during the last half of the sample.  It is hypothesized that this 

large price change that occurred just before 2002 will be flagged as a jump.  However, one 

cannot tell which price changes are overnight price moves.  Since each day’s returns are used 

to compute the Barndorff-Nielsen and Shephard statistic, all overnight returns are ignored.   
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 Next, from this series of prices, the differences of the log-prices are taken to find the 

returns.  Figure 1b shows the returns of BMY stock, shown in differences of the log-returns. 

 
Figure 1b: Graph of BMY Stock Returns from Jan. 2001 to Dec. 2005 

 
 

 These returns will be used to compute the final Barndorff-Nielsen and Shephard 

statistic.   Next, these returns are used to calculate the z-statistic, as defined earlier.  Using a 

.1% significance level, 51 jump days are detected.  The graph of the computed z-statistics is 

shown in Figure 1c.  The horizontal line displays the cutoff value, corresponding to the .1% 

significance level.   



 

 16  

 
Figure 1c: Graph of Daily Z-Statistics Computed for BMY Stock from Jan. 2001 to Dec. 

2005 
 

 

B.  Analyzing Flagged Jump Days Using Factiva 

 

 Next, after these fifty-one days were flagged as containing a jump, the Factiva news 

service was used to attempt to speculate what event might have caused the stock price to 

jump.  By examining each of the days in such a way, the study could offer some clue as to 

what sorts of events might trigger a jump in the stock.  After examining the results, there are 

five out of fifty-one flagged days that did not seem to be caused by a company-specific event 

occurring to Bristol-Myers, and there seem to be four major types of events on the remaining 

46 flagged days: product liability or antitrust lawsuits against Bristol Myers, accounting or 

financial announcements released by Bristol-Myers, mergers or acquisitions, and product 

development news.   
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 The least frequent of these, occurring on eight flagged days, pertains to product 

liability or antitrust lawsuits against Bristol-Myers Squibb.  For example, the statistic flagged 

both June 2002, the company was sued for obstructing competitors, and February 14 2001, a 

potential investigation into Bristol-Myers by the FTC was announced.   

 

 The next category of announcements, falling on fifteen days flagged as jumps, 

concern accounting news or announcements concerning the financial health of the company, 

such as earnings announcements.  For example, the statistic flagged March 10, 2003, when 

Bristol-Myers announced a restatement of financial statements.  It also flagged August 9, 

2005, 2005, when profit jumped 89.5%, exceeding projected earnings per share by $.14. 

 

 The third category of events, falling on seventeen flagged days that seemed to trigger 

stock price jumps, is news concerning changes in the structure of the company, such as 

mergers and acquisitions, or expanding drug distribution lines into new areas.  For example, 

the statistic flags April 1, 2002 as a jump, the same day that Chinoin acquired a Hungarian 

drug unit from Bristol-Myers.  The statistic also flags both January 5, 2005 and July 15, 

2005, the days that Bristol-Myers’ sale of its Excedrin line became announced and became 

finalized, respectively.   

 

 Finally, the most prevalent news event that seems to trigger stock price jumps, 

corresponding to twenty flagged days, concerns drug development news, whether good or 

bad.  As one might expect, the future earnings estimates for a pharmaceutical company 

largely depend on such announcements, and the days flagged as containing jumps seemed to 

indicate this.  For example, December 3, 2001, is flagged as a jump.  This was the same day 

that IVAX, a competitor, gained approval to make a generic version of one of Bristol-Myers’ 
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most successful drugs, Glucophage.  Also, the test declares July 23, 2003, when the Food and 

Drug Administration approved Bristol-Myers’ Pravigard tablets, as a jump.  In general, these 

sorts of events seemed to have a definite correlation with the days flagged by the z-statistic 

developed in Huang and Tauchen (2005).   

 

 Next, the research sought to visually confirm some of the results produced by the 

statistic.  To do this, several of the days where drug development news seemed to cause a 

price jump were examined.  Figures 2a-2e in Appendix A show five of these days- December 

3, 2001, December 13, 2002, July 23, 2003, October 6, 2004, and November 21, 2005.   Each 

of these graphs shows the returns throughout each trading day, in percent, and beneath each 

figure is a description of the drug announcement that occurred each day.  These days all seem 

to have one or more returns that might visually indicate a large, sudden jump in the stock 

price.  After this analysis was performed, the research moved to the Lee-Mykland statistic, 

which sought to be able to identify the specific return where the jump occurred, not merely 

the day where at least one such jump had been present. 

 

C.  Analyzing Actual Stock Data with the Lee-Mykland and Two-Stage Statistic 

 

 The data set is also analyzed using the Lee-Mykland statistic and the two-stage 

approach, as described previously.  Using the .012% significance level found in Table 1 in 

Appendix B, appropriate for 5-minute returns, the normal Lee-Mykland statistic flags 663 

returns as having a jump.  When running the Realized Variance iteration, 804 returns are 

flagged in the second phase.  Also, slightly different significance levels are tried during the 

first stage to adjust how many returns were set to zero before computing the jump-free 

variance.  For example, when using a .1% significance level in the first stage (followed by 
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the usual .012% significance level in the second stage), 1,339 jumps are flagged by the first 

stage, while the second stage detects 1,099 jumps.  Also, while using a .05% significance 

level in the first stage, 1,057 jumps are flagged in the first stage, while the second stage flags 

1,005 returns as jumps.   

 

 While it is very interesting to note that the statistic flags a great deal more jumps than 

Barndorff-Nielsen and Shephard’s statistic, not many conclusion can be gathered from these 

results, since one does not know definitely how many jumps were in the sample, and whether 

or not adding the second stage increased the accuracy of the statistic.  Therefore these 

statistics will be calculated on simulated data, where jump locations are known. 

 

IV.  Validation of the Two-Stage Statistic Under Controlled Conditions 

 

A.  Returns Modeled Using Constant Volatility 

 

 The first group of simulations is performed using a very simplistic way of modeling a 

stock’s returns.  This is done by creating one Brownian motion term and two jump terms.  

Each jump term is a random Poisson process multiplied by a random normally distributed 

variable.  Each normally distributed random variable has equal means of opposite signs, so 

that the jumps have a combined mean of 0.  The formula used is shown below: 

 

)()()()()(*)( 21 ttdttdtdWtdp βλαλσ ++= , 
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where σ   is distributed N(0,.00004), dλ1(t) and dλ2 (t) are random Poisson integer processes 

with mean .01, and α(t) and β(t) are distributed N(±.01, .001).  These parameters are selected 

to match the standard deviation of returns in the actual BMY stock data, which is equal to 

.002 in the 5-minute data.  The jumps flagged by the Lee-Mykland statistic are slightly 

smaller but not statistically different from 1% jumps, so α(t) and β(t) were centered around  

±1%.  The means of the Poisson processes were selected to provide a given number of jumps 

in the simulated data.  Using the above parameters, approximately 2% of the returns contain 

a jump, which is approximately the percentage of the returns that were flagged by the tests in 

the actual Bristol-Myers stock data.   

 

This price model poses two major limitations.  First, the volatility is constant 

throughout the sample, which is not the case in actual stock data; in reality, volatility changes 

over time.  This limitation is changed in simulations that will be discussed later in this paper.  

The second limitation is brought about through the use of the random Poisson integer 

processes.  In these processes, a series of integers is generated, having a given mean, in this 

case equal to .01.  Due to the low magnitude of the mean, it is assumed that the vast majority 

of non-zero integers generated would be equal to 1; however, in the case where the integer 

generated is greater than one (i.e., x=2,3…), this is equivalent to saying that there is more 

than one jump in the given return period, and that they are of equal intensity.  In reality, this 

might not be an accurate model of jumps as seen in stock returns; however, due to the low 

mean of the Poisson distributions, it is  assumed that these effects would be negligible, and 

the model could be used.   
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 Throughout this paper, the results of these simulations will be presented using 

confusion matrices.  This method of analyzing the results presents the performance of test 

statistics such as these in a 2x2 matrix as shown: 

  Test  

  (NJ) (J) 

Truth (NJ) 1 2 

 (J) 3 4 

Table 1: Sample Confusion Matrix 

 

This matrix, in which each entry will be a decimal between 0 and 1, represents a different 

aspect of the accuracy of the test statistic.  On each side of the matrix, the titles (NJ) and (J) 

refer to “Non-Jump” and “Jump,” respectively.  Each column corresponds to how the test 

statistic classified each return, and each row designates what each return really is in the 

simulation. For example, entry 1 refers to the ratio of returns that did not contain a jump that 

were correctly labeled as non-jumps by the test statistic.  Meanwhile, entry 2 refers to the 

ratio of returns that did not contain a jump but were declared as jumps by the statistic.  

Likewise, entry 3 shows the ratio of returns that did contain a jump that were not flagged by 

the statistic as having a jump, and entry 4 is equal to the ratio of returns that did have a jump 

that were correctly identified by the statistic.  Entries 2 and 3 are referred to as the false 

positive and false negative error rates, respectively.  Also, it should be noted that each row 

should sum to 1.  Finally, for many sets of simulations conducted, two confusion matrices 

will be shown: the top will be the performance of the original Lee-Mykland statistic under 

the given conditions, while the bottom will show the results of the modified, two-stage 

statistic. 
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 Overall, six different variations of the two-stage statistic are tested using this model to 

simulate data, as shown below in Tables 2a-2f.  Each test is performed by averaging the 

results of tests consisting of 77,000 simulated returns each.  First, the iterative Realized 

Variance method is utilized, setting each jump flagged by the first stage equal to the absolute 

average return over the sample when the jump-free estimated local volatility is calculated 

(Table 2a).  Table 2b shows the results when each jump flagged by the first stage is set equal 

to zero.   

 

 In analyzing these results, two comparisons can be made.  First, the effect of utilizing 

the two-stage approach can be examined.  Also, one can compare the two methods of 

conducting the two-stage approach. 

 
 (NJ) (J)   (NJ) (J)  

(NJ) 1 0.0000  (NJ) 1 0.0000  
(J) 0.1102 0.8898  (J) 0.1102 0.8898  

        
(NJ) 1 0.0001  (NJ) 0.998 0.0002  
(J) 0.072 0.9277  (J) 0.0684 0.9316  

               Table 2a          Table 2b   
  
 
Examining these results, there does seem to be an improvement from using the second stage 

approach, as the correct detection rate increases from almost 89% using the normal Lee-

Mykland to approximately 93% in the second stage for each test; however, if the same 

significance level is used for both stages, as in Tables 2a-2b, the false positive rate is higher 

in the first stage than when using the original Lee-Mykland statistic.  However, this increase 

is fairly small in these tests, rising from virtually 0% to .01% in the second stage.  There does 

not, however, seem to be a large difference created by changing the method of removing 

jumps before calculating the second stage statistic. 
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 Next, significance levels are manipulated, as Table 2c displays the results of lowering 

the significance level of the first stage to 1% (while maintaining a .01% significance level for 

the second stage).  Table 2d displays the results obtained when the significance level of the 

first stage is set to .5%.  It is proposed that this allows the first stage to flag more jumps and 

remove them from the data set, then let the second stage attempt to identify jumps with the 

original low significance level.  Ideally, this would strike a balance in the trade-off between 

flagging more jumps correctly and introducing the higher false positive rate.  The two 

matrices below display the results of the second stage after using a different significance 

level used in the first stage.  The detection rates should be compared to the rates found in the 

second stage of Table 2a.  Also, one should note the difference in the false positive rates 

between the first and second stage for each test. 

 
 (NJ) (J)   (NJ) (J) 

(NJ) 0.9969 0.0031  (NJ) 0.9786 0.0214 
(J) 0.0624 0.9376  (J) 0.0523 0.9477 

       
(NJ) 0.997 0.0003  (NJ) 0.999 0.001 
(J) 0.0666 0.9334  (J) 0.0627 0.9373 

Table 2c       Table 2d 
 
 
In both tables, the changed significance level enabled the second stage to identify more 

jumps than when both stages have a .01% significance level pushing the correct detection 

rate to well over 93%, while having a lower false positive rate than the first stage, which 

utilizes a higher significance level.  For example, in Table 2c, the first stage flags about 

93.8% of the jumps correctly, but has a .3% false positive rate.  The second stage, using a 

lower significance after these jumps are flagged, as virtually the same correctly detection rate 

(93.3%), but has only a .03% false positive rate.  This process of changing the significance 

level between stages will be examined further under stochastic volatility conditions. 
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 Finally, Tables 2e-2f explore changing the exponents of the Bipower Variation term 

to one-half and three-halves, in an attempt to determine if weighting the previous and current 

return makes a significant difference.  Because of the changed exponents, a different 

coefficient was used in order to normalize the z-statistic, so that, for the estimated local 

volatility in Table 2f and Table 2g, respectively, 
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 (NJ) (J)   (NJ) (J) 

(NJ) 1 0.0000  (NJ) 1 0.0000 
(J) 0.1624 0.8376  (J) 0.1605 0.8395 

       
(NJ) 0.9998 0.0002  (NJ) 0.9999 0.0001 
(J) 0.0661 0.9339  (J) 0.0713 0.9287 

         Table 2e              Table 2f 
 

 Interestingly, Tables 2e-2f, with the weighted-return approach, seem to indicate that 

the first stage is less efficient than the normal Lee-Mykland test, flagging just under 84% of 

the jumps correctly; however, the second stage seems to significantly raise the detection rate, 

making the overall accuracy approximately equivalent to the normal two-stage test statistic, 

flagging around 93% in both Table 2e and Table 2f.  From these results, it was hypothesized 

that weighting the returns in such a way would not provide a significant improvement, and 

this method is not examined under stochastic volatility assumptions. 
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 Overall, adding the second iteration does not seem to make an extremely large 

difference, although the second stage does flag slightly more jumps.  It is expected that 

raising the significance level of the first stage can provide the largest increase in correctly 

identified jumps after the second stage.  With this data, however, the increase seems to be 

fairly minimal, indicating that perhaps the higher efficiency of the Realized Variance is not 

enough to create a large increase in jump detection accuracy.  This may be caused by the 

constant volatility and the very high accuracy of the first stage under constant volatility.  As 

the next section will show, adding a time-varying volatility increased the effect of changing 

the significance level of the first stage.  

 

B.  Returns Modeled Using Stochastic Volatility 

 

 After creating this very simple model with constant volatility, a more complex model 

was introduced.  In an attempt to introduce stochastic volatility to provide a more realistic 

approximation of actual stock returns, the following model for the simulated returns is 

modified to include stochastic volatility: 

)()()()()(*)( 2 ttdttdtdWtdp t βλαλσ ++=  

 

A fairly basic model of volatility is used to simulate tσ , adhering to the following model: 

)()(*)( 21 tdWktd vtavgtt σσσσ +−= − . 

 

This volatility model consists of two terms.  The first, )(* 1−− tavgtk σσ , is a mean-reverting 

term.  The k term is equivalent to the persistence of a given “jump” in volatility, represented 
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in the percentage of the jump that decays after one return.  For example, if k=.01, the change 

in volatility will revert 1% closer to its mean volatility each return.  Therefore, the smaller k 

is, the more persistent any volatility change will be.  The second term, )(tdWvσ , represents 

the standard deviation of the standard deviation.  Also, if at any time this process caused tσ  

to become negative, the absolute value was taken.  By combining these two terms, the second 

term will create shocks that will be persistent yet mean-reverting, similar to actual financial 

markets.  The graph below (Figure 3) is a sample graph of the standard deviation of the 

returns in a randomly generated sample of returns.  As one can see, there is a large amount of 

movement and stochastic volatility present. 

 

 
 

Figure 3: Changing Standard Deviation of Returns Throughout a Simulated Sample 
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 In addition to evaluating the effect of adding the second stage of the statistic, adding 

this type of return modeling allowed for the analysis of the performance of the original Lee-

Mykland statistic under certain conditions.  For example, while attempting to calibrate the 

values of vσ  to use in a model, an interesting relationship arose between a given vσ  value 

and the percentage of jumps that both the Lee-Mykland and two-stage statistic identified: the 

accuracy of each of the tests is extremely dependent on the value of vσ  for a given k value.  

This fact is illustrated in the figures below.  Figure 4 shows the required vσ  values in order 

for the true positive rate to stabilize. 

 
 

True Positive Rate vs. Volatility Shock
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Figure 4: Graph of True Positive Rate vs. vσ , Multiple k Values 

 
 

 As one can see, the difference in required vσ  values in order for the statistics to flag 

approximately 60% of the jumps correctly is vastly different for different persistence values.  

If volatility shocks have very high persistence, the statistics require a very low magnitude of 

vσ in order to pick up a high percentage of the jumps.  However, once a given vσ  is low 
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enough to reach this, the accuracy of the statistics seems to plateau.  This fact is an 

interesting observation of the conditions under which the statistics seem to be viable. 

 

 In order to calibrate the vσ value, the kurtosis of the simulated returns is examined.  

First, the persistence level is calibrated so that volatility shocks would have a half-life of 

between 40-50 days.  This criterion is chosen because recent research has placed the half-life 

of such shocks as being very large, as discussed in papers such as Bollerslev and Mikkelsen 

(1996).  Once the persistence is set, a value of vσ  is selected that would result in a kurtosis of 

between 10 and 15, a range of values that is typical of the majority of stocks.  For this 

analysis, it should also be noted that this vσ  value was lower than the plateau point for the 

given k value, approximately represented by the k=.0002 data set in Figure 4. 

 

 First, the statistics are examined using different significance levels (but keeping the 

same significance level for each stage).  Table 3a shows the confusion matrices with .01% 

significance levels, while Tables 3b-3c display the effects of using .1% and 1% significance 

levels for each stage, respectively.  As one can see, there is a large increase in the positive 

detection rate as the significance level increases; however, this is accompanied by large 

increases in the false positive rate.  Also, the increase in correct detection rates between the 

original L-M statistic and the two-stage statistic stays approximately between a 1-2%.  For 

example, the correct detection rate rises from 60.6% to 61.7% in Table 3a.  Since this 

difference is so small, there does not appear to be a large advantage in incorporating the 

second stage.  One should pay particular attention to Table 3a, as these are the results using 

the standard, calibrated parameter values and significance levels that were previously 

discussed.  These results will be used to compare the results each time a parameter is 
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changed.  Under these base conditions, the second stage correctly identified about 61.6% of 

the jumps, an increase of about 1% over the original Lee-Mykland statistic, while introducing 

a false positive rate of .04%. 

 
 
 

 (NJ) (J)   (NJ) (J)   (NJ) (J) 
(NJ) 0.9997 .0003  (NJ) 1 .00022  (NJ) 0.9834 0.0166
(J) 0.3938 0.6062  (J) 0.309 0.6915  (J) 0.2495 0.7505

           
(NJ) 0.9996 0.0004  (NJ) 0.997 0.0027  (NJ) 0.9725 0.0275
(J) 0.3834 0.6166  (J) 0.297 0.7026  (J) 0.2225 0.7774

      Table 3a              Table 3b      Table 3c 
 
 

 Next, the significance levels only for the first stage are changed in an attempt to 

minimize the trade-off between raising the positive detection rate while increasing the false 

negative rate.  The intuitive reasoning behind this was such: if the significance level for the 

first stage is raised, it will flag more returns as jumps.  If more returns are set to 0, the second 

stage, still utilizing a significance level of approximately .01% will be more likely to flag 

jumps that were just below the cutoff threshold previously.  Tables 4a-4c display the results 

when the first stage uses .1%, 1%, and 5% significance levels, respectively.  These seem to 

provide a viable way to accurately declare more jumps while maintaining a fairly low false 

negative rate, particularly Table 4b, which uses a 1% significance level in the first stage.  

These data show an increase of nearly 7% in the correct detection rate from the original rate 

of 61.7% to 68%, while raising the false negative rate only .05% to .09%. 
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 (NJ) (J)   (NJ) (J)   (NJ) (J) 
(NJ) 0.9979 0.0021  (NJ) .9833 .0167  (NJ) 0.917 0.0830 
(J) 0.3339 0.6661  (J) 0.2269 0.7731  (J) 0.1815 0.8185 

           
(NJ) 0.9995 0.0005  (NJ) 0.9991 0.0009  (NJ) 0.9968 0.0032 
(J) 0.3705 0.6295  (J) 0.3197 0.6803  (J) 0.3159 0.6841 

      Table 4a              Table 4b                    Table 4c 
 
 

 Next, the average jump size in the sample is changed.  The original parameters, as in 

the constant volatility case, set the absolute average jump equal to 1%.  While this is a very 

high jump when compared with some of the data, it is possible that in portions of returns with 

high volatility, these jumps may be washed out and might go undetected by the statistics.  

Therefore, jump sizes are adjusted to examine the statistics’ performances under these 

different conditions.  Tables 5a-5c show the results when the absolute average jump sizes are 

.5%, 1.5%, and 2%, respectively.  As expected, as jump size increases, the statistics are able 

to pick up the jumps much more accurately.  These results are expected, but it is interesting 

to see how poorly the statistics perform with .5% jumps being added (a 48.06% correct 

detection rate), and how well they perform with 2% jumps added (an 87.52% correct 

detection rate).  Also, similar to Tables 3a-3c, the second stage only increases the true jump 

detection rate by about 1%, indicating a negligible effect of adding the second stage. 

 
 

 (NJ) (J)   (NJ) (J)   (NJ) (J) 
(NJ) 0.9996 0.0004  (NJ) 0.9997 0.0003  (NJ) 0.9997 0.0003 
(J) 0.5265 0.4735  (J) 0.2567 0.7433  (J) 0.1352 0.8648 

           
(NJ) 0.9997 0.0003  (NJ) 0.9997 0.0003  (NJ) 0.9996 0.0004 
(J) 0.5194 0.4806  (J) 0.2457 0.7543  (J) 0.1248 0.8752 

      Table 5a               Table 5b       Table 5c 
 
 
 Finally, the jump frequency was adjusted.  In the earlier stochastic volatility models, 

jumps arrived, on average, 1 in every 100 returns.  Since the data is being calibrated to five-

minute returns, this means about one jump every day and a half.  Tables 6a-6c adjust this 
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frequency for jumps to arrive every 50, 25, and 10 returns, respectively.  There are two very 

important observations that can be gathered from this data.  First, both statistics pick up 

fewer jumps correctly on the whole as jumps begin arriving more frequently.  This can be 

seen clearly, as the first stage only correctly identifies 40% of the jumps in Table 6c; 

however, as jumps arrive more frequently, the second stage begins to have a larger effect.  

For example, in Table 6c, the second stage increases the correct detection rate over 7% to 

47.24%, while maintaining virtually a 0% false positive rate.  As the first stage starts to have 

more trouble flagging jumps correctly as they arrive more frequently, the second stage can 

identify jumps much more accurately once some of them are removed by the L-M statistic.  It 

appears that this is the second case in which the second stage provides an advantage to Lee 

and Mykland’s statistic. 

 
 (NJ) (J)   (NJ) (J)   (NJ) (J) 

(NJ) 0.9998 0.0002  (NJ) 1.0000 0.0000  (NJ) 1.0000 0.0000 
(J) 0.3823 0.6177  (J) 0.4499 0.5501  (J) 0.5981 0.4019 

           
(NJ) 0.9997 0.0003  (NJ) 0.9999 0.0001  (NJ) 1.0000 0.0000 
(J) 0.3576 0.6424  (J) 0.4001 0.5999  (J) 0.5276 0.4724 

      Table 6a              Table 6b                    Table 6c 
 
 
IV. Discussion and Conclusions  

 

 Overall, this research has led to many interesting conclusions.  First, the research on 

high-frequency stock data of Bristol-Myers Squibb Co., utilizing the Barndorff-Nielsen and 

Shephard statistics, combined with the Factiva News Service, attempts to examine 

connections between what these statistics indicate and real world events.  There seems to be 

very strong connection between the two, with most of the days flagged as containing at least 

one jump having a corresponding news event that could have definitely triggered large 
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moves in the stock price.  Also, over 90% of these events are company-specific events, rather 

than events that seem to affect the market as a whole.  While a larger study of many other 

companies’ stock jumps is necessary the types of events that seem to cause these jumps 

(product liability or antitrust lawsuits, financial announcements, mergers or acquisitions, and 

product development news) might be very similar across many other stocks. 

 

 Next, the research shifts focus to Lee and Mykland’s statistic, which seeks to identify 

the specific returns where jumps occur.  When the two-stage variation of the L-M statistic is 

first proposed, it seems that the second stage might be able to greatly improve the accuracy in 

detecting jumps.  While creating simulated returns with both constant and stochastic 

volatility, in most situations, there is not a large improvement when the second stage is used.  

This seems to indicate that the L-M statistic, using Bipower Variation to estimate local 

volatility, is a fairly efficient estimator, and that the Realized Variance used in the second 

stage most likely does not increase the accuracy significantly under most conditions.  While 

it has been proven to be a more efficient estimator of local volatility than Bipower Variation 

in other papers, its higher efficiency does not result in dramatic accuracy gains in these 

simulations under most conditions. 

 

 However, the second stage seems to present possible benefits in two situations.  First, 

when the significance level used in the first stage is raised while the significance level in the 

second stage is held constant (Tables 4a-4c), the false positive rate can be held at a low level 

by the low significance level in the second stage, while correctly identifying more jumps 

because of the higher significance level in the first stage.  This method could hold significant 

promise for increasing the accuracy of the Lee-Mykland jump detection test.  While it is not 

within the scope of this paper to speculate on such things, this iteration process could 
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possibly be used on many other statistics which utilize the Bipower Variation to attempt to 

flag jumps in prices series. 

 

 In addition, the two-stage statistic seems to have a clear advantage over the original 

Lee-Mykland test when jumps in the returns are extremely concentrated, as seen in Tables 

6a-6c.  In these periods, the two-stage process allows many more jumps to be filtered out in 

the trailing average local volatility estimate for a given return.  This then allows the second 

stage to more accurately identify jumps.  However, price series with so many large moves in 

a stock are extremely rare.  Therefore, this research concludes that, while there are some 

instances when adding the second stage of the statistic is beneficial, under most 

circumstances, the original Lee-Mykland statistic is fairly accurate, and the second stage does 

not greatly increase the test’s accuracy unless significance levels are changed.  However, if 

the first stage is able to flag a large number of jumps, either by  raising the significance level 

used or simply by examining a set of stock prices where there are many jumps present, 

significant increases in the correct detection might be possible without greatly increasing the 

false positive rate.
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Appendix A- Figures 

 

 
Figure 2a: Graph of returns on December 3, 2001, the day that IVAX, a BMS competitor 

gained approval for a generic rival to Bistol Myers’ drug Glucophage.  The jump certainly 
seems to stick out, occurring at approximately 9:50 am. 

 
Figure 2b: Graph of returns on December 13, 2002, the day that the FDA approved Metaglip, 

a BMS drug.  The jump in BMY stock seems to occur with either the large positive or 
negative move occurring from around 10:45 to 11:15 am. 
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Figure 2c: Graph of returns on July 23, 2003, the day that the FDA approved Pravigard 

tablets, a BMS drug.  Despite a huge early morning loss, due to steady growth, along with a 
large jump at approximately 2:00 pm, BMY stock was nearly even on the day. 

  

 
Figure 2d: Graph of returns on October 6, 2004, the date of a positive drug test 

announcement for BMS.  The jump could be the large move at approximately 10:30 am. 
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Figure 2e: Returns on November 21, 2005, the date of a positive test announcement of 

Bristol-Myers’ drug Baraclue.  It seems that this jump may be shown by the large move at 
approximately 3:20 pm. 

 



 

 37  

Appendix B- Tables 
  

Flagged Jumps at Recommended Window Sizes for SPY Data* 
   

   
   

Sampling Frequency Window Size Significance Level 
   
5 minutes 270 0.99988 
7 minutes 250 0.999836 
11 minutes 200 0.999753 
17.5 minutes 150 0.999624 
27.5 minutes 110 0.999435 
38.5 minutes 90 0.999236 
55 minutes 78 0.998948 
77 minutes 75 0.9985758 

 
Table 1: Significance Levels for Lee-Mykland Based on Sampling Interval 
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