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Abstract

This paper uses high-frequency price data to study the relative contribution of jumps to the total

volatility of an equity. In particular, it systematically compares the relative contribution of jumps

across a panel of stocks from three different industries by computing the cross-correlation of this

statistic for pairs of stocks. We identify a number of empirical regularities in this cross-correlation

and compare these observations to predictions from a standard jump-diffusion model for the joint

price process of two stocks. A main finding of this paper is that this jump-diffusion model, when

calibrated to particular pairs of stocks in the data, cannot replicate some of the empirical patterns

observed. The model predictions differ from the empirical observations systematically: predictions

for pairs of stocks from the same industry are on the whole much less accurate than predictions

for pairs of stocks from different industries. Some possible explanations for this discrepancy are

discussed.

JEL classification: C5, C52, C58

Keywords: econometric modeling, financial econometrics, high-frequency data, jumps
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1 Introduction

The availability of high-frequency financial market data has spurred much research related to the

volatility of the prices of stocks and other financial securities. Estimators with appealing theoretical

properties have been developed that take advantage of the minute-by-minute or even tick-by-tick

price data that can easily be obtained. The essential idea behind these estimators is that high-

frequency price movements provide a more accurate picture of the underlying price process, and

these small movements can be aggregated to generate estimates of the volatility of the stock over a

particular period of time. Of course, understanding and estimating volatility is of much practical

import as well. As the most common measure of risk, accurate estimates of volatility are important

for options pricing, asset allocation, and risk management. Well-established models in finance,

such as the Black-Scholes options pricing model (Black & Scholes, 1973) and the Markowitz

mean-variance framework (Markowitz, 1952) all require estimates of the volatility of the securities

as inputs to the model.

A second benefit of high-frequency data is that it allows researchers to conduct statistical

inference separately on the various components of the price process. Modern models of stock prices

separate the price process into two components: a smooth “diffusive” process and a discontinuous

process that allows for “jumps” to occur periodically in the time series of prices.1 The most

common explanation for the presence of jumps, dating back to Merton (1976), is that they are the

manifestations of an efficient market incorporating new, unanticipated information into the price

essentially as soon as the new information is released. There is substantial econometric evidence for

the presence of such a discontinuous component in observed data. Andersen, Benzoni, and Lund

(2002) study various models of equity return data and conclude that discrete jumps must be present

in any reasonable model to describe the observed data. Drost, Nijman, and Werker (1998) perform

similar statistical tests on the time series of dollar exchange rates and reach a similar conclusion

in this different asset class: a pure diffusive model cannot explain the data entirely. Furthermore,

these jumps complicate many fundamental problems in finance: for example, analytic analysis of

1The discussion in the first part of this paragraph is based on Rognlie (2010).
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options pricing models is difficult in the presence of jumps in the price process, and researchers have

had to impose various assumptions on the jump process to make reasonable progress (Kuo, 2002).

Researchers have developed many statistical techniques to test for the presence of such jumps. Some

of these techniques exploit properties of the higher-order moments of the price process, which will

have different behavior depending on whether a jump is present (Ait-Sahalia & Jacod, 2009; Jiang

& Oomen, 2008). Another statistical test utilizes different estimators for volatility to test for the

presence of jumps (Barndorff-Nielsen & Shephard, 2005).

Although this paper will briefly employ jump tests, the emphasis will be on studying the

contribution of jumps to the volatility. Indeed, this analysis can be performed without directly

testing for jumps at all. While realized variance, developed by Barndorff-Nielsen and Shephard

(2004), estimates the quadratic variation of the total price process within a particular time period,

researchers have proposed a number of simple estimators of variance that are jump-robust. These

estimators are consistent for the volatility of the diffusive component of the price process. For

example, Barndorff-Nielsen and Shephard (2004) propose bipower variation, and Andersen, Dobrev,

and Schaumburg (2010) propose alternate other estimators, called MinVar and MedVar. All these

estimators exploit the observation that large intraday price movements are likely to be due to jumps

rather than to the diffusive process. Since the total quadratic variation within a day can come from

either the diffusive component or the jump component, the difference between realized variance

and one of the jump-robust estimators of the variance returns an estimator for the daily variance of

the jump process. Dividing this quantity by realized variance estimates the relative contribution of

jumps to total price variance, a statistic that was first considered by Huang and Tauchen (2005).

Many variations of the contribution of jumps to total price variance have been studied in the

literature before for a variety of applications. The interest in the difference between realized and

bipower variation began with Barndorff-Nielsen and Shephard (2004), who introduce this statistic

as an estimator for the quadratic variation of the jump process and study basic properties. For ease

of exposition, denote this statistic by Jt. Among other things, they conduct Monte Carlo tests and

show that truncating Jt at 0 to ensure that it is positive improves finite sample behavior. Andersen,
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Bollerslev, and Diebold (2007) study Jt as a component in a volatility forcasting model. They extend

the HAR-RV model of Corsi (2009)—which parameterizes future realized variance as a linear

combination of one-day, one-week, and one-month lagged variances—to include Jt as a regressor.

They find that predicatibility in future realized volatilities comes almost entirely from the volatility

of the diffusive component. Andersen et al. (2007) also conduct some basic time-series analysis

of Jt for the S&P500 Futures Index2 and find that serial autocorrelations up to the tenth order are

significant. A more recent paper by Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009) studies

properties of the difference in the logs of realized and bipower variance, which we will denote LJt

for ease of exposition. They find that the distribution of LJt calculated from the S&P Futures Index

is positively skewed. Furthermore, they only find first-order and fifth-order autocorrelations in the

LJt time series significant; an explanation for the significance of the fifth-order autocorrelation is

that certain macroeconomic announcements are weekly events. Using these empirical regularities

of the LJt series, the authors formulate a simultaneous equation model for the jump statistic LJt

and the bipower variation and employ it to study the leverage effect.

There are certain benefits to studying the normalized difference in the realized and bipower

variances by the realized variance. The interest in this normalized statistic began with its application

to statistical tests for jumps. Barndorff-Nielsen and Shephard (2005) study this quantity as part of a

test statistic for the presence of jumps. Huang and Tauchen (2005) use Monte Carlo simulations

to verify that this test statistic has superior finite sample properties over a broad range of model

specifications. Furthermore, this statistic is also easily interpretable: a number close to 1 implies

that nearly all of the daily quadratic variation is due to the jump process while a number close to 0

implies that almost all of the daily quadratic variation is due to the diffusive process. In contrast,

it is more difficult to put an increase in the unnormalized estimator Jt into context without also

studying the increase in the realized variation. This increase in interpretability comes at a technical

cost: by introducing a ratio into the statistic, many mathematical manipulations become difficult.

This paper studies an aspect of the relative contribution of jumps that has not been considered

2For the purposes of this discussion, this index can be viewed as a summary of the entire market.
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before in the literature: it compares the time series of the relative contribution of jumps across a

panel of many stocks using high-frequency data. In particular, it computes the cross-correlation

of the relative contribution of jumps of the time-series of pairs of stocks and notes a number of

empirical regularities. This paper focuses on comparing properties of the relative contribution of

jumps for pairs from the same industry to pairs from different industries. Such exploratory data

analysis can add to the current understanding of high-frequency equity data. For example, these

empirical findings may be interesting and relevant to researchers studying the relative contribution

of jumps in a portfolio setting with stocks from various industries. This work then considers the

cross-correlation statistic in the context of a simple but standard model of the price process of a

pair of stocks and asks whether the model, properly calibrated, can replicate the observed values.

Simple statistical methods are used to compare the model predictions to the empirical observations.

The paper is organized as follows. Section 2 provides the theoretical background, describing the

price process as well as the estimators for variance. Section 3 discusses the details of jump tests and

also formally introduces the cross-correlation of the relative contribution of jumps. It then presents

the model used in this paper and describes the statistical methodology employed to calibrate the

model to the data. It is difficult to make analytic progress even with this simple model, so Section 4

conducts Monte Carlo experiments to test the effects of the underlying parameters of the model

on the statistic. The next three sections discuss the empirical results of the study. The data, along

with empirical considerations such as microstructure noise, are described in Section 5. Section 6

documents the empirical observations related to the cross-correlation statistic and concludes by

discussing the relation between these empirical observations and the theoretical findings from the

previous section. Section 7 calibrates the model directly to particular pairs of stocks in the data and

compares the model predictions with the empirical observations. Sections 8 and 9 conclude.
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2 Theoretical Background

2.1 Continuous Time Models for Returns

The standard model of a stock price process is that the efficient price p(t) follows the stochastic

differential equation

dp(t) = µ(t)dt+ σ(t)dw(t), (1)

where µ(t) and σ(t) are functions of time that give the drift and the volatility of the security,

respectively, and dw(t) is a Wiener increment for the standard Brownian motion process w(t).

Furthermore, µ(t) is independent of w(t), although it is common in many modern models to assume

that σ(t) is dependent on the Wiener increment. The dollar price of the stock is P (t) = exp (p(t)),

and as a result, Equation (1) is an assumption that the efficient price of a security follows a process

called geometric Brownian motion. Furthermore, this process has the property that all sample paths,

or particular realizations of this process, are almost surely continuous. This geometric Brownian

motion model has many benefits, perhaps the most important of which is its analytical tractability.

For example, the Black-Scholes equation for options pricing obtains an explicit formula for the

value of an option if the underlying price process of the security can be described by Equation (1).

As a result, initial studies of the behavior of stock prices often used Equation (1) or a simple variant

as the basis of their mathematical framework.

The modern literature on the stock market, however, has discredited the assumption that the

observed sample paths are continuous, instead suggesting that discontinuites play an essential

role in the process. As discussed in the introduction, these discontinuities, or “jumps,” have been

observed in many asset classes and have a significant effect on many aspects of finance, such as

securities pricing. Mathematically, an additional term dJ(t) allows for jumps in the price process.

The differential equation used in this paper, therefore, is

dp(t) = µ(t)dt+ σ(t)dw(t) + dJ(t), (2)
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where J(t) − J(s) =
∑

s≤t′≤t κ(t′) and κ(·) is the magnitude of a jump. It is possible to write

dJ(t) = κ(t)dq(t), where dq(t) is a binary variable that is 1 if there is a jump at time t and equal to

0 otherwise. A goal of financial econometrics is to use observed prices to conduct inference on the

jump component separately from the continuous component.

2.2 Estimators for the Variance

Estimating properties of the volatility of a security is an important aspect of econometric analysis of

financial times series. Equation (2) indicates that variance in the more general price process can

come from two components: the diffusive volatility process σ(t) and the jumps κ(t). A parameter

that aggregates the contibutions from both these processes is the quadratic variation on day t, defined

as

QVt ≡
∫ t

t−1

σ(s)2 ds+
∑

t−1≤s≤t

κ(s)2. (3)

A common nonparametric estimator for QVt is the realized variance

RVt ≡
M∑
j=1

r2
t,j, (4)

where t indexes some period of time (such as days), rt,j ≡ pt,j − pt,j−1 is the geometric return

between the (j−1)st and jth price observations in a day, andM is the number of returns observed in

a single day. Barndorff-Nielsen and Shephard (2004) show that RVt is consistent3 for the quadratic

variation QVt as M increases. Of course, a larger value of M implies that returns are observed

more frequently during the day. While deriving the asymptotic properties of RVt is mathematically

difficult, the intuition is straightforward: the square of the geometric return is an estimate of the

variance in a particular interval, and adding the variances calculated from a sequence of small

intervals gives an estimate of the daily variance. Since the geometric return does not discriminate

3A sequence of random variables {Xn} is said to converge in probability to a (possibly random) value X if for
every ε > 0, Pr(|Xn −X| > ε) → 0, where→ represents convergence as a limit of real numbers. An estimator is
(asymptotically) consistent for a population parameter if it converges in probability to the parameter as more data is
collected. Essentially, consistency means that an estimator is statistically reasonable is the sense that it gets closer to the
true value if using more data.
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between whether the price change comes from the continuous component or the jump component,

RVt is an estimator for the total variance of the process.

It is often useful to study properties of σ(t) individually and isolate it from the jump component.

The appropriate population parameter in this case is the first term in Equation (3), which is called

the integrated variance and denoted IVt ≡
∫ t
t−1

σ(s)2 ds. It must be stressed that IVt is the variation

coming entirely from the continuous component of the price. To estimate IVt, Barndorff-Nielsen

and Shephard propose the bipower variation estimator

BVt ≡ µ−2
1 ·

M

M − 1
·
M∑
j=2

|rt,j−1| |rt,j| , (5)

where µk ≡ E
(
|Z|k

)
ifZ is standard normal. Andersen et al. (2010) propose the alternate estimators

MinV art ≡
π

π − 2
· M

M − 1
·
M∑
j=2

min {|rt,j−1| , |rt,j|}2 and (6)

MedV art ≡
π

6− 4
√

3 + π
· M

M − 2
·
M∑
j=3

med {|rt,j−2| , |rt,j−1| , |rt,j|}2 . (7)

The intuition behind each of these estimators can be made clear. A price change rt,j is likely to be a

jump instead of a continuous movement if it is considerably larger in magnitude than other nearby

movements in the same day. Each of these three estimators tries to limit the contribution of such

large price changes to the variance: BV dilutes the effect of large changes by multiplying them with

what is likely a smaller value while MinV ar and MedV ar effectively replace these large values

with smaller neighboring values. It can be shown that all three estimators converge in probability to

IVt and thus allow researchers a way to separate the volatility from the diffusive component from

the volatility from the jump component.

Given these estimators, it is easy to devise a consistent estimator for the ratio (QVt − IVt)/QVt

of the total volatility due to the jumps. Letting × be any of the three jump robust statistics described
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above, an estimator for this ratio is

RJ×,t ≡
RVt −×t
RVt

. (8)

While IVt ≤ QVt, it is not necessarily the case that ×t ≤ RVt in finite samples;4 thus, RJ×,t may

be negative in finite samples. Andersen et al. (2007) truncate this quantity at 0 to account for this

possible finite sample error. However, we will not perform this truncation in this paper, instead

allowing for negative values of RJ×,t if necessary. The rationale is that empirical investigations

suggest that the statistics this paper considers are not altered much by the truncation.

3 Statistical Methods

3.1 Jump Tests

Based on the statistics described above, econometricians have proposed a large number of statistical

tests to test the null hypothesis that the stock price in a particular trading day contains no jumps.

A common test in the literature, and one that exemplifies the usefulness of RJBV,t in statistical

inference, is proposed by Barndorff-Nielsen and Shephard (2005). Huang and Tauchen (2005)

modify this test statistic slightly and propose

Z =
RJBV,t√(

π2

4
+ π + 5

)
· 1
n
·max

{
1, Q̂t

BV 2
t

} , (9)

where Q̂ is a consistent estimator for the integrated quarticity
∫ t
t−1

[σ(s)]4ds, and µ4/k is as defined

in the previous section. The two estimators Tauchen and Huang consider are the tripower quarticity

4It is easy to devise a sequence of real numbers {ri}ni=1 such that
∑n

i=1 r
2
i < µ−21 · [n/(n− 1)] ·

∑n
i=2 |ri−1ri|;

simply consider the case where ri = 1 for all i. Note that there exists an ε > 0 such that the inequality holds whenever
ri ∈ (1− ε, 1 + ε) for all i. Even under the assumption that ri is drawn from a normal distribution, such an outcome
happens with positive probability. Thus, we have found an example that shows that in finite samples, it is not necessarily
the case that BVt < RVt. Similar examples can be found for both MinV ar and MedV ar.
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and the quadpower quarticity, given by

Q̂k = M · µ−k4/k ·
M

M − k + 1

M∑
i=k+1

k∏
j=1

|ri−j|4/k , (10)

for k = 3 and k = 4, respectively. The test statistic is asymptotically standard normal under the

null hypothesis, and the null hypothesis of no jumps is thus rejected if Z > Φ−1(1 − α), where

α is the significance level of the test and Φ is the cumulative distribution function of the standard

normal. Huang and Tauchen’s Monte Carlo simulations support the use of tripower quarticity in

finite samples. The rationale behind the B-NS test is that a large difference in RVt and BVt (and

thus a large value of RJBV,t) will be due to jumps in the price process. Therefore, this statistic

provides a natural way of testing for the presence of jumps. This paper, however, aims to explore

the magnitude of RJBV,t and compare that to the results of jump tests. As a result, using the B-NS

test will be problematic, since any artifact that affects RJBV,t in finite samples will also affect the

outcome of the jump test.

This paper considers a test from Jiang and Oomen (2008) that exploits higher moments of the

return process, thereby providing a method of testing for jumps without resorting to RJBV,t. The

rationale behind using this test instead of the B-NS test is that this paper is interested in RJBV,t as a

statistic by itself, and it is necessary to have a method of detecting jumps that does not depend on

RJBV,t. Jiang and Oomen note that if a process is continuous, the higher moments should be small

whereas in the presence of jumps, these moments will be nontrivial. The statistic Jiang and Oomen

consider is the swap variance and is calculated as

SwVt ≡ 2 ·
M∑
i=2

(Rt,i − rt,i) , (11)

where Rt,i is the arithmetic return from time i− 1 to time i within a day t. Thus,

Rt,i ≡
Pt,i − Pt,i−1

Pt,i−1

=
Pt,i
Pi
− 1 = exp (pt,i − pt,i−1)− 1 = exp (rt,i)− 1.
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A Taylor expansion of the exponential function shows that SwV −RV contains only terms of order

r2
t,i and higher. Since the geometric return rt,i over a small interval is already small in the absence

of jumps, the statistics SwV and RV are approximately equal under the null hypothesis that there

are no jumps. One method of studentizing the statistic SwV −RV yields

JO ≡M · BVt√
Ω̂SwV

(
1− RVt

SwVt

)
, (12)

where Ω̂ is a consistent estimator for the integrated sexticity
∫ t
t−1

[σ(s)]6ds. Possible estimators for

this quantity include

Ω̂
(p)
SwV = M2 · µ6

9
· µ−p6/p ·

M2

M − p+ 1

M∑
j=p+1

p∏
k=1

|rt,j−k|6/p , (13)

with p = 4 and 6 being the obvious choices. The statistic JO is asymptotically standard normal and

thus lends itself to a statistical test for the presence of jumps, where the critical region is calculated

through standard methods.

3.2 Cross-Correlation Structure of the Relative Contribution of Jumps

This work primarily studies basic time series properties of RJ×,t and focuses specifically on

analyzing pairs of these time series. While the statistics used are not complicated, introducing

certain notation will improve the clarity of the paper. For a particular jump-robust estimator × and

two stocks labeled 1 and 2, let the time series of RJ×,t be denoted RJ (1)
×,t and RJ (2)

×,t, respectively.

The cross-correlation of these two time series will be denoted

C× ≡ corr
(
RJ

(1)
×,t, RJ

(2)
×,t

)
. (14)

The Pearson correlation used in Equation (14) only measures the strength of the linear relation

between the relative contribution of jumps of the two stocks. It is also possible to use nonparametric
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estimators of correlation, such as Spearman’s ρ or Kendall’s τ . These estimators measure how well

the relation between the relative contribution of jumps for two stocks is explained by any monotonic

function. The notation ρ× and τ× will be used in this paper when considering these nonparametric

estimators for correlation. However, this paper will not discuss these estimators often, as a general

result is that using these statistics does not alter the results considerably. The bulk of this paper uses

the standard Pearson expression for correlation when calculating cross-correlation in Equation (14).

On the other hand, the interval of time used to calculate RJ×,t strongly affects the calculated

cross-correlation. The cross-correlation of the daily relative contribution of jumps is determined

by first calculating the time series RJ×,t on a day-by-day basis and then calculating the cross-

correlation. This statistic will be denoted C(d)
× . Similarly, the cross-correlation of the weekly relative

contribution of jumps uses RJ×,t calculated on a weekly basis by adding RVt and ×t for the five

days to determine the realized variation and the jump-robust measure of variation for the entire

week. This statistic will be denoted C(w)
× . Similarly, it is possible to consider the statistic C(m)

×

calculated at the monthly level. The correlation calculated over different time intervals will be a key

part of this paper.

It is also possible to consider a simpler version of the aforementioned statistics that only

considers the presence of jumps. For a stock labeled 1, let Jump
(1)
t be the event that a jump is

detected in the stock’s price process in day t. The Jiang-Oomen test at either a 1 percent or a

0.1 percent significance level provides a method of estimating the indicator 1
[
Jump

(i)
t

]
. The

correlation

JC ≡ corr
(
1

[
Jump

(1)
t

]
,1
[
Jump

(2)
t

])
. (15)

in the indicators suggests another method of studying the relation between the jump components of

two stocks. The statistic JC abstracts away from any considerations about the magnitudes of the

jumps; it does not discriminate between large jumps and small jumps and only considers whether a

jump is detected by the statistical test. Note that the Pearson coefficient is numerically identical to

all nonparametric measures of correlation when considering sets of indicator functions. Comparing

JC to C× is another important aspect of the empirical analysis conducted in this paper.
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3.3 Model Simulations

Since analytical approaches to analyzing the statistic C× are likely intractable,5 this paper turns to

Monte Carlo simulations of a simple model to gain more insight into the statistic. In particular, this

paper considers a model of a stock price with jumps given by

dp(i)(t) = σ(i)dw(i)(t) + dIJ (i)(t) + dCJ (i)(t), (16)

where i indexes a particular stock. Like Equation (2), this model contains both a diffusive component

and a jump component, but there are a few important simplifications. First, the volatility process σ(t)

of the diffusive component is taken to be independent of time. Second, the drift µ(t) is assumed to

be 0. Finally, the jump process dJ(t) is separated into two components: an idiosyncratic component

dIJ (i)(t) and a common jump component dCJ (i)(t). Of course, the idea of this model is that price

processes will be generated from the marginal distribution given in Equation (16), but relations in

the joint distributions of (dw(1), dw(2)) and (dCJ (1), dCJ (2)) will allow for dependencies between

the prices of two separate stocks.

The distributions for both the Wiener increments and the jump components are derived from

simple normal distributions. The assumption concerning the diffusive components is that the

underlying Brownian motions are correlated with correlation ρd. That is, say
(
Z

(1)
t , Z

(2)
t

)′
is

independent and identically distributed (iid) with joint distribution

 Z
(1)
t

Z
(2)
t

 ∼ N


 0

0

 ,

 1 ρd

ρd 1


 . (17)

Next, the three jump processes are mutually independent. The idiosyncratic jump process is defined

as dIJ (i)
t = κ

(i)
t dq

(i)
t for i ∈ {1, 2}. The jump magnitude κ(i)(t) is distributed N

(
0,
(
σ

(i)
jump

)2
)

,

and q(i)
t is a Poisson counting process with parameter λ(i). This common jump component dCJt is a

vector
(
dCJ

(1)
t , dCJ

(2)
t

)′
= κc(t)dqc(t) where qc(t) is a Poisson counting process with parameter

5See Appendix B for a preliminary attempt.
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λc and

κc(t) ∼ N


 0

0

 ,


(
σ

(1)
cj

)2

ρcσ
(1)
cj σ

(2)
cj

ρcσ
(1)
cj σ

(2)
cj

(
σ

(2)
cj

)2


 . (18)

Note that dqc(t) is a scalar-valued process, meaning that dCJt indeed induces jumps in the two

price processes at the same time. If ρc is set to 0, these common jumps would have uncorrelated

magnitudes; for positive ρc, these jumps not only occur at the same time but are more likely to have

comparable magnitudes. Of course, all the jump magnitudes are mutually independent, and all

counting processes are also mutually independent.

Using the distributions given in the previous paragraph, it is easy to simulate the price process

using the Euler scheme. That is, the change in the price during a particular interval is

∆p
(i)
t = σ(i)Z

(i)
t + dIJ

(i)
t + dCJ

(i)
t , (19)

where σ(i) is the volatility of the diffusive component of stock i on that interval.6 For a particular

set of parameters, 1,000 sample paths are generated each with 252× 5 trading days. Furthermore,

prices are recorded at 5-minute increments to emulate the treatment of the data. It is clear from the

above discussion that this model has many free parameters, and Table 4 summarizes the notation of

this section.

Monte Carlo simulations can help understand the effect of these free parameters on the output

of the model, but the large parameter space must be simplified in order to make this analysis

computationally tractable. To accomplish this simplification, the parameter studies in this paper

consider cases where σ(1) = σ(2), λ(1) = λ(2), and σ(i)
jump = σ

(i)
cj ≡ σc. The parameters used for the

simulations are tabulated in Table 5.
6A scaling factor is important here. Suppose there are M intervals in a given day. Set ∆ ≡ 1/M . If the daily

volatility of a stock is s, then σ = s
√

∆.
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3.4 Methodology to Directly Compare the Model to the Data

This section proposes a method to run simulations directly based on parameters estimated from

the data for a particular pair of stocks. The values of the cross-correlation of the daily (weekly, or

monthly) relative contribution of jumps can be compared to this same statistic calculated from many

simulations based on the model in Section 3.3. Denote by Cdata
× the observed value and by Csim

× the

simulated value of the moments, suppressing the time superscript (d), (w), or (m) for daily, weekly,

and monthly intervals. Analyzing the quantity Cdata
× − Csim

× will highlight disagreements between

data and the model. The a priori expectation is not for this quantity to be identically zero. Rather,

systematic deviations from the data may suggest directions for future investigation. Of course,

running these comparisons necessitates parameter estimation from the observed price series for a

particular pair of stocks. These parameters are estimated to ensure that the model is constrained to

match certain moments well, such as the diffusive correlation, the diffusive volatility, the frequency

of jumps, and the average magnitude of the jumps. The benefit of the parameterization presented

above is that these moments correspond directly to individual parameters, and devising estimators

is relatively straightforward. The remainder of this section discusses the estimation procedure of

each parameter, and Table 4 summarizes the methodology.

Estimating parameters related to the diffusive component is straightforward. The diffusive

volatility σ(i) can be estimated directly using the bipower volatility of each individual stock,

averaged over the days in the sample. The diffusive correlation ρd is estimated through a statistic

called bipower covariance. Although it is difficult to directly derive an estimator for bipower

covariance in the same manner as bipower variation, the covariance can be backed out using the

“portfolio method.” If rA and rB are the five-minute returns of two stocksA andB, then the portfolio

method considers the variance of an artificial portfolio whose five-minute returns are 1
2
rA + 1

2
rB . A

simple manipulation shows that

cov (rA, rB) = 2 · var

(
1

2
rA +

1

2
rB

)
− 1

2
var(rA)− 1

2
var(rB). (20)
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The terms of the right-hand side of Equation (20) can be estimated jump-robustly from the bipower

variances of the two stocks and the fictitious portfolio. Hence, the estimate for ρd is simply the

bipower covariance calculated from Equation (20) divided by the product of the bipower volatilities

of the two individual stocks.

Estimating parameters related to the jump processes involves tests designed to detect the

presence of jumps. The frequency parameters λ(i) and λc are estimated using a Jiang-Oomen test

at a 0.5 percent significance level. The estimate for λ(i) is the proportion of days in the sample on

which a jump was detected for stock i. Similarly, the estimate for λc is the proportion of days in the

sample in which a jump is detected for both stocks in the pair. The remaining parameters, however,

require identification of the magnitudes of the observed jumps. To classify individual movements as

jumps, this work follows a naive approach proposed by Andersen, Bollerslev, and Dobrev (2006).7

Under the simplifying assumption that volatility is constant within the trading day, they show that

a randomly drawn intraday diffusive return is approximately distributed N(0,∆ · σt), where ∆ is

the sampling frequency and σt is the (true) diffusive volatility on day t. In the case of 5-minute

intervals, as are used in this paper, ∆ is set to 1/76. Thus, to detect intraday jumps, Andersen et al.

propose

κj = rj,t · 1
[
|rj,t| > Φ1−β/2 ·

√
∆ ·BVt

]
, (21)

where β is the significance level of the test. As suggested by Andersen et al., β is set to 1− (1−α)∆

with α = 10−5. Intuitively, Equation (21) identifies as jumps any movements that are sufficiently

large so as to be unlikely to be due to the diffusive process.8

Once these jumps are identified, estimating the remaining parameters is straightforward. A

7The primary concern of Andersen et al. (2006) was not to create a statistical test for jumps, and as such this method
is not a common method in the literature to test whether an individual price movement is due to the jump process.
Accordingly, I have not placed a description of this methodology under the Section 3.1. However, for the purposes of
the model-to-data comparisons, this method provides a simple and intuitive method to conduct inference on the jump
process.

8The test proposed by Barndorff-Nielsen and Shephard (2005) discussed in Section 3.1 provides an alternate
method of estimating λ(i) and λc. Furthermore, λ(i) and λc can also be estimated by dividing the number of intervals
identified as jumps or cojumps using the metholodolgy of Andersen et al. (2006) by the total number of intervals.
These alternate methods of estimating these parameters do not change the estimates significantly, thereby providing an
informal method of checking the robustness of the estimation methodology. As mentioned in Section 3.1, we use the
estimates from the test by Jiang and Oomen (2008) since the test does not directly depend on RJBV,t.
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cojump is identified when jumps are detected for both stocks in the same 5-minute interval. The

sample correlation between the magnitudes of these cojumps is the estimate for ρj . The standard

deviation for the magnitude of the jumps in stock i identified as part of the a cojump is the estimate

for σ(i)
cj . The sample standard deviation for the remaining jumps in stock i is the estimate for σ(i)

jump.

The method of identifying jumps also provides a manner of cross-checking the estimates for λ(i)

and λc by computing the proportion of intervals in which jumps (or cojumps) are identified. In

general, the two procedures return estimates that are comparable to each other, so the estimates

derived from the Jiang-Oomen test are used.

4 Effects of the Underlying Parameters on CBV

The Monte Carlo simulations described above provide insight into how the underlying properties of

the process can affect the statistic CBV , the cross correlation of the relative contribution of jumps

(as measured using bipower variance) as defined in Equation (14). In this section, we systematically

vary the underlying parameters of the model and study the effects on CBV . We begin by varying the

diffusive correlation ρd, fixing the frequency of cojumps λc, the magnitude (i.e., standard deviation)

of the jumps σc, and the correlation ρc in the magnitude of the cojumps. We then vary the magnitude

σc and the frequency λc of the cojumps. The final dimension altered is the correlation ρc in the

magnitude of two components of the cojumps. For each parameter study, we summarize the results

and present some intuition for the observations. The notation is summarized in Table 4, and the

values used are tabulated in Table 5. Section 6 will place these theoretical results in context of the

empirical findings.

Figure 5, which summarizes the effect of the diffusive correlation ρd on CBV , shows the

somewhat surprising observation that CBV has a strong postive dependence on ρd. That is, even

when jumps are small—volatility in a single jump is less than the daily volatility of the stock—, a

large correlation in the underlying diffusive component can induce a residual correlation between

the RJBV series and increase CBV to a significantly positive number. Note, as will be discussed
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in Section 7, that most pairs of stocks have bipower correlation around 0.2–0.5, which is within

the range of the parameter space where CBV is noticably positive for even the lowest value of λc

considered. A reasonable explanation for this observation is that the statisic RJBV,t erroneously

treats large diffusive movements as “jump” movements during the calculation.9 If the diffusive

motion is correlated, stocks are more likely to have these large diffusive movements in the same

day. The importance of this observation is that it suggests that factors entirely unrelated to the jump

component have a nontrivial effect on CBV in finite samples.

Another pattern evident from these simulations is that an increase in σc, which dials the

magnitude of all jumps, or λc, which dials the the frequency of cojumps, increases CBV . The

intuition for both these observations is clearer. In the case that there is a jump within a day, the

contribution to the total variation by this jump is likely to be larger if σc is larger. Potentially since

σc dials the magnitude of the cojumps as well in this simplified setup, both RJ (1)
BV,t and RJ (2)

BV,t will

be large on this day. Introducing ordered pairs where both elements are large may increase the

correlation between the time series. A similar argument may apply for λc; as common jumps before

more frequent, a greater number of days have large values of both RJ (1)
BV,t and RJ (2)

BV,t.
10 For the

sake of comparison, note that λc in the data is closer to the lower end of the range considered in

these simulations.

The final dimension altered in these simulations is the correlation ρc of the magnitude of the two

components of the cojumps, and the interesting observation from these studies is that the effect of

ρc on CBV seems to be minimal. That is, having cojumps with highly correlated magnitudes does

not increase CBV to nearly the same extent that increasing ρd does. Figure 6 plots the result of the

altering ρc, with ρd fixed at 0.40, a value comparable to that for two stocks in the same industry.

As a potential explanation of this unexpected observation, consider the case when the magnitude

σc of jumps is very large in comparison to the magnitude of diffusive movements. Then, RJ (i)
BV,t

9Recall that bipower variation is robust to jumps since the effect of any large price movements on the computed
variance is diluted by multiplying these large movements by smaller, neighboring movements. However, the effect of
large diffusive movements are also erroneously diluted in this same manner.

10Of course, it is not true in general that introducing ordered paris where both elements are large increases the
correlation. Adding these “large” elements will certainly increase the covariance of the two sets, but they will also
increase the variance of the individual sets. The balance between these effects is difficult to determine a priori.
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for i = 1 and 2 is already much larger for days with cojumps than for days without cojumps; the

two components of the jumps are likely to be much larger than the diffusive movements even if the

components are uncorrelated. In the case when σc is small and the correlation ρc is close to zero,

however, it is possible to have “cojumps” that contain one large component that is identified as a

jump and one small component that is not identified as a jump since it is comparable in magnitude

to a diffusive movement. In this case, increasing ρc would increase the probability that large jumps

in one stock are paired with large jumps in the other and would thus have a more significant effect

on CBV .11 The simulations exhibit this behavior, as the curve for small σc slopes upward as ρc

increases above 0.6. However, a simple mathematical model testing this conjectured explanation,

such as the one developed in Appendix B, would be useful.

5 Data

5.1 Data Source and Cleanup

The data used in this paper come from a set of minute-by-minute prices for 22 commonly traded

stocks in the S&P 100. They are obtained from the commerical data vendor price-data.com.

These stocks are from three major industrial sectors—technology, finance, and food/agricultural—

although no quantitative criteria were used to select these particular stocks. Each trading day

contains price data from 9:35 AM to 4:00 PM. While trading on the New York Stock Exchange

does start at 9:30 AM each day, the first five minutes of trading often involve a market reaction to

overnight events. As a result, the behavior of the prices during this period may be substantially

different from the rest of the intraday behavior, and this period is ignored in the analysis. By the

same reasoning, this work ignores overnight returns entirely when calculating quantities for values

that span multiple days; overnight returns also behave differently from intraday returns. Most stock

data run from 1997 to 2010, athough data for certain securities are available for only a subset of

11Once again, we must note that increasing σc would also increase the variance of the relative contribution of jumps
for a single stock. Thus, while this discussion can explain an increase in the covariance, the effect on the correlation is
not clear a priori.
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that time period. For example, data for Google (GOOG) is of course only available after its IPO in

2004, and data for Exxon-Mobil (XOM) is available only after the Exxon/Mobil merger in 1999.

Table 1 lists the stocks used in this analysis along with the industries, the start dates, the end dates,

and number of trading days observed.

The stock data also require some cleaning. First, the data are adjusted backward for stock splits,

using data from Yahoo! Finance as a guide to distinguish stock splits from large jumps and other

economic events. Of course, stock splits are also distinguishable in the data since the stock price

falls by exactly one-half or two-thirds. Days with data entry errors, such as missing price values, are

very rare but are nonetheless excluded from the analysis. A number of trading days were missing

for certain stocks. To compensate for this lack of data, when calculating statistics that rely on data

from two stocks, the time series are aligned properly: any date that is missing from one series is

discarded from the other.

5.2 Microstructure Noise

An important aspect of financial econometrics that has thus far been ignored is that the data are

a noisy and incomplete representation of the true price process. First, the econometrician only

observes prices when the security is traded, which occurs at discrete time intervals. Second,

instead of observing the efficient price p(t), the econometrician observes the price p∗(t), which is

contaminated with “microstructure noise.” That is, p∗(t) = p(t) + ε(t), where ε(t) is a mean-zero

noise term often attributed to market frictions that cause a short-run deviation between the efficient

price and the price at which the security is traded. One major source of microstructure noise is the

bid-ask spread, which refers to the simple observation that the price observed is either a buying

price or a selling price; for example, a trader wishing to buy a certain number of shares of an equity

immediately would put in a “bid” order at a price that is likely slightly higher than the efficient price.

In the domain of very high frequency data, the observed prices can bounce between “bid” prices and

“ask” prices, and this bid-ask bounce may introduce spurious volatility into the estimates. Another

source of microstructure noise is discretization error. Stock prices are quoted in cents whereas the
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efficient price (as seen from Equation (2)) can be any positive real number. Of course, discretization

errors were more important before decimalization of the stock market around 2001, when prices

were quoted in sixteenths of a dollar. Accounting for microstructure noise is an important part of

financial econometrics.

A simple method to minimize the effect of microstructure noise involves choosing the sampling

interval ∆ ≡ 1/M in a careful manner. Under idealized circumstances, asymptotic consistency

of the estimators would suggest that ∆ ought to be taken to zero so that the prices are sampled as

frequently as possible. However, microstructure noise can contaminate these estimates. In fact,

in the case where ε(t) is independent (both serially and with respect to all other quantities in the

price process) and identically distributed, a simple calculation shows that the estimated realized

variance will increase without bound as the sampling interval decreases. A natural solution would

be to use a subsample of all available data by increasing the sampling interval above the minimum

possible value. Plotting the unconditional realized variance as a function of the sampling interval

usually exhibits the pattern that the estimated variance increases for small (1-, 2-, or even 5-minute)

intervals and approaches a flat, constant value for intervals that are sufficiently long. Andersen,

Bollerslev, Diebold, and Labys (2000) propose such a “volatility signature plot” to determine a

sufficiently short interval that does not increase the unconditional volatility much above the value

when using long intervals. Using a volatility signature plot, this paper settles on using 5-minute

intervals to calculate the estimates. Monte Carlo evidence from Huang and Tauchen (2005), who

consider a model that includes microstructure noise, suggests that using staggered returns improves

the performance of jump tests. Unfortunately, this coarse sampling procedure necessitates throwing

away 80 percent of the data. While other methods have been developed to avoid this unfortunate

problem, this work does not utilize any such methods.
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6 Empirical Findings

The primary question this paper addresses is whether predictions from a standard model of stock

prices agree with a particular moment in the data when considering pairs of stocks: the cross-

correlation C× of the relative contribution of jumps to total price variation RJ×,t. A previous

section studied some of the properties of the theoretical model we wish to study, and this section

studies empirical regularities of the statistics we are considering. To accomplish this goal, this

section analyzes the data described in Section 5 and qualitatively summarizes the most salient

observations. The analysis emphasizes comparing pairs of stocks from the same industry (often

referred to as “within-industry pairs”) to pairs of stocks from different industries (“out-of-industry

pairs”). We then connect these empirical observations to the theoretical findings of the previous

section and provide guidance as to how to explain some of the results presented in this section.

Finally, Section 7 asks the quantitative question that is at the heart of this paper. In that section, the

data are used to calibrate model parameters directly to specific pairs of stocks; the data and model

moments are then compared. The empirical observations made in the current section inform the

statistical comparisons made in this final section.

6.1 Relative Contribution of Jumps for a Single Stock

For any jump-robust estimator × of quadratic variation, the statistic RJ×,t is a noisy estimator of

the relative contribution of jumps to the total variance. Figure 1 considers the jump-robust estimator

BVt and plots the time series of RJBV,t for KO for each day on which the vendor provided data.

An important observation is that the variation in the statistic is so large that 27.4 percent of days in

the sample have RJBV,t < 0, even though the statistic is a consistent estimator for a nonnegative

quantity. Similar observations hold for RJMinV,t and RJMedV,t, although plots are not included in

this paper. Indeed, the daily variation in this statistic overshadows any possible time trend in the

plot.

Summarizing the statistic using yearly averages uncovers some noticable patterns, partly by
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mitigating the effect of the large daily variation. Table 2 tabulates the mean of the RJBV series for

various stocks by year, from 1997 to 2010, also listing the yearly means and standard errors when

grouping the stocks by industry. This table indicates that some stocks do show a significant time

trend. For example, AAPL, BK, and HPQ—among others—have mean values of RJBV which are

signficantly higher in the earlier portion (1997 to 2001) of the sample than in the latter portion (at

the 5 percent level). Furthermore, a similar but less significant trend can be seen in most of the

stocks: the average value for RJBV seems to decrease for most stocks around 2001–2003, and it

stays roughly constant thereafter. This trend is noticeable when averaging across stocks as well,

as evident from the final four lines of the table; however, large within-industry variations induce

larger standard errors in these averaged quantities. The data in Table 2, coupled with other statistical

analyses, suggest that the statement that RJ×,t is similar across stocks and across time is not entirely

accurate, although the mean value of RJ×,t seems to follow a similar pattern for most stocks.

6.2 Relative Contribution of Jumps for Pairs of Stocks

Similar exploratory studies on bivariate series of RJBV,t reveal regularities about the relation

between the cross-correlations of the daily, weekly, and monthly relative contributions of jumps

(denoted C(d)
BV , C(w)

BV , and C(m)
BV , respectively). In particular, there are interesting patterns when

comparing pairs of stocks within the same industry to pairs from different industries. Figure 2

graphically summarizes these three quantities for all other stocks with BAC (a finance company)

and DELL (a tech company); the data points are color-coded as described in the caption. These

stocks were chosen since they exemplify two different patterns. The plot for BAC indicates that

finance stocks tend to have a higher CBV with BAC than many other stocks, as these points are

clustered closer to the right-hand side of the figure. In the plot for DELL, the industry pattern

is somewhat less clear. To quantify this relationship and summarize it across all the stocks in

the set, Table 3 tabulates the average CBV by industry. For many stocks—especially those in the

food and finance industries—the results suggest that within-industry correlations are larger than

out-of-industry correlations, although the difference is not statistically signficant if using a simple
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two-sample t-test. As a result, this finding can be viewed as guiding principle that “similar” stocks

tend to have higher CBV values.

The data exhibit a sort of temporal pattern as well in that for a particular pair of stocks, the

cross-correlation calculated at the monthly level is larger than that at the weekly level, which is

in turn larger than that at the daily level. That is, when moving from C
(d)
× to C(w)

× to C(m)
× , the

correlation grows stronger. Figure 2 motivates this observation to some extent in that the points

cluster closer to the right when moving from the “daily” line to the “monthly” line. Note that this

behavior is evident when analyzing the numbers in Table 3; the mean values of C× tend to increase

for most stocks when moving from daily to weekly to monthly periods. Figure 3 displays this

information graphically for the case where the jump-robust estimator is BV by plotting C(m)
BV and

C
(w)
BV against C(d)

BV . The figure partitions the set of all pairs based on the industry grouping. Note

that the slope of the regression lines through each individual scatter plot is a rough proxy for the

effect. Figure 3 clearly suggests that the temporal pattern is evident for both within-industry and

out-of-industry pairs, although it is slightly more pronounced for within-industry pairs. In the rest

of this section as well as the subsequent section, we attempt to study this temporal pattern along

with the industry clustering described above in the context of the model presented in Section 3.3.

A possible hypothesis for these observations is that the higher correlation within industries

is due to the fact that jumps for similar stocks tend to occur on the same day, possibly due to

industry-relevant economic news released on a given day that affects multiple stocks. One way to

test this hypothesis is to study the relation between C× and JC, the correlation in the indicator

variables for detecting the presence of a jump on a given day. A positive correlation would suggest

that the patterns observed in C× may be related to lack of independence in arrival times of the

underlying jump process; the mere presence of a common jump component can induce both high

JC and high C×. It must be noted that the magnitude of JC, unlike the value of C×, does not

take into account quantities such as the size of the jumps or the correlation of their magnitudes. A

high correlation between JC and C× would suggest that these additional aspects are not important

factors in driving C×. Figure 4 plots example comparisons between C(d)
MinV and JC at the 1 percent
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and 0.1 percent signficance levels. While the figure for BAC shows a similar industry ordering

between JC and C
(d)
MinV ,12 closer inspection suggests that the within-industry ordering differs

between the two statistics. The data for MON shows a starker difference between JC and C(d)
MinV .

To summarize these comparisons, Figure 4 also includes a scatterplot of JC, calculated at the 1

percent significance level, against τ (d)
BV for all 231 pairs of stocks. That is, each data point in the

figure corresponds to a single pair of stocks. The slope of a regression line through this scatter

plot—as can be anticipated from the diagram—is insignificant at any reasonable significance level.

A reasonable conclusion is that the statistic CBV (and all related statistics) contains information

that cannot be explained purely by tests for the presence of jumps, and quantities such as size and

correlation in magnitudes are also important.

These parameter studies presented in Section 4 partially explain some of the observations

presented above. First, the industry pattern may be due to something as simple as a misleading

artifact of a large correlation in the diffusive movements in the stocks in the same industry; the

simulations above showed that there may be a considerable (finite sample) effect on CBV stemming

from this correlation that has nothing to do with the jump component of these price series. Another

potential hypothesis for the industry pattern may have been that the frequency of the cojump process

for stocks from the same industry is larger; as shown in the parameter studies, a larger frequency of

cojumps would have increased CBV . However, a large cojump frequency would also have increased

JC considerably, which is not observed empirically. In fact, the observation that there is little

association between JC and CBV may be partially explained by the theoretical result that CBV is

strongly affected by the magnitude of the jumps in the process. It is also reasonable that stocks

from the same industry may have a larger correlation in the magnitudes of their cojumps, but the

parameter studies suggest that the effect of this correlation on CBV would be minimal and almost

nonexistent if the magnitude of the cojumps is sufficiently large.

12Throughout this paragraph, alternate statistics such as CMinV and τ× have been used to offer an alternative to the
standard ones we consider. All these statements hold true when using CBV or any other statistic.
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7 Implications Relative to the Model

7.1 General Observations

Since systematic parameter studies over a large parameter space are not feasible, a direct method of

comparing the model to empirical data is to calibrate the parameters to a particular pair of stocks.

Direct comparisons between the model and observation—to test the effectiveness in matching the

cross-correlation of the relative contribution of jumps—are straightforward if using the method

described in Section 3.4. Table 6 lists the results from two sample comparisons; it shows both Csim
BV ,

which is computed from simulations with parameters calibrated to the particular pair of stocks, and

Cdata
BV , which is estimated from the data. It is useful to think of the observed data as one instance

of this sample; that is, under the hypothesis that the data can be modeled using the Monte Carlo

setup described in Sections 3.3 and 3.4, the true data is simply one sample path. In Table 6a, the

mean and standard deviations of the simulated distributions of CBV , CMinV , and CMedV are listed

for the finance/finance pair BAC/C. The BAC/C pair is an example of the common “undershoot”

error observed in many pairs of stocks. That is, the statistics from the observed data are larger than

those from the simulations and Cdata
× − Csim

× is consistently positive. Furthermore, this difference

grows when moving from daily to monthly periods. However, a number of stock pairs show close

agreement between empirical and simulated data. For example, Table 6b shows that the empirical

data for the finance/food pair BK/KFT lie within one standard deviation of the simulated means

for all listed statistics. Perhaps more importantly, the quantity Cdata
× − Csim

× does not possess a

systematic sign. These two examples indicate that the model agrees with the observed values in

some cases but not in others.

It is possible to summarize these observations by grouping pairs of stocks based on industries,

and we see that within-industry pairs tend to have a poorer match (on average) between the observed

values of CBV and the model predictions. Table 7 averages both Csim
BV and Cdata

BV over all pairs

of stocks within a particular industry grouping. This table first reinforces the observation that

the increase in CBV from daily to monthly levels is slightly more pronounced for within-industry
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comparisons, especially within the finance and food industries; however, this increase is still

noticable in out-of-industry comparisons, even though it is not as strong. The interesting observation

seen in Table 7a is that Csim
BV differs noticably from Cdata

BV at all levels. The finance and food

industries exhibit a clear example of the “undershoot” error described above, and the magnitude

of the error is relatively stark. The tech industry exhibits the opposite error in that the simulated

values from the model tend to be larger than those from the data. When considering out-of-industry

comparisons, the model does not match the data when considering finance/food combinations, but it

does match both finance/tech and food/tech pairs well on average.

Figure 7 graphically highlights the observations made earlier by plotting the model predictions

against the observed values for the data. Perfect prediction would correspond to all the data points

lying on the 45◦ line. Figure 7a considers within-industry pairs, and the general observation is

that the datapoints lie away from the 45◦ line. However, large deviations occur in both directions,

suggesting that the model does not systematically differ from the data in any particular manner.

Figure 7b, which considers out-of-industry pairs, shows that the points lie much closer to the 45◦

line. Indeed, the observed values of CBV lie less than one standard deviation from the model

predictions for most out-of-industry pairs.

7.2 Summary Statistics

A summary statistic for discrepancies between simulation and data can formalize the observations

made in the previous paragraphs. The quantity
∣∣Csim

BV − Cdata
BV

∣∣ is a measure of the deviation between

the simulated mean and the observed statistic. Table 8 tabulates this quantity when averaged over

different industry pairs and highlights a few observations.13 First, the discrepancy is larger for

within-industry pairs than out-of-industry pairs. Second, the increase in this discrepancy when

moving from daily to monthly periods is more significant for within-industry pairs than out-of-

industry pairs. Note that this quantity penalizes discrepancies between the observed value and

13It must be noted that the quantities in Table 8 are not simply the absolute values of the difference between Csim
BV

and Cdata
BV in Table 7. To calculate the values in Table 8, the absolute value is taken before the average.
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the model-generated (simulated) value in both directions. Thus, the fact that the increase in the

discrepancy in the tech/tech pairing is larger than would be anticipated from Table 7a is a byproduct

of tech/tech pairs having large deviations in both directions whereas finance/finance and food/food

pairs only had large “undershoot” errors.

A similar statistic involves normalizing the difference between the observed value of CBV and

the prediction from the model by the standard deviation of the distribution of the simulated values.

For any particular parameter choice, the distribution of CBV in the simulations is approximately

normal, as tested using a Kolmogorov-Smirnov test at a 1 percent significance level. Using this test

as justification for assuming that the true distribution of CBV in the simulations is exactly normal,

the statistic
(
Csim
BV − Cdata

BV

)2
/σ2

Csim
BV

, where σ2
Csim

BV
is the variance of the simulated distribution, is

distributed χ2
1. It is difficult to aggregate these statistics over a particular group of observations—

such as C(d)
BV for all finance/finance pairs—since the individual χ2

1 statistics are not from independent

normal distributions: the same stock is of course part of many different pairs. As a results, the sum

of the test statistic over k pairs is in general not distributed χ2
k.

14 However, as a heuristic way to

judge the goodness-of-fit of the model predictions to the data, the average value of the χ2
1 statistic

can be calculated across all pairs in the group. Table 9 lists these average statistics when considering

groups in a particular industry pair when the statistic is calculated over a particular time interval:

these statistics are then aggregated over larger groups and finally across all within-industry and

out-of-industry pairs in the same manner. One must be careful about interpreting these statistics, as

the distribution of the average is also unknown due to the correlation. However, these averages can

be roughly used to compared fits between groups, even if formal significance tests are not currently

possible.

Table 8 and Table 9 highlight perhaps the most central finding in this paper: the model presented

in Sections 3.3 and 3.4 often cannot replicate the observed values of the cross-correlation of the

14It is, of course, possible to estimate the covariance matrix Csim
BV for various a collection of different pairs of stocks.

Recall that if X is an n×1 normal with mean 0 and covariance matrix Σ, then X ′Σ−1X is distributed χ2
n. This relation

between the normal and the chi-squared that can be used to develop a goodness-of-fit statistics that is indeed distributed
chi-squared. However, joint estimation of the covariance matrix Σ involves simulating many price series simultaneously,
which is computationally expensive.
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relative contribution of jumps in the data, even when parameters are calibrated to particular pairs

of stocks. Moreover, Table 8 suggests that this discrepancy is systematic in the sense that out-

of-industry predictions are on average more accurate than within-industry predictions. However,

Table 7 shows that these discrepancies cannot be attributed simply to something like the failure to

replicate the temporal pattern; this is because the temporal pattern exists in certain out-of-industry

pairs as well, and the model predictions tend to “overshoot” the temporal pattern in the tech/tech

case. Figure 7 reinforces this observation by showing that many out-of-industry pairs show a small

discrepancy between the model prediction and the observed data while within-industry pairs tend to

deviate considerably in both directions.

Table 9 takes into account the standard deviations of the simulated distribution in its statistics,

and the implications are similar. First, even when accounting for the standard deviation of the

distribution of simulated values of CBV , within-industry comparisons are slightly worse than out-

of-industry comparisons. The finance/food group, however, seems to show a strong discrepancy

between model and data, as was also noted above. The second major implication is that the

discrepancy between model and data does not increase as the time interval considered increases, if

we correct for the standard deviations of the simulated distributions. This result is due to the fact

that the standard deviations of the simulated distributions increase as the time interval increases.

These results suggest that while the simulations are somewhat accurate in predicting the observed

value of CBV for most out-of-industry pairs, they may be missing some systematic effect that relates

stocks in the same industry. Determining this missing factor would be an interesting extension to

this work.

8 Discussion

This paper presents a first step towards cross-stock comparison of the relative contribution of jumps

to total price variance. While the empirical literature has studied the relative contribution of jumps

to total price variance for a single stock, it has not considered the natural question of the relationship
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of this quantity between pairs of stocks. This paper focuses on the cross-correlation of the time

series of the relative contribution of jumps, denoted CBV . By calculating the relative contribution of

jumps at the daily, weekly, and monthly levels, it computes three measures of the cross-correlation,

one at each level. First, we find that the cross-correlation of the relative contribution of jumps

tends to increase when moving from daily to weekly to monthly time periods. Secondly, the

cross-correlation is larger for pairs from the same industry than for pairs from different industries.

The results presented in this paper suggest that the magnitudes of the jumps—and the correlations in

the magnitudes of cojumps—likely play a significant role in these findings. This observation stems

from studying correlations between simple binary time series for the presence of jumps, which are

of course only sensitive to the frequency of the jump process. These correlations do not show the

same patterns as do time series of the relative contribution of jumps to total price variance.

To help explain these findings, this paper considers a simple jump-diffusion model for the price

processes of a pair of stocks. Due to the complexity of the statistic considered in this paper, it is

difficult to make analytic progress even when using a simple model such as the one considered in

this paper. As a result, a series of Monte Carlo experiments were conducted to study the effect of

the underlying parameters. Somewhat surprisingly, these experiments suggest that factors entirely

unrelated to the jump processes can affect the cross-correlation between the relative contribution

of jumps. For example, a high diffusive correlation between the two price processes can cause the

(estimated) relative contribution of jumps to become correlated. Furthermore, certain parameters

closely tied to the jump process—such as the correlation between the magnitudes of cojumps—

have negligible effects on the cross-correlation considered. Section 4 provides some discussion of

potential reasons for these observations. The most interesting finding of this study is that when

this simple jump-diffusion model is calibrated to parameters estimated from the pairs of stocks

in the data, it is only somewhat accurate in predicting the observed value of the cross-correlation.

The model predictions still replicate the increase in the cross-correlation from daily to weekly to

monthly time windows, but the magnitudes of the cross-correlation are usually underpredicted. The

discrepancy between model predictions and the data is larger for pairs of stocks from the same

32



industry than for pairs of stocks from different industries. This systematic discrepancy suggests

that the model is missing a factor that relates stocks that are “similar,” such as those from the same

industry.

This paper also presents some basic empirical findings related to the relative contribution of

jumps for a single time series, and one of the main observations from those studies is that the

relative contribution of jumps may have a significant time trend. Some of the discrepancies between

the model predictions and the empirical observations may be related to the fact that underlying

parameters of the model may also have a nonnegligible time dependence in reality. For example,

a possible explanation for the reason that the discrepancy between model and data is larger for

within-industry pairs is that the frequency of jumps (even idiosyncratic jumps) vary over time.

If it is the case that there is a correlation between the underlying processes of the idiosyncratic

jump frequency for two stocks in the same industry, then CBV would be larger than would be

predicted from a model that does not include such a time-varying frequency. Another explanation

may relate to the fact that the jump intensities themselves are time varying; there is some evidence

for this phenomenon (Chan & Maheu, 2002; Maheu & McCurdy, 2004). Introducing time-varying

jump intensities into the model would again increase the cross-correlation, especially at the weekly

and monthly levels. A simple future study to control for time-varying parameters might involve

partitioning the observed sample into smaller subsamples to limit the degree to which the parameters

might vary over the sample.15

The work in this paper suggests a number of potential directions for future study, and we will

briefly outline some ideas in this paragraph. First, if the true distribution of the jump magnitudes is a

mean-zero normal, then it is possible for jumps to have small magnitude. However, the Jiang-Oomen

test will not classify such small price movements as jumps, and this fact will bias the estimators.

15It should be noted that this proposed explanation does not necessarily contradict the observation that the discrepancy
(normalized by the standard error) between the model and the data does not increase as the time interval increases. This
proposed explanation instead is concerned with variation in the parameters over significantly longer intervals, such as
years. Furthermore, the author has conducted some model-to-data comparisons over shorter time intervals, separating
the entire sample into three equal intervals. Preliminary results are similar to the ones presented in this thesis, and as
such, they are not reported here. However, a more careful method to determine appropriate intervals in an effort to limit
the effects of large movements of the underlying parameters over time may be useful.

33



Second, the method used by Andersen et al. (2006) to classify each individual price movement as

either a diffusive movement or a jump neglects the intraday pattern in volatility. Since volatility

within a trading day is large near the start and finish of the trading day and lower near the middle,

the method adopted from Andersen et al. will underestimate jumps near the middle of the day and

overestimate jumps near the beginning and the end. Bollerslev, Todorov, and Li (2011) develop an

estimator to classify individual movements as jumps that accounts for this phenomenon.

The model itself is also especially simple, and more sophisticated approaches may help explain

some of the discrepancies between the model and data. Many recent papers (Bollerslev et al.,

2011; Huang & Tauchen, 2005) use a stochastic volatility model for the diffusive volatility σ(t)

instead of the unrealistic simplifying assumption that volatility is constant in time. Furthermore,

the specification in this paper of jumps being drawn from a normal distribution may be modified:

Bollerslev et al. (2011) draws jumps from a truncated normal to ensure that the magnitude of jumps

is larger than the average magnitude of a diffusive movement. Introducing microstructure noise into

the model may be interesting, following Bollerslev et al. (2011). While the calibrated parameters

have often been able to replicate the increase in the cross-correlation statistic from the daily to

the monthly levels, it may also be the case that this increase is also partly due to the fact that

microstructure noise averages out at these longer time intervals.

The appendices present initial work to address some of the aforementioned ideas. Appendix A

considers a simplified model and computes the bias of the estimators used in this paper, assuming

that the true distribution of the jumps is mean-zero normal. It also briefly discusses some benefits of

using a truncated normal distribution for the jumps, an idea proposed above. Appendix B attempts to

analytically characterize some of the quantities considered in this paper. It explores a simplification

that allows for an explicit computation of the distribution of the relative contribution of jumps to

total price variance and discusses possible methods to compute properties of the cross-correlation

of the relative contribution of jumps.
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9 Conclusion

While the relative contribution of jumps to total price variance had been studied in the literature,

this paper is the first to conduct systematic comparisons of this quantity across pairs of stocks.

The statistic considered in most detail in the cross-correlation of the relative contribution of jumps.

We find that this cross-correlation is strongly affected by the time interval over which the relative

contribution of jumps is calculated: calculating the relative contribution of jumps over longer

intervals tends to increase this cross-correlation. Furthermore, the cross-correlation is larger for

pairs of stock within the same industry than for pairs of stock from different industries. Another

main finding in this paper is that a standard model for the price processes of stocks, when calibrated

to particular pairs of stocks in the data, cannot replicate the empirical values of the cross-correlation

of the relative contribution of jumps. In fact, the model predictions differ from the empirical

observations systematically in that predictions for out-of-industry pairs are on average more accurate

than those for within-industry pairs. Much work is needed to explain the systematic discrepancies

between the model predictions and the observed values of the statistic in the data. While some

possible explanations have been presented above, other explanations are of course possible, and

additional work is needed to determine which ones match the observed data well. Indeed, this study

can be viewed in a different angle: it may be possible to use the effectiveness of a model to match

the cross-correlation moment in the data as a method of evaluating the effectivess of the model in

describing the price processes of a pair of stocks.

A Complications with Using a Gaussian Model for Jumps

An assumption of the model presented in Section 3.3 is that the magnitude of the cojumps is jointly

normal (Gaussian) with mean zero. If this assumption were in fact true, then the price process

would include a number of small “jumps,” with magnitude close to zero.16 Such movements should

16A normal distribution gives positive probability to any open interval, so one may also object that a normal model
for jumps is unrealistic since arbitrarily large jumps occur with positive probability. The concern in the setup is that if
the normal distribution is mean zero, then jumps comparable in magnitude to a diffusive movement—that is, realizations
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likely not be characterized as jumps and would certainly not be distinguished from the diffusive

price process using jump-detection tests. As a result, such an assumption maybe unrealistic.

Despite this unrealistic assumption, this appendix considers the case where the true jump process

is indeed mean zero normal. In this setup, the estimation procedure described in Section 3.4 is

biased, and this appendix calculates the sign and magnitude of the bias. The Jiang-Oomen test

will not identify days containing small jumps as “jump days,” and our estimates for λi and λc will

be biased downward. If we employ the procedure proposed by Andersen et al. (2006), then we

will identify only the large jumps as jumps. As a simple model of this phenomenon, consider a

situation in which the a sequence Xi is drawn from a standard normal distribution but that the

econometrician only observes Xi if |Xi| > c for some cutoff value c. The econometrician does not

know of this censoring and uses the sample standard deviation of the observed Xi to estimate the

standard deviation of the underlying data generating process. This estimate will clearly be larger

than 1. Thus, the estimates for σ(i)
cj and σ(i)

jump are biased upward.

Finally, this same model can be used to predict the sign of the bias in the estimator for ρc.

Suppose (Xi, Yi) is drawn from a multivariate normal where the marginals are standard normal and

the underlying correlation is ρ. Suppose further that the econometrician only observed (Xi, Yi) for

|Xi| > c and |Yi| > c. The sample correlation will overestimate the magnitude of ρ. The estimate

will converge to
E[XY ||X| > c ∩ |Y | > c]

sd(X||X| > c) · sd(Y ||Y | > c)
. (22)

Figure 8 shows the quantity in Equation (22) for various values of the cutoff c and the true

underlying correlation ρ. The values in Figure 8 are calculated by numerically evaluating the

integral corresponding to Equation (22). The bias becomes more severe as the cutoff increases, as

would be anticipated. Furthermore, as is clear from symmetry arguments, the estimator is unbiased

when the true correlation is −1, 0, or 1.

approximately in the neighborhood (−σd, σd), where σd is the standard deviation of a diffusive movement—happen
with nontrivial probability.
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B A Simplified Model to Study Effects of Parameters

This section presents a simplified model to analytically study the relative contribution of jumps to

total price variance. It also discusses a method to compute the relative contribution of jumps to total

price volatility in this simplified model, although it will be clear that analytic progress is difficult.

One goal of this model is to abstract away from statistical considerations. In the Monte Carlo

experiments of Section 4, two forces are at work: (1) the actual dependence of the cross-correlation

of the relative contribution of jumps to total price variation on the underlying parameters of the

model, and (2) statistical artifacts introduced by using CBV as our statistic for this quantity. While

it is possible in these Monte Carlo simulations to abstract away from the second consideration (as

the true price process is known), it would be useful to have analytic expressions for the relative

contribution of jumps.

We present the model for the price process. Consider two stocks labeled A and B and suppose

that each stock undergoes a series of N price movements in a single day. Denote these price

movements {(rA,i, rB,i)}Ni=1. A particular price movement i is diffusive if (rA,i, rB,i) ∼ N(0,Σ),

where Σ is a covariance matrix such that each price movement has marginal variance 1 and the two

have correlation ρd.17 A price movement i is called a jump if (rA,i, rB,i) ∼ N(0,ΣJ), where

ΣJ =

 σ2
c ρcσ

2
c

ρcσ
2
c σ2

c

 .

Of course, for the setup to be economically sensible, it should be the case that σc > 1, although

nothing in the calculations require it. Let J be an indicator variable that takes the value 1 with

probability p and 0 with probability 1− p independently of everything else in this setup. If J = 0,

then a sequence of price movements within a day is jump-free; that is, (rA,i, rB,i) are diffusive for

all i from 1 through N . If J = 1, then the day contains a jump; that is, (rA,i, rB,i) are diffusive for i

from 1 through N − 1, and (rA,N , rB,N) is a jump. Note that this model only allows for cojumps;

17Note that setting the variance of a diffusive movement to 1 is purely for normalization purposes that makes some
of the subsequent calculations less tedious.
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there is no mechanism for idiosyncratic jumps.

This model then allows for calculations of the relative contribution of jumps. Denote by RA the

relative contribution of jumps of stock A. Let

XA =
r2
A,N∑N−1

j=1 r2
A,j + r2

A,N

. (23)

If a day is jump-free, then the relative contribution of jumps is 0. Otherwise, the relative contribution

of jumps is XA. Therefore,

RA =


0 if J = 0

XA if J = 1

. (24)

That is,RA = XAJ . Note thatRB = XBJ and due to the symmetry of the problem, the distributions

of RA and RB are the same. Then, the cross-correlation of the relative contribution of jumps to total

price variance is given by

corr(RA, RB) =
cov(RA, RB)√

var(RA) var(RB)
=

cov(RA, RB)

var(RA)
. (25)

We have that var(RA) = E[R2
A] − E[RA]2. But, RA = XAJ , and since XA is independent of J ,

E[XAJ ] = E[XA]E[J ] = pE[XA]. Since J2 = J , we have that var(RA) = pE[X2
A] − p2E[XA]2.

Similarly,

cov(RA, RB) = E[RARB]− ERAERB = E[XAXBJ
2]− (E[XAJ ])2 = pE[XAXB]− p2E[XA]2.

Thus,

corr(R1, R2) =
E[XAXB]− pE[XA]2

E[X2
A]− pE[XA]2

. (26)

Note that the dependence on the frequency of cojumps comes entirely from p; a smaller p corre-

sponds to a smaller frequency. Equation (26) shows the ambiguity in the effect of the frequency of

cojumps discussed in a footnote in Section 4.
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The remainder of this appendix is devoted to computing the terms in Equation (26). It will be

possible to characterize the distribution of RA (by characterizing the distribution of XA), but we

have not found a method of computing E[XAXB]. We will first compute the density of XA. Note

that since rA,N ∼ N(0, σ2
c , we have that r2

A,N ∼ Gamma(1/2, 2σ2
c ). Furthermore,

∑N−1
i=1 r2

A,i is

a sum of squares of N − 1 independent standard normals; thus, it is distributed χ2
n−1, which is

also Gamma((n− 1)/2, 2). It can be shown that if S ∼ Gamma(m, θS) and T ∼ Gamma(t, θT )

then S/(S + T ) ∼ G(R) where G(r) = θSr/[θSr + θT (1 − r)] and R ∼ Beta(a, b). A simple

transformation of the density function of a beta random variable shows that the density of G(R)

fG(R)(t) ∝
ta−1(1− t)b−1

θA(1− t) + θBt
. (27)

Equation (27) is a first attempt at characterizing the distribution of the relative contribution of jumps

to total price variance for a single stock, something that has not been done explicitly in the literature

before. While this equation applies to a simplified model, the techniques used may apply to more

general models.

Equation (27) can be used to find the first and second moments of XA, noting that a = 1/2,

b = (N − 1)/2, θA = 2σ2
c and θB = 2. Using a table of integrals, we find that

EX1 =
1

2σc
Γ

(
N

2

)
2F̃1

(
3

2
,
N

2
,
N

2
+ 1, 1− 1

σ2
c

)
and (28)

E[X2
1 ] =

3

4σc
Γ

(
N

2

)
2F̃1

(
5

2
,
N

2
,
N

2
+ 2, 1− 1

σ2
c

)
, (29)

where 2F̃1(a, b, c, z) = 2F1(a, b, c, z)/Γ(b), Γ(·) is the gamma function, and 2F1 is the Gaussian

hypergeometric function. The computation given above for var(RA) can be used to determine the

variance of the distribution of the relative contribution of jumps for a single stock.

Computing the correlation between the relative contribution of jumps for two stocks involves

computing E[XAXB], which is very complicated. Work in this setting suggests that expecting a

clean formula for the joint distribution of (XA, XB) may be unrealistic. Moreover, even computing
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this moment explicitly may be difficult. As can be seen, this computation would involve a product

of χ2 random variables that are derived from correlated normal random variables. Royen (1990)

gives an expression for the joint distribution of such random variables, and it is an infinite series

in terms of the Γ function and is difficult to manipulate. As a result, we do not pursue an explicit

computation of the correlation of the relative contribution of jumps any further.
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C Tables

Ticker Industry Start Date End Date Number of Days
AAPL Tech 4/16/97 12/30/10 3419
BAC Finance 4/9/97 12/30/10 3422
BK Finance 4/8/97 12/30/10 3418
C Finance 4/9/97 12/30/10 3420

CMCSA Tech 4/15/97 12/30/10 3418
COF Finance 4/8/97 12/30/10 3410
CPB Food/Agricultural 4/8/97 12/30/10 3419

CSCO Tech 4/16/97 12/30/10 3420
DELL Tech 4/15/97 12/30/10 3418
GOOG Tech 8/20/04 12/30/10 1591

GS Finance 5/5/99 12/30/10 2907
HNZ Food/Agricultural 4/9/97 12/30/10 3419
HPQ Tech 4/9/97 12/30/10 3422
IBM Tech 4/9/97 12/30/10 3423
INTC Tech 4/16/97 12/30/10 3417
JPM Finance 4/9/97 12/30/10 3422
KFT Food/Agricultural 6/13/01 12/30/10 1950
KO Food/Agricultural 4/9/97 12/30/10 3421

MON Food/Agricultural 10/18/00 12/30/10 2456
MSFT Tech 4/16/97 1/25/10 3184

T Tech 4/9/97 12/30/10 3422
XOM Energy 12/1/99 12/30/10 2763

Table 1: Stocks used in the analysis, along with start and end dates and the number of days included in the
data.
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Stock C
(d)
BV (Daily) C

(w)
BV (Weekly) C

(m)
BV (Monthly)

Tech Fin Food Tech Fin Food Tech Fin Food
AAPL 0.0679

(0.011)
0.0538
(0.012)

0.0678
(0.018)

0.137
(0.019)

0.116
(0.019)

0.131
(0.026)

0.211
(0.043)

0.224
(0.045)

0.28
(0.028)

CSCO 0.0595
(0.0082)

0.0381
(0.0044)

0.011
(0.016)

0.105
(0.021)

0.0563
(0.016)

0.00573
(0.019)

0.143
(0.032)

0.0459
(0.041)

−0.0357
(0.061)

DELL 0.0461
(0.0085)

0.0405
(0.0074)

0.0275
(0.013)

0.0876
(0.023)

0.117
(0.015)

0.038
(0.016)

0.0766
(0.037)

0.153
(0.048)

0.00765
(0.046)

GOOG 0.0331
(0.0098)

0.0372
(0.019)

0.0182
(0.011)

0.0915
(0.025)

0.0647
(0.031)

0.0924
(0.039)

0.0992
(0.043)

0.0981
(0.065)

0.153
(0.0093)

HPQ 0.0571
(0.012)

0.055
(0.0085)

0.0765
(0.015)

0.105
(0.03)

0.12
(0.023)

0.185
(0.027)

0.172
(0.051)

0.207
(0.051)

0.347
(0.039)

IBM 0.0666
(0.0039)

0.0613
(0.014)

0.064
(0.016)

0.105
(0.013)

0.104
(0.021)

0.0913
(0.035)

0.112
(0.03)

0.226
(0.047)

0.121
(0.075)

INTC 0.0519
(0.01)

0.0397
(0.011)

0.0214
(0.0092)

0.09
(0.023)

0.0643
(0.012)

0.0339
(0.0093)

0.107
(0.038)

0.0847
(0.031)

0.0441
(0.032)

MSFT 0.0521
(0.0094)

0.0449
(0.0095)

0.018
(0.017)

0.109
(0.012)

0.0874
(0.016)

0.0504
(0.032)

0.163
(0.014)

0.132
(0.0065)

0.0957
(0.055)

T 0.0495
(0.02)

0.0618
(0.016)

0.0889
(0.017)

0.101
(0.029)

0.129
(0.042)

0.17
(0.047)

0.155
(0.058)

0.257
(0.052)

0.35
(0.075)

BAC 0.0639
(0.0077)

0.101
(0.019)

0.0628
(0.015)

0.12
(0.015)

0.217
(0.019)

0.148
(0.046)

0.241
(0.033)

0.342
(0.015)

0.304
(0.079)

BK 0.0776
(0.015)

0.11
(0.019)

0.0984
(0.02)

0.16
(0.033)

0.212
(0.031)

0.208
(0.042)

0.225
(0.041)

0.284
(0.045)

0.255
(0.061)

C 0.0261
(0.0082)

0.069
(0.0078)

0.0163
(0.021)

0.0553
(0.016)

0.13
(0.019)

0.0059
(0.05)

0.0958
(0.043)

0.268
(0.031)

0.0859
(0.073)

COF 0.0763
(0.023)

0.133
(0.026)

0.123
(0.028)

0.181
(0.044)

0.244
(0.053)

0.235
(0.061)

0.276
(0.061)

0.415
(0.049)

0.369
(0.1)

GS 0.0424
(0.0096)

0.0901
(0.01)

0.0543
(0.014)

0.0828
(0.021)

0.167
(0.033)

0.108
(0.022)

0.145
(0.038)

0.246
(0.045)

0.23
(0.032)

JPM 0.063
(0.0078)

0.125
(0.015)

0.0743
(0.015)

0.127
(0.022)

0.187
(0.024)

0.135
(0.027)

0.195
(0.045)

0.301
(0.043)

0.32
(0.037)

CPB 0.0685
(0.02)

0.0989
(0.0085)

0.135
(0.036)

0.129
(0.033)

0.199
(0.028)

0.236
(0.071)

0.258
(0.05)

0.35
(0.021)

0.373
(0.096)

HNZ 0.0839
(0.021)

0.0827
(0.023)

0.137
(0.036)

0.145
(0.048)

0.188
(0.047)

0.237
(0.062)

0.231
(0.072)

0.341
(0.052)

0.472
(0.046)

KFT 0.0253
(0.011)

0.0172
(0.015)

0.0721
(0.014)

0.0645
(0.027)

0.0237
(0.038)

0.105
(0.04)

0.0971
(0.067)

0.0874
(0.05)

0.231
(0.08)

KO 0.0667
(0.013)

0.0706
(0.0087)

0.0861
(0.02)

0.13
(0.025)

0.122
(0.019)

0.153
(0.05)

0.244
(0.051)

0.268
(0.054)

0.312
(0.11)

MON 0.0648
(0.042)

0.0369
(0.019)

0.1
(0.0088)

0.13
(0.066)

0.0713
(0.051)

0.191
(0.029)

0.156
(0.095)

0.149
(0.064)

0.333
(0.046)

XOM 0.0492
(0.0078)

0.0499
(0.012)

0.0573
(0.0069)

0.0976
(0.013)

0.0935
(0.018)

0.088
(0.0072)

0.0544
(0.034)

0.0934
(0.028)

0.134
(0.021)

Table 3: Average values for CBV separated into industries along with standard errors. For example, the first
entry in the table is the average C(d)

BV of AAPL and all other tech stocks. The table is separated into industries
as well. The general observation is that two stocks in the same industry tend to have a higher value of CBV
than a pair of stocks from different industries. This observation is most apparently with food and finance
stocks.
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Notation Description Estimation Method
σ(i) Daily diffusive volatility for stock i. Constant

across time
Bipower variation

ρd Diffusive correlation between two stocks. Bipower correlation (Equation (20))
ρc Correlation in cojump size Sample correlation after identifying cojumps

using Equation (21)
σ

(i)
jump Standard deviation of idiosyncratic jump size

for stock i
Sample standard deviation after identifying
jumps

σ
(i)
cj Standard deviation of cojump size for stock i Sample standard deviation after identifying

cojumps
λ(i) Frequency parameter of idiosyncratic jumps

for stock i in day−1
Jiang-Oomen test at 0.5 percent significance
level

λc Frequency parameter of idiosyncratic jumps
for stock i in day−1

Jiang-Oomen test at 0.5 percent significance
level

Table 4: Notation summary and estimation methods

Parameter Value
σ(i) 0.01
λ(i) 0.25

σc ≡ σ(i)
cj = σ

(i)
jump 0.025

ρd {0, 0.20, 0.40, 0.60, 0.80}
ρc {0, 0.25, 0.50, 0.75}
λc {0.075, 0.25, 1}

Table 5: Parameter values used for simulations in Section 4. Units are given in Table 4.

Daily Weekly Monthly
Csim
BV 0.0553

(0.037)
0.0815
(0.091)

0.0857
(0.16)

Cdata
BV 0.0658 0.18 0.305

Csim
MinV 0.0451

(0.031)
0.07

(0.078)
0.0775
(0.14)

Cdata
MinV 0.0793 0.153 0.222

Csim
MedV 0.0553

(0.036)
0.0799
(0.088)

0.0869
(0.15)

Cdata
MedV 0.0825 0.173 0.249

(a) BAC and C

Daily Weekly Monthly
Csim
BV 0.0554

(0.038)
0.105
(0.087)

0.138
(0.14)

Cdata
BV 0.0605 0.137 0.144

Csim
MinV 0.0373

(0.032)
0.0876
(0.08)

0.126
(0.14)

Cdata
MinV 0.0469 0.112 0.0582

Csim
MedV 0.0532

(0.037)
0.105
(0.085)

0.141
(0.14)

Cdata
MedV 0.0663 0.12 0.0972

(b) BK and KFT

Table 6: Comparison of simulated and observed values of C× for (a) BAC and C and (b) BK and KFT at the
daily, weekly, and monthly levels. The standard error given in the simulation row is the standard deviation of
the distribution of C× calculated in the simulation, using the 1000 sample paths. In (a), there is a noticable
systematic discrepancy between the simulations and the data in that the simulation moments tend to be lower
than the observed ones—especially at weekly and monthly levels. In (b), unlike in (a), there is no systematic
discrepancy between the simulations and the data.
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Industry Quantity Daily Weekly Monthly
Fin/Fin Csim

BV 0.0614
(0.018)

0.114
(0.056)

0.138
(0.078)

Cdata
BV 0.103

(0.031)
0.187
(0.061)

0.294
(0.076)

Food/Food Csim
BV 0.0295

(0.014)
0.0567
(0.042)

0.0663
(0.058)

Cdata
BV 0.102

(0.051)
0.189
(0.11)

0.349
(0.17)

Tech/Tech Csim
BV 0.0709

(0.036)
0.163
(0.12)

0.217
(0.17)

Cdata
BV 0.05

(0.021)
0.0995
(0.056)

0.133
(0.096)

(a) Within-industry comparisons
Industry Quantity Daily Weekly Monthly
Fin/Food Csim

BV 0.0266
(0.022)

0.0562
(0.062)

0.0721
(0.083)

Cdata
BV 0.0587

(0.045)
0.126
(0.11)

0.239
(0.15)

Fin/Tech Csim
BV 0.0376

(0.025)
0.0769
(0.079)

0.095
(0.11)

Cdata
BV 0.0434

(0.024)
0.0912
(0.051)

0.146
(0.11)

Food/Tech Csim
BV 0.0372

(0.04)
0.0935
(0.12)

0.123
(0.17)

Cdata
BV 0.0353

(0.038)
0.0757
(0.082)

0.128
(0.16)

(b) Out-of-industry comparisons

Table 7: Average values for Csim
BV and Cdata

BV at daily, weekly, and monthly levels, grouping by industry pairs.
Note that “Fin” refers to the finance industry. The numbers in parentheses are sample standard deviations of
all the pairs in a particular group.

Industry Comparison Daily Weekly Monthly
Finance/Finance 0.0451

(0.01)
0.11

(0.021)
0.168
(0.034)

Food/Food 0.0728
(0.017)

0.146
(0.033)

0.301
(0.045)

Tech/Tech 0.0384
(0.0057)

0.113
(0.018)

0.18
(0.026)

Finance/Food 0.0119
(0.0039)

0.0341
(0.012)

0.0605
(0.023)

Finance/Tech 0.00437
(0.0015)

0.0156
(0.005)

0.0247
(0.0087)

Food/Tech 0.0178
(0.0054)

0.045
(0.017)

0.0845
(0.02)

Table 8: Average values for
∣∣Csim

BV − Cdata
BV

∣∣ at daily, weekly, and monthly levels to quantify the discrepancy
between simulations and the moments in the observed data. This discrepancy is averaged over all within-
industry pairs as well as all out-of-industry pairs. Other statistics, such as CMinV and CMedV , as well as
those calculated using ρ and τ , show similar patterns.
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Industry Daily Weekly Monthly
Finance/Finance 2.09 2.19 1.74 2.01

Food/Food 7.37 6.15 5.64 6.36
Tech/Tech 0.92 1.17 1.15 1.08

2.51 2.42 2.21 2.38

(a) Within-industry comparisons
Industry Daily Weekly Monthly

Finance/Food 4.13 4.36 3.31 4.10
Finance/Tech 0.62 0.65 0.87 0.72

Food/Tech 1.07 1.63 1.59 1.43
1.62 1.91 1.73 1.75

(b) Out-of-industry comparisons

Table 9: Average values of the χ2 statistic, computed for each pair of stocks and averaged over all pairs in the
industry and time grouping. The final column in each table corresponds to grouping across the entire industry
pair, regardless of the time interval used; the last row corresponds to grouping across the entire time interval,
regardless of the industry pair. Note that these values should be not compared against a χ2

1 distribution to test
for significance, as discussed in Section 7.2.
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D Figures

Figure 1: RJBV time series for a single stock (KO). The statistic is calculated at the daily level using 5-minute
intervals and is plotted for days on which we have price data for KO. There is a considerable amount of
variability in this process, and a slight time trend may be present.

(a) BAC (b) DELL

Figure 2: Values of C(d)
BV , C(w)

BV , and C(m)
BV for BAC and DELL. The points in red represent tech stocks, those

in blue are finance stocks, and those in green are food/agricultural stocks. The general observations we
find—more clear in the figure for BAC—is that pairs of stocks in the same industry tend to have higher values
of CBV . Furthermore, the magnitude of CBV increases with the time frame considered.
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(a) Pairs within the same industry

(b) Pairs from different industries

Figure 3: Comparisons of C(w)
BV vs. C(d)

BV and C(m)
BV vs. C(d)

BV when considering (a) pairs of stocks from the
same industry or (b) pairs of stocks from different industries. The first row in each group plots C(w)

BV vs. C(d)
BV

and the second plots C(m)
BV vs. C(d)

BV . Scales are the same in each plot, except for the FOOD/FOOD plot when
comparing C(m)

BV to C(d)
BV . The solid black line is a 45◦ line. Each dot in the scatter plot represents a particular

pair of stocks.
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(a) JC at 1 and 0.1 percent levels vs. C(d)
MinV for

BAC
(b) JC at 1 and 0.1 percent levels vs. C(d)

MinV for
MON

(c) JC at 1 percent level vs. τ (d)
BV

Figure 4: Comparisons of JC at 1 and 0.1 percent levels against variations of C(d)
× . In (a) and (b), the

industry-specific colors (red for tech stocks, blue for finance stocks, and green for food/agricultural stocks)
is used to compare these statistics against each other. Comparisons of the ticker symbols suggests that the
ordering and magnitudes differ noticeably between JC and C(d)

MinV . Panel (c) plots JC against τ (d)
BV for all

pairs of stocks considered. We see no clear positive association between these statistics.
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(a) λc = 0.075 (b) λc = 0.25

(c) λc = 1

Figure 5: CBV as a function of ρd for various values of σc and λc, fixing ρc = 0.5. The different panels
give different values of λc whereas the different colors within a panel correspond to different σc. Standard
errors on the mean values calculated through simulation are small and thus ignored in the plots. The general
observation is that ρd has a strong effect on CBV .
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(a) λc = 0.075 (b) λc = 0.25

(c) λc = 1

Figure 6: CBV as a function of ρc for various values of σc and λc, fixing ρd = 0.4. The different panels
give different values of λc whereas the different colors within a panel correspond to different σc. Standard
errors on the mean values calculated through simulation are small and thus ignored in the plots. The general
observation is that ρc has a very small effect on CBV , although for sufficiently small σc, the effect is noticable
at high ρc.
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(a) Pairs within the same industry

(b) Pairs from different industries

Figure 7: Comparisons of Cdata
BV vs. Csim

BV at the daily, weekly, and monthly levels. The first column shows
the comparisons at the daily level, the second at the weekly level, and the third at the monthly level. Each
row corresponds to a particular industry pair. The horizontal axis on each plot is the value estimated from the
data, and the vertical axis is that obtained from simulation. The error bars indicate one standard deviation in
the simulated runs.
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Figure 8: Measured correlation of two jointly normal variables with correlation ρ (plotted on the “Correlation”
axis) when observing only the realizations that are above some cutoff c (plotted on the “Cutoff” axis). The
value of the function is calculated through numerical integration of Equation (22).
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