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ABSTRACT 

We develop a model based on several auction parameters to test the widely held 

notion that in a sequential English auction, it is optimal for the seller to arrange the lots 

in order of decreasing value.  We test this model against two datasets of 18th century 

auctions, one of various auctions from Paris and the other from Christie’s sales in 

London.  We find that the Paris data support the claim, while the Christie’s data seem to 

refute the optimal strategy.  We also find a rationale for bidders in the Christie’s 

auctions to alter their strategies, accounting for the discrepancy. 

 

 

JEL Classifications: D44, Z11 

Keywords: Auctions, Lot Ordering, Optimal Auction Strategy, English Auction, 

Sequential Auctions 
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I. INTRODUCTION 

 The concept of the auction has existed for several millennia.  The first recorded 

mention of the auction comes from Herodotus, who tells us that auctions occurred as 

long ago as the 5th century BC.  Historically, auctions have been used to sell all manner 

of objects, from people (wives and slaves) to entire empires; at one point the Praetorian 

Guard killed the sitting emperor and auctioned off the Roman Empire (McAfee & 

McMillan, 1987, p. 701; Krishna, 2002, p. 1).  Today, auctions are more widely used than 

ever before, from the sale of physical commodities to art to public resources to debt.  

Trading securities can even be modeled as a continuous sequential auction of common 

value goods (Kyle, 1985), hence the use of the term “bid” for a price offer.  The benefit 

of using an auction is that it is an efficient way of determining the value of an object 

with an inherently indeterminate value.  A seller wants to get rid of some object, but 

does not know how to appropriately assign a price to it.  So, if he devises a suitable 

auction mechanism, he can sell the object to the person who values it most, benefitting 

both the seller and the buyer. 

Today, there are four generally recognized auction formats.  These are the 

following: 

(1) Open Ascending Price Auction (English); 

(2) Open Descending Price Auction (Dutch); 
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(3) Sealed-Bid First-Price Auction; 

(4) Sealed-Bid Second-Price Auction. 

There are several variants on each of these, but they are widely considered the four 

standard formats. 

The English auction is by far the most common format in use today (McAfee & 

McMillan, 1987, p. 702); when most people imagine an auction, they are thinking of the 

English form.  Essentially, an English auction can be described with the following 

scenario.  An object is put up for auction, and bidders openly offer competing bids.  

These bids must increase, and the object is finally sold to the last remaining bidder.  He 

must pay the amount at which his final competitor dropped out (Krishna, 2002, p. 2).  

This is the format generally used in art auctions today, and it is the format of the 

auctions studied in this paper. 

The Dutch auction is the descending price foil to the English auction.  The 

auctioneer starts the bidding at a value far higher than any bidder’s valuation, and he 

steadily decreases the bid until a bidder agrees to buy at that price.  This bidder wins 

the object, and must pay the agreed-upon price.  This format is rarely used today, but 

was used to sell cut flowers in the Netherlands, hence the name.  It has also been used 

in sales of perishable commodities, like fish and tobacco (McAfee & McMillan, 1987, p. 

702). 
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The sealed-bid first-price auction operates as follows: bidders offer their 

competing bids in sealed envelopes, and whoever offers the highest bid wins; he must 

then pay his bid (or in the case of a contract, the lowest bid wins).  The sealed-bid 

second-price auction is set up similarly, but instead of paying his own bid, the winner 

pays the second-highest bid.  Sealed-bid first-price auctions are used for such objects as 

government contracts and mineral rights on public lands (McAfee & McMillan, 1987, p. 

702).  The sealed-bid second-price auction was originally a theoretical development 

published by Vickrey (1961), but it has come into use in modern times.  For example, on 

eBay, a bidder can submit his maximum bid, and if it is the highest valuation at the end 

of the auction, he must pay only $0.01 more than the second-highest bid. 

One of the issues that must be considered in auction theory is the way in which a 

bidder values an object at auction.  There are two distinct possibilities, private versus 

common value.  In a private values context, each bidder assigns his own valuation to 

the object independent of the other bidders’ valuations.  Private values makes sense 

when modeling objects that are used solely for consumption.  In a common values (or 

“interdependent” values) setting, the object has some unique value; the reason that an 

auction is necessary is that nobody actually knows this true value, though each bidder 

has his own estimate.  This is a useful model for goods that can be resold, like securities 

or plots of land with unknown mineral content (Krishna, 2002, pp. 3-4).  In this 

situation, the bidders’ valuations represent estimates of the true value.  One result of a 
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common values auction with incomplete information is the so-called winner’s curse, in 

which the bidder with the highest valuation overestimates the value of the object.  It 

can, however, be avoided by using an equilibrium bidding strategy (Krishna, 2002, p. 

85). 

 Unfortunately, art is neither a consumption good nor an investment good; it falls 

in that murky space somewhere in between.  This makes modeling art auctions 

somewhat more difficult, as theorists must choose ex ante which valuation model they 

deem appropriate.  In the case of this study, it turns out that either valuation model 

(private or common) offers the same hypothesis: the seller’s optimal strategy is to sell 

objects in a sequential English auction in order of decreasing value.  This is a notion 

supported by both theory and empirical study (see II. Background and Literature Review).  

Tests of this claim have focused solely on recent auctions, despite the fact that 

institutional auctions have been used in sales of artwork since the 18th century.  This 

study offers a test of the optimal hypothesis using historical records.  This allows us to 

discern whether the claim holds up in auctions that occurred prior to the theoretical 

developments, confirming that modern empirical agreement with the theory is not a 

result of auction houses utilizing that same theory.  We do this by developing a model 

that allows us to compare the auction revenues with the degree to which values 

declined over the course of a specific auction. 
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II. BACKGROUND AND LITERATURE REVIEW 

Since Vickrey’s seminal work, “Counterspeculation, Auctions, and Competitive 

Sealed Tenders, ” there has been a steady stream of research in auctions, in the context 

of both theory and practice.  Vickrey’s (1961) groundbreaking discovery was the fact 

that under his model, the Dutch auction was strategically equivalent to the sealed-bid 

first-price auction, and the English auction was weakly equivalent to the sealed-bid 

second price auction.  This led him to discover that the auctioneer’s expected revenue 

for a first-price sealed-bid auction was the same as the expected revenue for second-

price sealed-bid auction, given independent and identically distributed (iid) private-

valuations among symmetric bidders facing uniform distributions.  He later generalized 

this finding for symmetric bidders receiving signals from any continuous probability 

distribution function (Krishna, 2002, p. 28), and this fundamental rule is called the 

“revenue equivalence” principle. 

Riley and Samuelson (1981) further analyzed auctions featuring iid private 

values for symmetric bidders.  They studied a more general set of auctions, what 

Krishna likes to call a “standard” auction.  A standard auction is one in which the 

bidder with the highest bid wins the object and in which the bidder with the lowest 

possible valuation must pay nothing.  More specifically, given   bidders, valuation    

and the corresponding expected payment       for a bidder  , a standard auction is one 
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in which       , and bidder   must win when              (  )          

 (  ).  So, the first-price and second-price auctions that Vickrey studied were both 

standard auctions; the theoretical third-price auction, studied by Kagel and Levin 

(1993), is also standard, although it is unheard of in practice.  Riley and Samuelson 

(1981) and Myerson (1981), through a different derivation involving auction 

mechanisms, found that for all of these possible auction types and any others that can 

be classified as a standard auction, Vickrey’s revenue equivalence principle holds.  

Thus, given the conditions established by Vickrey, an auctioneer earns the same 

expected revenue from any standard format.  An example of a nonstandard auction 

would be something like a lottery, in which the person who “bids” the most has the 

highest probability of winning but is not guaranteed to win (Krishna, 2002, p. 29).  Here, 

the revenue equivalence principle breaks down and is no longer consistent. 

Since then, there have been several theoretical works relaxing some of Vickrey’s 

original restrictions.  In the same work as above, Riley and Samuelson (1981) consider 

the effects of reserve prices on optimal auction structure.  Krishna specifically defines 

the prerequisites of revenue equivalence in private value models to be  independence, 

risk neutrality, no budget constraints, and symmetry (Krishna, 2002, p. 37).  He explores 

the results of relaxing each constraint one by one, comparing the revenues from 

different auction types under each possible variation (Krishna, 2002, pp. 38-58). 
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One limiting issue with Vickrey’s work (and all of its derivatives) was that it only 

considered private value models.  Milgrom and Weber (1982) developed a model for 

interdependent valuations and affiliated signals.  Essentially, they defined a bidder’s 

value   , a vector             whose components are the   bidders’ value signals, 

and a vector            , whose components are   pieces of information that could 

adjust the bidders’ valuations.  In their model,   is a function of all the possible 

valuations and pieces of information, so we have      S   , where           .  

Then, the common value model and the private value model are just specific cases of 

their more general interdependent-affiliated value model.  The common value model is 

the one for which     and        , while the private value model occurs when 

    and        .  They showed that the English auction generates at least as much 

revenue as the second-price sealed-bid auction; the second-price auction in turn 

generates at least as much revenue as the first-price sealed-bid auction, which is still 

strategically equivalent to the Dutch auction.  According to McAfee and McMillan 

(1987), the reason the English auction has the highest expected revenue when values are 

interdependent is because bidders can see not only that other bidders have dropped 

out, but the specific bids at which they drop out, so the remaining bidders can divine 

the approximate signal distribution.  This tempers the effects of the winner’s curse, and 

thus the expected revenue increases relative to both sealed-bid auction formats. 
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Since the English auction is the most widely used format today, there have been 

several studies on its particular properties.  Maskin (1992) showed that the English 

auction, given two bidders and under certain conditions, resulted in efficient 

allocations.  Birulin and Izmalkov (2009) extend Maskin’s (1992) findings for the 

efficiency of English auctions.  Whereas Maskin showed that the single-crossing 

condition was sufficient for an efficient outcome given two bidders, Birulin and 

Izmalkov developed a generalized single-crossing condition and show that it is a 

necessary and sufficient condition for an efficient equilibrium with   bidders.  The 

majority of work done by theorists considers only rational agency, i.e. all equilibria are 

assumed to be Bayesian Nash equilibria.  Gonçalves (2008) considers how irrationality 

could affect the equilibrium in a common value English auction between two bidders.  

He finds that if only one bidder acts irrationally, the expected price could be either 

higher or lower than the symmetric equilibrium.  If, however, both bidders match 

irrational strategies, the sale price is always at least as high as the symmetric 

equilibrium.  This is an important new field for theoretical research, as auction houses 

tend to consider irrational influences when ordering lots in sequential auctions.  For 

example, one important aspect in any auction is the sense of excitement generated by 

sales of highly valued paintings.  For this reason, auction houses tend to put higher 

valued pieces in the middle of an auction in order to build enthusiasm and anticipation 

(Beggs & Graddy, 1993, p. 547). 
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 Since the auctions I study are all multi-unit auctions, the effects of holding a 

sequential auction compared to a single-unit auction are paramount.  According to 

Pitchik (2006), lot order affects the competition for each good being sold, thus in turn 

affecting the auction’s overall revenue.  Benoît and Krishna (2001) showed that if 

heterogeneous common value objects are sold in an open ascending sequential auction 

with budget-constrained bidders, it is optimal to order them from highest-valued to 

lowest-valued.  Elmaghraby (2003) studied the private value sequential auction of 

heterogeneous goods and found that under several different cases, an efficient 

equilibrium can be reached so long as the goods are ordered according to a specific 

algorithm.  Pitchik (2006) studied budget-constrained sealed-bid sequential auctions 

with private values.  She found that if a particular piece is allocated to a strong bidder 

regardless of lot order, then the auction revenue increases if that piece is placed earlier 

in the auction.  Elkind and Fatima (2007) started with the premise that it would require 

exponential time to find an algorithm to determine the optimal ordering of lots in a 

sealed-bid second-price sequential auction.  They found, however, that such an 

algorithm can be derived in polynomial time.  This algorithm depends only on the first 

and second-order statistics of the signal distribution from which values are derived.  

They also showed that dynamic canceling, i.e. removing objects from auction, can 

increase the seller’s revenue. 
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We can see that in general, the theoretical models suggest that the optimal 

strategy on the part of the seller is to order lots in sequential English auctions from 

highest-valued to lowest-valued, and there have been several empirical studies that 

support this model.  The law of one price suggests that homogeneous goods sold 

sequentially should fetch the same price.  Ashenfelter (1989) studied sequential sales of 

identical bottles of wine and found that when prices changed over the course of a single 

auction, they were twice as likely to decrease as they were to increase, an effect he 

called the “declining price anomaly.”  He claims that “it is common knowledge among 

auctioneers that, when identical lots of wine are sold in a single auction, prices are more 

likely to decline than to increase with later lots” (p. 29).  Ashenfelter and Genesove 

(1992) studied identical condominium sales at auction and found a similar result; lots 

placed earlier sold for significantly more than later lots.  Zulehner (2009) also found 

support for the declining price anomaly in cattle auctions.  Ashenfelter (1989) suggests 

that it may be due to risk aversion on the part of the bidders, since there is a limited 

quantity of the homogeneous good (p. 31).  McAfee and Vincent (1993) found support 

for this notion, and established that earlier bids are equal to the expected value of later 

lots plus a risk premium.  Beggs and Graddy (1997), however, disagreed with the notion 

that the declining price anomaly could be chalked up to risk-averse behavior in all 

auctions.  They claim that there is nothing to stop a bidder from paying more for a later 

lot should he be risk-averse, and in the case of an open ascending auction, bids are 
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observable and bidders can estimate the value distribution, mitigating the risk (p. 561).  

They do permit that in the case of a sealed-bid auction, where there is uncertainty in 

other bidders’ valuations, risk aversion could have a significant influence, but it makes 

no sense in the case of an English auction.  They further studied a series of auctions of 

heterogeneous goods, and they found that the price declined over the course of each 

auction.  Moreover, the sale price relative to the estimated sale price also declined, 

demonstrating that the declining price anomaly was not limited to sequential auctions 

of homogeneous goods.  Hong et al. (2009) studied sequential auctions in what they call 

a “natural experiment.”  During auction week in New York City, Christie’s and 

Sotheby’s alternate who goes first.  Hong et al. (2009) found that when the house with 

more expensive paintings goes first, the sale premium is 25% higher on average than 

the unconditional mean sale premium.  They also found support for revenue-

maximization through declining-value lot ordering in sequential sales of heterogeneous 

goods. 

 There is clearly a firm theoretical basis supporting an optimal auction design 

featuring declining prices over the course of a sequential auction, and empirical studies 

support the notion as well. 
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III. MODEL 

We start with the assumption, laid out in II. Background and Literature Review, that 

ordering lots by declining values is the optimal strategy in a sequential English auction 

of heterogeneous goods (c.f. Ashenfelter, 1989; Ashenfelter & Genesove, 1992; McAfee 

& Vincent, 1993; Beggs & Graddy, 1997; Benoît & Krishna, 2001; Elmaghraby, 2003; 

Pitchik, 2006; Elkind & Fatima, 2007; Zulehner, 2009; Hong et al., 2009).  Here, we 

develop a rather simple model to test the relationship between the relative decline of 

value in paintings with respect to lot order and the revenues generated in the auction.  

This is most certainly not a model that includes every possible variable, but merely 

adjusts for specific factors that are common to all auctions. 

Consider an auction  .  In any auction, there are several parameters that 

differentiate it from the other auctions.  In this model, we consider the following 

parameters: the value of the pieces sold, for which we assign a characteristic value  ; 

the number of lots sold,   (this is distinct from the largest lot number, as we shall see 

later); the year in which the auction took place,  ; the rate,  , at which the values 

declined with respect to lot position; and the revenue generated,  .  So, an auction   can 

be defined by the vector 
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In order to compare any two auctions, we have to account for each of these parameters.  

The features we want to study are auction revenue   with respect to the declination of 

the values  , so we must first normalize   and   with respect to the other parameters; 

this way, we are in effect holding all parameters other than   and   constant. 

A. REVENUE NORMALIZATION 

First we need to consider how to compare the revenues of different auctions.  

Clearly, an auction    will generate higher nominal revenues than auction    under the 

following conditions, constraining all other parameters to be constant: 

(1) The values of the objects sold is higher on average in    than in   :    

  ; 

(2) There are more objects sold in    than in   :      ; 

(3) The price index for the year of    is higher than the index for   . 

The characteristic value is determined from the quality of the items sold in the 

auction, and it is a value that can be compared linearly between auctions.  So, 

normalizing with respect to value, we can define our value-adjusted revenue      as 

     
 

 
  

We can think of this as a relative measure of revenue holding the value of pieces sold 

constant.  (N.B. with regards to notation, a subscript without parentheses refers to a 
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counting index, typically the letters   and   when comparing objects sold within a given 

auction and   and   when comparing auctions and their parameters; a subscript in 

parentheses refers to a variable or parameter that is held constant). 

Next, let’s consider the number of lots sold in the auction.  Again, this is a 

measure that can be compared linearly between auctions, so we normalize for auction 

size in the same way as we did for value: 

     
 

 
  

so, to hold both value and auction size constant, we have 

       
 

  
  

This gives us a measure of revenue per item, holding value constant. 

Now, let’s consider the year in which the auction took place.  The price index for 

a given year gives us an aggregate measure for any effects that could influence prices in 

a given year.  Thus, we define a function      with a one-to-one mapping that provides 

the CPI given an input year   (from here, for the sake of simplicity in notation we drop 

the argument   and simply consider the output  ).  Again,   can be compared between 

auctions in the same way that   and   can, so we simply divide the revenue by   to 

compensate for changing price levels from year to year: 
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Since this is the adjusted revenue measure we can compare between auctions, we call it 

           . 

B. VALUE DECLINATION NORMALIZATION 

First, we must find a proxy measure for the relative decline in values.  If we 

linearly regress value on lot position, the slope gives us a general measure of the rate of 

change of value with respect to order.  Consider an auction              .  Define 

the highest valuation (i.e., the valuation of the bidder who values it the most) of a given 

piece   to be   , and its corresponding lot position as   ; then the lot number of the last 

piece sold is   .  The reason we have to differentiate between    and   is because other 

objects (not under study) may be sold in the same auction, or in case an object with a lot 

number is not sold in the auction.  In either case,     , unless by sheer coincidence. 

If we perform a standard ordinary-least-squares (OLS) linear regression of value 

  on lot position   in auction  , we get the relationship 

  
  

  
 

∑     
 
    

 
 
∑   

 
   ∑   

 
   

∑   
  

    
 
 (∑   

 
   )

 
 

   [   ]

   [ ]
 

This   is inherently a measure of the relationship between   and  .  We can split this 

into three cases: 
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(1)      values decline over the course of the auction; 

(2)      values increase over the course of the auction; 

(3)      there is no general trend in the values over the course of the 

auction. 

From the magnitude of  , we can gather the rate at which this decline/increase is 

occurring.  If          and |  |  |  |, then we can infer that the objects in    were 

organized more coherently in a declining order, i.e. the distribution of values is closer to 

monotonic in lot order.  Then, we expect that the effects of having declining values 

should be stronger in    than in   . 

Clearly,   depends on several parameters within a given auction.  These include 

the lot position of the last object, the year in which the auction occurred, and the 

characteristic value of the objects sold.  These can be adjusted in the measurements we 

use to calculate  , namely   and  .  We know 

  
   [   ]

   [ ]
  

so if we normalize the lot numbers with respect to the last lot sold, we have a measure 

that can be compared between auctions.  Let’s call this measure   .  Then, we have 

   
 

  
  

which gives us 
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   [    ]

   [  ]
  

This new measure    can be interpreted as a percent value for the lot position of our 

object. 

 Next, we adjust with respect to the price index.  Again, we can do this by 

defining a new variable in terms of our value  .  Here, we put 

   
 

 
 

as our new value measurement.  This simply adjusts for inter-annual effects and gives 

us a value in a base year of our choosing, the same way we adjusted revenue.  So, our 

slope coefficient adjusted for both the maximum lot position and the price index is 

        
   [     ]

   [  ]
  

Now, the only remaining effect to adjust for is the characteristic value.  We can 

adjust for   again by creating a new relative value variable: 

    
  

 
 

 

  
 

Then, we finally have our adjusted slope coefficient measure: 

            
   [      ]

   [  ]
  

In terms of our original variables, we have 
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   [

 
  

 
 
  ]

   [
 
  

]
 

 

 
    

   [   ]

 
  
    [ ]

 

So for a given auction   , we have our final parameter-adjusted slope coefficient 

  
  

   

    
    

C. TESTABLE MODEL 

For a set of auctions          , we can regress    on   .  Performing a standard 

linear OLS regression, we have 

  
       

      

Our best linear unbiased estimator of   is 

 ̂  
   [     ]

   [  ]
  

Once we run this regression, we expect to find a statistically significant  ̂   .  This 

would imply that our adjusted revenue    is inversely related to our measure of value 

declination, in which a greater decline corresponds to a lower   . 

 



24 

 

IV. DATA 

This study uses two primary data sources, both of which I received through 

contacts at the Duke Art, Law, and Markets Initiative (DALMI).  For my Paris auction 

data, I used a collection of auction records consolidated by Ms. Hilary Coe Smith, a PhD 

candidate at Duke University’s Art, Art History, and Visual Studies department 

(AAHVS).  For the Christie’s auction data, I received permission from Christie’s 

Archives to use a database compiled by Ms. Bénédicte Miyamoto-Pavot, a PhD 

candidate at the Université Paris Diderot VII. 

A. PARIS DATABASE 

For my Paris auction data, I used Ms. Smith’s archives, which are now available 

at Duke through the AAHVS server.  These archives contain auction records from 1675 

to 1814, and since I wanted to compare contemporary auctions, the first limiting factor 

on my Paris dataset was the timeframe established by the Christie’s database (1767 to 

1789).  The second problem I faced was the lack of information on annual price levels in 

Paris.  I found two studies, but both stopped in 1786, so that became the second limiting 

factor in which records I could use.  The third issue was that the catalogs were not 

organized by lot order, but by academic notions of prestige.  For example, Italian 

paintings were always placed first in the catalogs, regardless of the day of sale or the lot 

number; these were followed by other schools of paintings (French, Spanish, 



25 

 

Dutch/Flemish, etc.), gouaches and miniatures, bronze and marble statues, designs, 

prints, busts, and vases.  Some catalogs, however, were accompanied by feuilles de 

vacation (session sheets), which specified the day of sale and the lot position of each 

piece.  So, I restricted my study exclusively to those catalogs that included these 

supplementary feuilles. 

I did not have access to a database of these records.  Instead, Ms. Smith had 

collected images of individual pages from auction catalogs.  She had not yet begun 

transcribing the data for the time horizon that interested me, so a significant portion of 

my background research involved recording the information from these catalogs in a 

usable spreadsheet (see Appendix A).  Each datum I logged had the following entries: 

auction, day of sale, year of auction,  lot position, catalog number, and sale price (in 

livres, sous, and deniers).  I then converted the sale price to a decimalized value 

(denominated in livres), and adjusted these values for inflation using 1767 as my base 

year. 

Because I was mining data from original auction catalogs, there were several 

issues with the figures.  One particular problem was that some catalogs combined 

several paintings into a single catalog number, which had a single sale price associated 

with it.  If the paintings were all sold on the same day, they had a single lot number and 

I had no problems.  If, however, the paintings were split up and sold over several days 

of sale, I had multiple lot numbers on different days corresponding to a single catalog 
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number, and hence one total price.  In this case, since the paintings were grouped 

because they were often identical, or at least very similar, I assumed that on average the 

paintings sold for about the same price each day and divided the total sale price by the 

number of days over which the catalog entry was sold.  Another issue was that the 

prices listed in the catalogs were handwritten by auction attendees.  I had no way of 

double-checking these sale prices, and I had to assume that the recorded sale prices 

were correct.  Since the sale prices are dependent variables in my model, I can assume 

that any recording error was random, and thus my findings remain unbiased from this 

error under Gauss-Markov assumptions (Wooldridge, 2009, p. 316).  Again, since these 

records were kept by audience members present at the auction, I also had to assume 

that if a catalog entry had no sale price next to it, the piece was retired and not sold.  In 

the end, my Paris database comprised information on the sales of 1,485 paintings over 

98 days of sale from 1767 to 1779. 

Table 1: Paris Data Summary 

Number of Auctions 98 

Number of Lots 1484 

Average Lots per Auction 15.143 

 

Table 2: Paris Revenues Summary 

Max 75% Median 25% Min IQR 

68096.740 27191.486 15089.212 6450.532 73.812 20740.955 
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(N.B. Because lot values vary widely within a given auction, I used median statistics 

rather than mean statistics to modulate the effects of tail behavior; see V. Results) 

B. CHRISTIE’S DATABASE 

For her dissertation, Ms. Miyamoto-Pavot assembled a database of Christie’s 

auction sales from 1767 to 1789.  She physically copied the data from handwritten 

catalogs in Christie’s London archives to a spreadsheet that included the following 

information for each piece: artist, painting description, lot number, auction year, day of 

sale (within a particular auction), and sale price (in pounds, schillings, and pence).  My 

first step was to convert all the given sale prices into a decimalized notation, 

denominated in pounds.  I then adjusted the prices for inflation using 1767 as my base 

year. 

This dataset originally included 3,611 entries.  There were several paintings for 

which the painter’s name was for some reason unknown, but since this was irrelevant 

to my study I included these data, as the lot positions and sale prices were given.  There 

were also four pieces of data that did not include sale price; these may have been 

paintings that were removed from the auction after the catalog’s printing, or the sale 

price may not have been recorded.  I removed these four, and so my final database 

included data from the sales of 3,607 paintings over 45 days of sale from 1767 to 1789. 
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Table 3: Christie's Data Summary 

Number of Auctions 45 

Number of Lots 3607 

Average Lots per Auction 80.156 
 

Table 4: Christie's Revenue Summary 

Max 75% Median 25% Min IQR 

3801.617 1439.876 854.634 354.339 94.338 1085.537 

 

V. RESULTS 

The data were organized in two separate spreadsheets, one for Paris auctions 

and the other for Christie’s auctions.  Since our information was limited, we had to 

make certain assumptions in order to continue.  We have no details on the number of 

bidders present at a given auction, so we assume that the number remains constant 

throughout the course of a single day of sale.  We cannot be sure that the same bidders 

will be present every day of a given auction, so we treat separate days of sale as 

individual auctions. 

The second issue regards the value of the objects sold.  Since there are no figures 

on value estimates for the pieces sold, I assume that sale price can act as a proxy for 

value.  In Appendix B, we show that this assumption produces a bias, but as it affects our 

entire dataset, the only result of this bias is that all of our estimates for    are lower than 

the true values of   .  This does not affect our study, as we only care about the relative 
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differentiation between values of   , not the specific values themselves.  This bias will 

further cause our estimate of   to be lower than the true value, but again all we are 

looking for is the sign of  , so it is irrelevant to our study.  So although the bias exists, it 

does not alter the findings. 

The third thing we must consider is the characteristic value.  Since art prices tend 

to have extreme right-tail events, skewing the distribution, the mean is not an accurate 

indicator of the average.  We want to reduce the effects of tail events, and the median 

provides a more robust estimator of location than the mean.  So, we set   to be the 

median sale price in a given auction.  Since the standard deviation is a measure of 

variability corresponding to the mean, we use the interquartile range       defined as 

         , or the range of the middle     of values, as our robust measure of 

statistical dispersion rather than the standard deviation.      is analogous to    for a 

distribution   determined by mean and variance,        . 

A. PARIS RESULTS 

From our Paris data, we have the following summary statistics: 

Table 5: Paris R* and β* Statistics 

 
Min 25% Median 75% Max IQR 

R* 0.669 1.198 1.585 2.491 11.153 1.293 

β* -37.943 -1.790 -0.260 0.946 5.716 2.736 

 

We run the following OLS regression of    on   : 
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This gives us the following results: 

Table 6: Paris Coefficient Estimates 

Coefficient Estimate Std Error t Ratio Prob > |t| 

a 1.171 0.111 10.51 <.0001 

b -0.312 0.017 -18.47 <.0001 

 

So we have the following regression: 

                 

 

Figure 1: Paris Auctions – R* vs. β* 
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We can see from the t-ratios that our estimates for   and   are statistically significant.  

As expected,    , confirming the hypothesis that arranging lots in order of decreasing 

value results in higher revenues. 

Table 7: Paris Summary of Fit 

R2 0.780 

Adj R2 0.778 

RMS Error 0.949 

Mean of Response 2.219 

Observations (or Sum Wgts) 98 

 

Table 8: Paris Analysis of Variance 

Source DF 
Sum of 
Squares Mean Square F Ratio Prob > F 

Model 1 307.619 307.619 341.265 <.0001 

Error 96 86.535 0.901 
  C. Total 97 394.154 

    

Moreover, with an    value of      and an F-statistic of        , the fit is fairly accurate 

and captures a significant portion of the effect. 

B. CHRISTIE’S RESULTS 

For our Christie’s data, we have the following summary statistics: 

Table 9: Christie's R* and β* Statistics 

 
Min 25% Median 75% Max IQR 

R* 1.041 1.543 1.772 2.096 3.322 0.553 

β* 0.387 3.065 4.246 6.558 11.910 3.493 
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We run the same OLS regression of    on   : 

  
       

     

This gives us the following results: 

Table 10: Christie's Coefficient Estimates 

Coefficient Estimate Std. Error t Ratio Prob > |t| 

a 0.993 0.059 16.83 <.0001 

b 0.187 0.011 17.49 <.0001 

 

So we have the estimated regression 

                 

 

Figure 2: Christie's Auctions - R* vs. β* 
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According to the t-ratios, this is a statistically significant result.  Here, though, we have 

   , which was not expected.  Moreover, from the fit statistics, this is clearly a solid 

model for the Christie’s dataset: 

Table 11: Christie's Summary of Fit 

R
2
 0.877 

Adj R
2
 0.874 

RMS Error 0.192 

Mean of Response 1.896 

Observations (or Sum Wgts) 45 

 

 

Table 12: Christie's Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 1 11.216 11.216 305.775 <.0001 

Error 43 1.577 0.037 
  C. Total 44 12.794 

    

With an    value of       and an F ratio of        , this is a highly predictive model 

suggesting that revenues increase as objects are placed in order of ascending value, 

counter to both the theoretical standard and previous empirical analysis. 

 According to Ms. Miyamoto-Pavot (2011), the Christie’s auctions were structured 

in a consistent manner throughout the period.  These auctions typically started at noon 

and lasted three hours.  Relatively low-valued paintings were auctioned for the first 

half.  Then, there was a short break from paintings as other types of objects were sold, 

while wealthier patrons arrived.  Around an hour later, auctions of paintings resumed, 

but now the pieces were significantly more valuable.  The auctions ended around 3:00, 
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after which dinner was served.  This was the standard format for auctions in 18th 

century London.  It may make sense, then, that if such a pattern were institutional, 

bidders would adjust their strategies to account for the change in the value of the 

paintings from the first part of the auction to the second part. 

In Appendix C, we run a simple test to see if there was a specific pattern followed 

in the ordering of lots at Christie’s auctions compared to those in Paris.  Based on the 

analysis, there was considerable variability in the value-ordering at the Paris auctions, 

and relatively little variation in the pattern at Christie’s.  This implies that there was in 

fact a very regular process at Christie’s, and bidders could adjust their strategies to 

account for this, explaining the discrepancy in our results for the Christie’s data. 

 

VI. CONCLUSIONS 

Using our data from Paris auctions, we find that the model developed in this 

paper supports the claim that ordering lots in decreasing value generates higher 

revenues for the seller.  The data from Christie’s does not support the hypothesis, but as 

demonstrated in Appendix C, this is due to structural praxes stemming from an 

institutionally regular pattern at Christie’s during this period. 



35 

 

For our set of Paris auctions, we find that the relationship between the adjusted 

revenue and the adjusted slope coefficient is proportional (disregarding the constant) 

with a factor of         , and this measure has a t-statistic of         , so it is a 

statistically significant relationship. 

Modern empirical studies generally focus on recent auctions that have occurred 

since the theory was developed, and until now nobody has studied historical auctions.  

This study provides some evidence that this optimal ordering is not related to modern 

practices by auction houses.  There is, however, definite need to expand this study.  

There remains a substantial supply of unexamined auction records from Paris, available 

through the AAHVS server at Duke.  This study meant to compare the information 

about contemporary Paris and Christie’s auctions, but a new study could focus solely 

on Paris auctions over centuries, providing further insights into our assumed optimality 

conditions for sequential auctions.  Another study could consider variations on the 

basic model outlined here, either by incorporating more details about individual pieces 

of art or the auctions themselves.  A further extension could consider using a modified 

characteristic value,    
 

   
, for each auction, using an analog of the Sharpe ratio for 

median statistics. 
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APPENDICES 

A. COLLECTION OF PARIS AUCTION DATA 

For the  Paris data, I had access to a set of PDF files that had images of auction 

catalogs, like the sample image below: 

 

Figure 3: Auction Catalog 

 

Note, there is no information on the day or order of sale here.  For that, we must turn to 

the feuilles de vacation, which order the catalog numbers by day and lot position: 
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Figure 4: Feuille de Vacation 

 

The corresponding entry for these data in my spreadsheet is as follows: 
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Table 13: Sample Data from Paris Auctions 

Auction Year 
Day of 
Sale Lot 

Norm 
Lot 

Catalog 
# Livre Sous Denier 

Total 
(L) 

Adj 
Total 

1767 
Livres 

1 1767 3 3 0.23 10 3 0 0 3.00 3.00 3.00 

1 1767 5 3 0.14 11 8 1 0 8.05 8.05 8.05 

1 1767 5 4 0.18 12 12 10 0 12.50 12.50 12.50 

1 1767 3 4 0.31 13 17 0 0 17.00 8.50 8.50 

1 1767 5 5 0.23 13 17 0 0 17.00 8.50 8.50 

1 1767 3 5 0.38 14 14 19 0 14.95 14.95 14.95 

 

Note that lot 13 is entered twice; in the feuille, it appeared under day 3, lot 4 and day 5, 

lot 5; the given sale price was 17 livres, so the model splits this value into equal parts for 

each day. 

 

B. BIAS IN PRICE AS A PROXY FOR VALUE 

Consider a set of   symmetric bidders, and bidder   has valuation    [   ], 

where   is the maximum possible value.  Each    value is iid, and is distributed on 

some increasing distribution   with continuous density     .  Bidder   knows his 

realization    of   .  According to Krishna (2003), in the case of an English auction, the 

equilibrium strategy    for a bidder   is to bid up to his true value, i.e.          .  The 

realized valuations among the   bidders are given by the set          .  Then, the 

highest valuation   is the largest order statistic of the set,                    .  The 

sale price, however, will be marginally more than the second order statistic – the winner 

will stop increasing his bid after he sees his last remaining competitor drop out. 



43 

 

Without loss of generality, assume     , and                       .  If 

     , we have the sale price    .  Otherwise,        in the marginal unit.  If 

       , we again have    .  Otherwise,        , so    .  Therefore, we must 

have the relationship    , and the winning bidder must have a nonnegative surplus, 

i.e.      . 

This implies that using sale price   as a proxy for value   will bias our estimate 

for the value of an object slightly below its true value.  This will artificially dampen our 

estimates of    for individual auctions.  The actual values for    are, however, 

irrelevant; all we care about is the general relationship between    and   .  Thus, since 

the bias is in the same direction for all our data points, we can use   as a proxy for  . 

 

C. TEST FOR REGULARITY IN VALUE VS. LOT ORDER 

We want to test the data to see if Christie’s ran a specific program in ordering 

lots by value regularly over each auction.  We can do this by considering a regression of 

value   on lot position  .  Here, we use sale price   as a proxy for   (see Appendix B).  

First, we must normalize each measure.  As stated earlier, an auction can be 

characterized by the vector               (see III. Model).  We can normalize the lot 

position by using the variable    
 

  
 (see III.B Value Declination Normalization).  

Similarly, we can normalize the price by the characteristic value; consider the variable 
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.  This is analogous to our original adjustment of the revenue by the characteristic 

value, where we found      
 

 
 (see III.A Revenue Normalization).  Clearly, revenue is the 

sum of the prices in an auction, so   ∑   
 
   .  It follows that 

     
 

 
∑  

 

   

 ∑
  

 

 

   

 ∑  
 

 

   

  

so our price transformation    
 

 
 preserves our original revenue transformation. 

Now, since we want to look at the trends with respect to the lot position, we’ll 

study the relative values for each decile of the normalized lot variable.  For the Paris 

data, we have the following statistics: 

Table 14: Aggregate Paris Decile Statistics 

Decile Q3 Q1 Q2 QCoD CV 

1 0.963 0.095 0.265 0.820 163.5% 

2 1.579 0.141 0.420 0.836 171.1% 

3 1.160 0.029 0.257 0.951 220.4% 

4 2.393 0.148 0.485 0.884 231.5% 

5 4.738 0.300 0.739 0.881 300.2% 

6 2.181 0.225 0.746 0.813 131.1% 

7 2.396 0.161 0.677 0.874 165.0% 

8 1.918 0.154 0.503 0.851 175.4% 

9 2.139 0.118 0.544 0.895 185.7% 

10 0.814 0.029 0.191 0.932 206.1% 

 

Again, since our distribution is skewed, we want a measure that does not heavily 

weigh outliers, so we use quartile statistics.  Here, the deciles each represent one-tenth 

of the lots, i.e. the first decile corresponds to the interval            ], the second decile 
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to            ], and so on.     is the median value of the adjusted price    in a given 

decile,    corresponds to the   th percentile, and    to the   th percentile.  We calculate 

two different measures of the relative statistical dispersion inherent in the measure, the 

quartile coefficient of dispersion        and the coefficient of variation     .  We 

define      and    as 

     
     

     
  

   
          

 
  

These are both measures that can be compared between different sets of data, and both 

depend on the interquartile range            , a relatively robust measure of 

absolute statistical dispersion.  Similarly, for our Christie’s dataset, we have the 

following statistics: 

Table 15: Aggregate Christie's Decile Statistics 

Decile Q3 Q1 Q2 QCoD CV 

1 0.463 0.171 0.295 0.461 49.5% 

2 0.735 0.290 0.463 0.434 48.1% 

3 0.995 0.411 0.630 0.416 46.4% 

4 1.218 0.522 0.802 0.400 43.4% 

5 1.492 0.613 0.925 0.418 47.5% 

6 1.930 0.772 1.199 0.428 48.3% 

7 2.362 0.882 1.434 0.456 51.6% 

8 2.606 1.038 1.623 0.430 48.3% 

9 3.372 1.259 2.067 0.456 51.1% 

10 6.434 1.905 3.422 0.543 66.2% 
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We can see that both measures of variation are significantly higher for each 

decile of the Paris data than for the Christie’s data, which implies that there was little 

variation in the trend for Christie’s auctions relative to the Paris auctions.  Comparing 

just the relative dispersion statistics, we get the following results: 

Table 16: Relative Dispersion Statistics 

 
QCoD 

 
CV 

 
Decile Paris Christie's Paris Christie's 

1 0.820 0.461 163.5% 49.5% 

2 0.836 0.434 171.1% 48.1% 

3 0.951 0.416 220.4% 46.4% 

4 0.884 0.400 231.5% 43.4% 

5 0.881 0.418 300.2% 47.5% 

6 0.813 0.428 131.1% 48.3% 

7 0.874 0.456 165.0% 51.6% 

8 0.851 0.430 175.4% 48.3% 

9 0.895 0.456 185.7% 51.1% 

10 0.932 0.543 206.1% 66.2% 

 

On average, the Paris      was 1.97 times higher than the Christie’s     , and 

the Paris    was 3.95 times higher than the Christie’s   , suggesting that there was far 

greater variability in the Paris auctions than in the Christie’s auctions.  We can see this 

graphically below.  In both figures, the points represent the    value in each decile, 

while the vertical lines correspond to the interquartile range for each decile. 
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Figure 5: Paris Decile Statistics 

 

 

Figure 6: Christie's Decile Statistics 
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We can see that the Christie’s distribution fits the description provided by Ms. 

Miyamoto-Pavot, with a general upward trend in value as the relative lot number 

increases, while the Paris distribution seems to be relatively flat.  If we run an OLS 

regression of    on    for each dataset, we get the following results: 

Table 17: Paris Decile Statistics Regression Analysis 

Summary of Fit 
     

R2 0.034 
    

Adj R2 -0.087 
    

Root Mean Square Error 0.210 
    

Mean of Response 0.483 
    

Observations (or Sum Wgts) 10.000 
    

      
Analysis of Variance 

     

Source DF 
Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Model 1 0.012 0.012 0.280 0.6113 

Error 8 0.352 0.044 
  

C. Total 9 0.364 
   

      
Parameter Estimates 

     
Term Estimate Std Error t Ratio Prob > |t| 

 
Intercept 0.416 0.143 2.9 0.0199 

 
Coefficient 0.122 0.231 0.53 0.6113 

 
 

 

 

 

 



49 

 

Table 18: Christie’s Decile Statistics Regression Analysis 

Summary of Fit 
     

R2 0.844 
    

Adj R2 0.824 
    

RMS Error 0.390 
    

Mean of Response 1.286 
    

Observations (or Sum Wgts) 10.000 
    

      
Analysis of Variance 

     

Source DF 
Sum of 
Squares 

Mean 
Square 

F Ratio Prob > F 

Model 1 6.554 6.554 43.123 0.0002 

Error 8 1.216 0.152 
  

C. Total 9 7.770 
   

      
Parameter Estimates 

     
Term Estimate Std Error t Ratio Prob > |t| 

 
Intercept -0.264 0.266 -0.99 0.3502 

 
Coefficient 2.819 0.429 6.57 0.0002 

 
 

For Christie’s, we have a          and         , confirming a high statistical 

correlation between an object’s value and its normalized lot number.  For our Paris 

auctions,         and         , a statistically insignificant correlation.  This further 

supports our claim that bidders could easily, and probably did, adjust their strategies in 

Christie’s auctions given the high regularity in value-ordering, which is why we did not 

see the effects we expected. 

 

 

 


