Queen Bees and Domestic Violence: Patrilocal Marriage in Tajikistan

Mavzuna Turaeva*

Professor Charles M. Becker, Faculty Advisor

January 2016

Department of Economics Duke University Durham, North Carolina 2016

^{*} Mavzuna Turaeva graduated from Duke University with a M.A. in Economics in December 2015 and is currently planning to pursue doctoral studies in Economics. She can be reached at <u>mavzuna@gmail.com</u>.

Acknowledgments

I would like to convey my gratitude to my advisor, Professor Charles M. Becker, for his guidance, enthusiasm and support at all stages of the research. I appreciated his insightful and thoughtprovoking comments, which helped sharpen my arguments and focus my ideas. I would like to also express my appreciation for Professor Federico Bugni for his insights on addressing the problem of missing data. I would like to mention Karen Li for assisting me in dealing with reverse geocoding and matching districts of Tajikistan with DHS clusters, and Jurgen Amann for his help in locating appropriate shape files and his efforts to fix the shape files provided by DHS. Their insight and contributions were crucial in the completion of this paper.

Abstract

According to the longstanding traditions, families in Tajikistan are preferably patrilocal, wherein newlywed couples move in with the husband's family. Such living arrangement may last for a period of time or for the rest of the life of the married couple. Strong anthropological evidence suggests that the husband's mother is endowed with ultimate power to control her daughter-in-law who is expected to be obedient. Based on Demographic and Health Survey data collected in Tajikistan in 2012 we conduct an empirical study aiming at finding statistical evidence of the correlation between higher level of domestic violence, measured along three dimensions - physical, severe physical and emotional – and the young married women's living arrangements. The observational study of the existence of the Queen Bee effect in patrilocal marriage establishes that there is a positive correlation between the incidences of domestic violence, particularly of emotional violence committed by the husband/partner given the presence of the Queen Bee. The result of the analysis indicates that women who live with the in-law family score 0.18 points higher on the incidents of emotional violence than the women who do not, which represents 11.4% of a standard deviation The study, however, does not find a similar correlation between physical violence, either severe or less severe, and a presence of the Queen Bee in the household.

JEL Classification: Z13; J12; J16

Keywords: Domestic Violence; Queen Bee; Social Norms; Tradition; Patrilocal Marriage; Tajikistan.

Introduction

When speaking of domestic violence, the image of an abusive male perpetrator and a battered female victim comes to mind. Such stereotype is usually unchallenged in popular consciousness as cases of male-on-female violence are the most frequent and most egregious, as man are on average physically more able to inflict harm on women than the other way around. Female-on-male violence, however, does occur more often than imagined. In fact, a study shows that 1 in 7 men in the U.S., compared to 1 in 4 women, have reported to experience physical abuse from the intimate partner in their lifetime.

Cases of female perpetrators of abuse do not attract much popular attention partly due to double standards in societies, which do not perceive female aggressors as capable of inflicting as much harm as their male counterparts. The cases of female-on-female violence is a still rarer subject of concern, while the cases are abundant. Oppression of women by women in the workplace, dubbed the Queen Bee syndrome by Stanes, Tavris & Jayaratne (1973), describes a paradoxical behavior of female executives, who, after having achieved higher ranks in the male-dominated workplace, are more likely to oppose the ascent of other women up the career ladder.

Queen Bee behavior is observed across patriarchal societies of the developing world as well. A vast body of literature documents oppressive cultural practices around the world where elder women often play a leading role perpetuating oppression against women. Some examples include: bridal kidnapping (Central Asia, Caucasus), "enslaving" of daughters-in-law (most of Central-Asia with varying severity across countries), genital mutilation (some counties in Africa and the Middle East), and Shim-pua marriages (China and Taiwan) – a traditional marriage, where the future bride is adopted from young age and raised by the in-law family alongside the future groom.

While cases of female-on-female violence are abundant, to our knowledge it is a still rare subject of study in the economics field. According to the Demographic and Health Survey conducted in Tajikistan in 2012, nearly 1 in 50 women surveyed reported having experienced physical abuse from their mothers-in-law. Since cases of female aggression against other females are not commonly recognized, let alone studied, we believe that the matter is much graver. Female perpetrators may often play an indirect role in oppressing other women, by actively maintaining cultural practices marginalizing younger women or being instigators of abuse against them. To our knowledge, no formal theoretical model exists to explain the paradoxical behavior of females in power: the exception is Turaeva (2015), who used Ramsey economic growth and overlapping generations models as a theoretical framework to explain Queen Bee behavior. The current study aims at filling the void left by the lack of research in the field and measuring the Queen Bee effect in the lives of young women living in patrilocal marriage in Tajikistan.

Section I includes a review of economic literature on domestic violence (DV). It is established that DV takes place in non-cooperative marriages, that is, a marriage in which spouses do not cooperate and a Nash equilibrium solution is achieved by maximizing individual utility of each spouse given

the behavior and threat points of the other. Studies on DV find that woman's income (consumption) is positively correlated with the likelihood of leaving an abusive husband. A strong correlation between DV and socio-economic status of a woman is also supported by empirical evidence. Moreover, Rensetti (2009) finds a reciprocal economic stress – DV relationship: while economic stress contributes to the likelihood of DV, DV may result in economic hardships for the victims. Norms of male dominance are also alluded to when explaining the higher rates of domestic violence in more economically disadvantaged communities.

Section II contains a survey of anthropological literature documenting traditional relations between a Queen Bee, a mother-in-law, and her daughter-in-law in Central Asian communities, particularly Tajikistan. Families in Central Asia are generally patrilocal, as anthropological records indicate longstanding tradition of a *kelin* (literally, *newcomer*) moving in with the in-law family in communities across Central Asia. Evidence from Tajikistan and Uzbekistan highlight the centrality of the mother-in-law figure in the lives of young women, beginning from the bride selection process and continuing through the rest of the life of the daughter-in-law. Obedience to the mother-in-law is often cited as foremost valuable quality of the daughter-in-law, and the lack of obedience in general is quoted as a trigger for domestic abuse against women.

Section III reviews the data extracted from Demographic and Health Survey conducted in Tajikistan (TjDHS) in 2012 and lays out the methodology used conducting the study. The DHS sample includes data on 6,432 households with a total 38,805 observations, including 9,656 women aged 15-49, and is representative of all four provinces of Tajikistan – Sughd, Khatlon, Gorno-Badakhshan Autonomous Oblast (GBAO) and Districts of Republication Subordination (DRS) – and Dushanbe, the capital city. The survey questions were designed in a way of mitigating the problem of underreporting of domestic violence due to the sensitivity of the subject and cultural differences in understanding what violence constitutes. The study here is aimed at establishing a correlational relation between the presence of a Queen Bee in the household and incidents of domestic violence committed against women who indicate their relation to the head of the household as "daughter-in-law". Thus, a treatment group includes all married, Tajik women living with their in-law parents, and the control group includes all other categories of women in the sample, which include those women who identified themselves to be heads of household, wives of household heads, sisters, and granddaughters and any other category.

Section IV identifies problems with available data, such as survey nonresponse, and describes the way the missing data are dealt with. The patterns of *missingness* in data – such as *missing at random* (MAR), *missing completely at random* (MCAR), and *missing not at random* (MNAR) are identified as they relate to the data in question and several methods of dealing with missing data and associated pros and cons are discussed. Depending on the pattern of missingness in data several methods can be used: simple deletion, single and multiple imputation. To establish the pattern of missingness in the DHS data a test for randomness of the missing data are conducted by means of a logit regression. The test identified a MAR pattern, thus, the missing data were simply deleted from the sample.

In Section V we conduct a principal component analysis (PCA) in STATA to reduce the dimensionality of both the response and explanatory variables. Due to the nature of the survey questions, the incidents of domestic violence are reported across 13 survey questions that pose specific question of the type and frequency of the violence committed. After PCA the dimension of the response variable was reduced to three major components that are named as PHYS (for incidents of physical violence), SEV_PHYS (for incidents of severe physical violence); and EMOT (for emotional violence). PCA was also performed on explanatory variables and resulted in the reduction of the dimension of the variables from 26 variables to 8 major components, which include personal and financial characteristics of women in question, their family environment, socio-economic status, attitude to violence, and their husbands' characteristics.

Section VI presents the major results of the study achieved through propensity score matching (PSM). The motivation to use PSM is to balance characteristics in treatment and control groups in order to correctly estimate the effect of the treatment. We have good reason to believe that the prospects of living in the in-law family, possibly indefinitely, does enter into the selection process of the daughter-in-law, thus, creating selection bias. Girls who end up living in a traditional patrilocal families are the ones possessing certain characteristics: married at younger age, fewer years of schooling, and more likely to be financially dependent. The findings include identification of unmatched characteristics: balancing property was not satisfied along such characteristics as: FAM_SIZE (includes variables such as number of family members and women eligible for survey); PER_IND (characterizes women's independence to plan motherhood); FIN_IND (financial independence supported by land and real estate ownership); TENURE (stands for the length of marriage as characterized by the number and age of children and age of the head of household).

The balancing property was satisfied through reduction of the number of explanatory components to four. As a result the space of the explanatory variables was reduced to include: ACCEPT (denotes cultural acceptance of domestic violence; CONTROL (encompasses variables characterizing a husband as controlling); SEC (stands for socio-economic class, which includes such variables as education and wealth index); and SUBMIS (denotes lack of submissiveness on the part of the daughter-in-law as expressed in longer marriage to birth intervals and higher age at marriage).

By excluding variables that do not satisfy the balancing property, we reduce the dimension of explanatory variable to only those that are shared by women in both groups. The result of the analysis indicate that women who live with the in-law family score 0.18 points higher on EMOT - the principal component correlated with incidents of emotional violence - than the women who do not. 0.18 points represents 11.4% of a standard deviation.

Section VI is followed by concluding statements and motivation for future research that will involve conducting a spatial analysis of domestic violence to identify regional spillovers and their causes and, potentially the domestic violence hot-beds, for which much of the ground-work has already been done.

I: Prior Literature

The study of marriage entered the economics domain with Gary Becker's seminal work (1974). Becker's model along with proceeding studies focused on families whose members are cooperative and allocate goods to maximize the common utility function. The economic model of marriage later transformed from cooperative to bargaining models. McElroy & Horney (1981) and Manser & Brown (1980) view decision making of a married couple as an outcome of a two-person bargaining problem with a Nash solution. In such bargained utility model, although it is joint utility function that is maximized, the solution must provide each spouse equal or greater utility than that obtained from outside marriage options. This constraint constitutes the individual's threat point (Manser & Brown, 1980).

Although such cases are abundant, relatively little attention has been paid to families where couples do not cooperate. Household with accounts of domestic violence (DV) represent non-cooperative spouses. Farmer and Tiefenthaler (1997) propose a non-cooperative model of the family and analyze the equilibrium solution to a game in which each spouse with independent preferences and threat points maximizes his or her utility given the behavior and threat points of the other. The man maximizes his utility by choosing the level of transfer to and the level of violence he inflicts upon his wife; whereas the wife's threat point determines her utility from the transfer she receives from her husband along with the violence. Farmer and Tiefenthaler (1997) theorize that as the woman's income (consumption) increases, her marginal utility of additional unit of consumption decreases along with her tolerance of violence, thereby increasing her threat point. The inability to "buy" more violence on part of the husband leads to decrease of violence. The authors' conclusion seems intuitive: a woman's income is positively correlated with the likelihood of her leaving an abusive partner.

Empirical studies on domestic violence have found strong correlation between the risk of domestic violence and economic hardship. DV rates also have been found to vary by social class: studies are consistent in indicating the inverse relation between the financial status of the family and the likelihood of domestic violence (Lloyd, 1997; Benson, Fox, DeMaris & Van Wyk (2003); Benson and Fox (2004)). For example, Lloyd (1997) presents the results of a random household survey that examined the effects of domestic violence on the women's labor force participation: women who reported having experienced abuse (physical, emotional or sexual) were more likely to have experienced unemployment, and also had lower personal income. Benson and Fox (2004), also find confirmation to the inverse relation between income of the household and the likelihood of DV. Furthermore, Rensetti (2009) finds a reciprocal economic stress – DV relationship: while economic stress contributes to the likelihood of DV, DV may result in economic hardships for the victims of domestic violence through work absenteeism, lost opportunities and abusive partners deliberately sabotaging their spouse's employment.

Norms of male dominance are also alluded to when explaining the higher rates of domestic violence in more economically disadvantaged communities. It is found that when men fail in their traditional, breadwinner role they may search for other ways of asserting their dominance and it is often through violence. In the family domain this implies violence against the partner (Renzetti, 2009). Analyzing data from National Survey of Households and Families Benson and Fox (2004) found that families where husbands were consistently employed report a DV rate of 4.7%, which increases to 7.5% and 12.3%, respectively, in families where the male partner has experienced one or more periods of unemployment.

Although these studies concern primarily with male- on- female violence, there is a consensus that male partners may experience intimate partner abuse over their lifetime as well, though in relatively lower numbers. In fact, according to the report on intimate partner violence, 1 in 7 men (compared to 1 in 4 women) in the U.S. have experienced severe violence from their intimate partner in their lifetime (Breiding, Chen, & Black, 2014).

Female-on-female violence is a still rarer subject of study in social sciences. From one side, a perceived relatively lower incidence of female-on-female violence makes the phenomenon of a lesser concern to researchers and policy makers alike. Oppression of women by women in workplace, though, is a well-recognized phenomenon dubbed the Queen Bee syndrome. The Queen Bee syndrome denotes a paradoxical behavior of senior female executives toward junior female employees. It was first defined by Stanes, Tavris & Jayaratne (1973), who examined promotion rates across gender and explored the impact of women holding high position on the workplace. They found that women who achieved higher ranks in the male-dominated workplace were more likely to oppose the ascent of other women up the career ladder.

Queen Bee behavior is observed across patriarchal societies of the developing world as well. A vast body of literature documents oppressive cultural practices around the world where elder women often play a leading role perpetuating oppression against women. Some examples include: bride kidnapping (Central Asia, Caucasus), "enslaving" of daughters-in-law (most of Central-Asia with varying severity across countries), genital mutilation (some counties in Africa and the Middle East), and Shim-pua marriages (China and Taiwan), which is tradition of adopting and raising the future daughter-in-law from a young age.

Queen Bee behavior is defined as a syndrome, synonymous to a disorder or a sickness, as it is puzzling that women who are often victims of oppression can also be perpetrators of oppression against other women. To our knowledge, no formal economic model has been developed to explain the theoretical underpinnings of the paradoxical Queen Bee behavior. Turaeva (2015) uses Ramsey economic growth and overlapping generations models as a theoretical framework to explain the Queen Bee behavior. She argues that by the time a woman ascends to the status of the Queen Bee in a household – becomes a mother-in-law – she has accumulated large enough social capital and is well positioned to begin profiting from the system that endows her with authority over younger females in her household – the daughters-in-law. At such a stage the mother-in-law engages in a norm-enforcing behavior which, among many things, means exploiting her daughter-in-law's labor in fulfilling household chores.

Having established the theoretical underpinnings of the Queen Bee syndrome previously, in the current study we measure the effect of the presence of the Queen Bee on the incidence of domestic violence in patrilocal marriages in Tajikistan. According to the longstanding traditions; families in Tajikistan are preferably patrilocal, wherein newlywed couples move in with the husband's family, either in case of the youngest or the oldest son. Such living arrangement may last for a period of time, or for the rest of the life of the married couple. Strong anthropological evidence suggests that the husband's mother is endowed with ultimate power to control her daughter-in-law who is expected to be obedient. Based on Demographic and Health Survey data collected in Tajikistan in 2012 we conduct an empirical study aiming at finding statistical evidence of the correlation between higher level of domestic violence, measured along three dimensions - physical, severe physical and emotional – and the young married women's living arrangements.

II: Anthropological Evidence

Marriage customs in Central Asia are well documented by anthropologists and ethnographers and are common theme of films and media. In "A Quiet Bride" directed by Setdar Karadjaev and produced by Ashkhabad TV Studio of Turkmenistan S.S.R in 1967, a young Turkmen city girl comes to the village to get married to her fiancé. The young man offers his bride to go back to the city to avoid performing the wedding ceremony according to the strict Turkmen traditions but his fiancée is excited to stay and participate in traditional rituals. Besides, she wants her mother-in-law to-be to like her. The movie filled with light humor depicts the relations between the mother-in-law and the bride through droll situations making fun of the long-standing traditions in a gentle way. The young bride accepts and fulfills all the requirements of the mother-law such as being absolutely obedient to the mother-in-law, doing all chores around the house, attending to her husband, and following such traditions as speaking to the "grown-ups" only through her husband's younger sibling and covering her face when speaking to other males. The young woman follows all these requirements but cannot give up her profession and goes to work to the local hospital despite the mother's opposition. Her respectful persistence and good character soon melts the old woman's heart who finally accepts of her modern-minded daughter-in-law's ways.

This movie appealed to the audience in the rest of Central Asia, as people could draw many parallels between depicted traditions and relations between mothers- and daughters-in-law in their respective cultures. In real life, though, such situations rarely evoke warm feelings and even more rarely have a happy ending.

Families in Central Asia are generally patrilocal, and are slightly more so in historically sedentary populations of Central Asia (Tajikistan and part of Uzbekistan) than in predominantly nomadic populations (Kazakh, Kyrgyz and Turkmen populations). The anthropological records indicate the same tradition of a *kelin* (literally,*newcomer*) moving in with the in-law family in Uzbekistan (Akiner, 1997b, p. 276). Harris (2004, p. 108) highlights the crucial role of the future mother-in-law in selection of the bride and also identifies the mother-in-law as the person who will have most contact

with the kelin, when the kelin lives with the family; and the harsh treatment of kelins. Researchers also point out the "nominal" power of the patriarch, the male head of the family (Louw, 2007, p. 76) and Harris (2004, p. 35), compared to the power that their spouses exert. Harris shares her observation of a Tajik family where male heads of family "have relatively few functions in relation to their families", while women are responsible for "the running of the home and social reproduction of its members". There are not many studies explicitly linking domestic abuse of kelins to the presence of the mother-in-law, as in many cases they are the instigators of the abuse, rather than direct perpetrators, but it could be inferred that the two events are correlated. Roy (2000, p. 183) mentions an occasion when Islam Karimov, the president of Uzbekistan, has "established a presidential contest for the best daughter–in–law, whose most valued quality is of course to obey her mother-in-law". Obedience, rather the lack of it, is often cited as one of the main reasons why Tajik women are battered, as "nobody beats a good, obedient wife" (Sharipova, 2008, p. 92).

Although we may establish a statistical evidence of the positive correlation between the incidents of domestic violence among women who live with their in-law families, we still cannot blame the mother-in-law directly, as there are other factors that we may not be able to account for in our analysis. For example, we do not include the fact of the presence of the father-in-law, who can be an equal accomplice in the mistreatment of the daughter-in-law. It is the ubiquitous anthropological evidence stating the centrality of the mother-in-law figure, not the father-in-law, in patrilocal families that leads us to believe that the Queen Bee syndrome takes place. Searching for a statistical evidence of the Queen Bee syndrome on the levels of domestic violence is the purpose of the current study.

III: Data and Methodology

The Demographic and Health Survey (TjDHS) was carried out for the first time in 2012 in Tajikistan. TjDHS 2012 was designed to be a representative sample of national data. The sample includes data on 6,432 households with a total 38,805 observations, including 9,656 women aged 15-49, and is representative of all four provinces of Tajikistan – Sughd, Khatlon, Gorno-Badakhshan Autonomous Oblast (GBAO), Districts of Republication Subordination (DRS) – and Dushanbe, the capital city. The sample households were selected in two stages: 1) 356 clusters were selected from a master sample designed from the 2010 Population Census; 2) participating households were listed in each cluster and were further systematically selected to participate in the Survey

The survey was conducted by the Statistical Agency and the Ministry of Health from July to September of 2012 with the support of the United States Agency for International Development (USAID) as part of the MEASURE DHS. Along with data on domestic violence against women, the purpose of the Survey was to collect data on maternity and child health, childhood mortality, and knowledge of and behavior towards tuberculosis, HIV, and other diseases.

The questionnaire used in TjDHS was based on model questionnaires developed by MEASURE DHS and were adapted to Tajikistan by experts from the Statistical Agency and the Ministry of Health. Fourteen teams each consisting of four female interviewers, a field editor, and a team

supervisors were formed to conduct the Survey after having received three-week training in June of the same year.

TjHDS Key Findings on Domestic Violence (2012)

In Tajikistan 19 per cent of women experienced physical violence at least once since the age of 15 (Kyrgyzstan – 23%); 13 per cent experienced violence in the past 12 months. 27 percent of ever married women, who reported having ever experienced physical or sexual violence committed by their partner/spouse, endured physical injuries. Overall approximately one in five women experienced physical, emotional, or sexual violence from a husband. In 76.3 percent of cases respondents indicate their current husbands/partners as persons who committed violence; other categories included father/step-father (4.5%); mother/step-mother (9.7%); sister/brother (7.8%); mother-in-law (1.6%)

Problem of Underreporting

Domestic violence is usually a sensitive topic. In a shame-honor culture of Tajikistan in particular, collecting reliable data on violence is expected to be challenging. Due to a different understanding of what violence constitutes (which in popular understanding includes only physical demonstrations of abuse) as well as a stigma associated in identifying oneself to be a victim of domestic violence (Sharipova, 2008), it is expected that the incidences of violence are underreported.

To mitigate the effect of cultural differences on the understanding of what constitutes violence the questionnaire was prepared with specific questions on the incidences of violent acts, such as:

"Did your (last) (husband/partner) ever:

- Push you, shake you, or throw something at you?
- Slap you?
- Twist your arm or pull your hair?
- Punch you with fist or something that could hurt you"

The examples of questions testing on the subject of emotional or sexual abuse included:

- Physically force you to have sexual intercourse with him when you did not want to?
- Say or do something to humiliate you in front of others?
- Insult you or make you feel bad about yourself?

For the purpose of this exercise we will include on the responses to the acts of physical and emotional abuse, excluding the responses on the sexual abuse. While the design of the survey has generally mitigated the effect of the differing cultural understanding of what violence is, we do not believe that the problem of underreporting was resolved. In fact, we believe that the highly descriptive nature of the questions may have deterred women from giving truthful answers, or might have led them to downplay the severity of the incidences. Women might be inclined to check the option "Slap you", instead of "Punch you with fist or something that could hurt you".

Design of the study

In our study of domestic violence in patrilocal families we can only establish a correlational relation between the presence of the mother-in-law and the level of the domestic violence experienced by younger married women. Verifying causal relationship would necessitate designing an experiment by assigning young married women to living with their in-laws – which is an infeasible and outright unethical endeavor. Of 9,656 women interviewed only 4,048 were randomly chosen to participate in the domestic violence module.

For the purposes of this study we further filter out all unmarried women and women whose native language is Russian. The reason for filtering out unmarried women for the purpose of the study is obvious, while including only women whose native language is not Russian is necessitated by cultural differences between Russian and non-Russian ethnicities in Tajikistan, which also include Kazakh, Uzbek and Kyrgyz ethnicities. This particular relationship dynamics between the mothers-in-law and their daughters-in-law is observed among Central Asian ethnicities, while Russian culture does not generally endow mothers-in-law with as much power over the daughters-in-law.

After trimming the data we have 3,956 observations remaining that we assign into two groups: the treated group is that where women live with the in-law family, i.e. their relationship to the head of the household is indicated as "daughter-in-law", and the control group includes all other women. Stratification of the sample into these two groups is a straightforward procedure as the data include women's response in terms of their relations to the head of household. This variable is designated qbee:

Q	<i>bee</i> Distribu	tion	
Relationship to	Frequency	Percent	Cumulative
household head			
Head	191	4.83	4.83
Wife	2,124	53.69	58.52
Daughter	93	2.35	60.87
Daughter-in-law	1,455	36.78	97.65
Granddaughter	2	0.05	97.70
Mother	8	0.20	97.90
Sister	7	0.18	98.08
Other Relative	71	1.79	99.87
Adopted/Foster Child	3	0.08	99.95
Not Related	2	0.05	100.00
Total	3,956	100.00	

Table 1

We further create a dummy variable *TREAT* which determines whether the observation is in the treatment or control group. Then, TREAT = 1 will indicate the treatment group and TREAT = 0 will indicate the control group.

IV: Data Cleaning

In order to proceed with the analysis we must first ensure the data are complete. The overview of the data (Appendix: Table 1) shows that a number of observations in both explanatory and response variables are missing.

Implications of Missing Data

In order to treat the missing data properly, it is important to establish the *mechanism of missingness*. If we can infer that the data are missing at random (MAR), or completely at random (MCAR), as opposed to missing not at random (MNAR), then the nonresponse can be ignored. Simply eliminated randomly missing data can be problematic from the power perspective, as the sample size for the analysis is reduced, but simply deleting randomly missing data will not bias the results (Osborne, 2013).

Let θ be a true parameter of population and let $\hat{\theta}$ be the estimator of the parameter based on the sample data. Ideally, we want $Bias_{\theta} = E_{\theta}(\hat{\theta}) - \theta = 0$.

$$\min MSE_{\theta}(\hat{\theta}) = V_{\theta}(\hat{\theta}) + \left(Bias_{\theta}(\hat{\theta})\right)^{2}$$
⁽¹⁾

where MSE is the mean squared error, a measure of the distance between the estimator and the parameter, which we want to minimize. The minimum MSE conveys the efficiency of the estimator of the parameter of the population.

Determining the unbiasedness and efficiency of the estimate poses new challenges if there are missing data. Traditionally, the types of non-response in surveys are categorized as unit nonresponse and item nonresponse. The former occurs when the data collection fails due to logistical reason; e.g., the respondent was not home, while the latter occurs when the survey participant leaves some questions unanswered. Unit nonresponse has traditionally been treated by reweighting and the item nonresponse by single imputation (Schafer and Graham, 2002).

In the following we define an indicator variable M for missingness: = 1, when the data are present, and 0 otherwise. The distribution of such variable is often referred to as the missingness mechanism and we refer to the probability distribution of M as the distribution of missingness, or the probabilities of missingness.

Rubin (1976) first developed a classification of the distribution of M according to the nature of the relationship of missingness to the data. Following Schafer and Graham (2002) we express such relationship as $Y_{com} = (Y_{obs}, Y_{mis})$, where the complete set of data can be represented as the combined set of all observed and missing data. Missing data are MAR if $(M|Y_{com}) = P(M|Y_{obs})$,

i.e., the distribution of M does not depend on missing values, but on observed values. A special case of MAR is MCAR, missing completely at random, when the following holds: $P(M|Y_{com}) = P(M)$, which occurs when the distribution of M does not depend on observed data either. When MAR is violated, we have a case of MNAR, or missing not at random. MAR is called ignorable nonresponse and MNAR is called non-ignorable nonresponse.

Missing Data in the Sample

The largest number of missing data are observed among independent variables: mar_to_birth (8.28%) and cur_age_child (10.7%). Other covariates such as *employed*, $owns_house$, $owns_land$, $native_langauge$ beating_just (1 though 5), Contr_hus (1 - 5), hus_tot_school have missing values under 1% of the total. Since simple case deletion of under 1% missing values will not affect the overall quality of the analysis, we simply delete observations with the missing values in these categories. After deleting the insignificant number of missing values in the aforementioned variables, only 8.27% and 10.67% of the values in mar_to_birth and cur_age_child , respectively, remain missing.

Having performed a test for randomness of missing values (see Appendix, pages 29-31), we establish that missing observations in both *mar_to_birth* and *cur_age_child* are missing at random (MAR). Thus, following the discussion on the methods of dealing with missing data (see Appendix, pages 27-28), we choose to simply delete incomplete observations.

V: Multidimensionality of Response and Explanatory Variables

The response variable is measured along 13 dimensions. In order to deal with the problem of multidimensionality of the data, we employ principal component analysis (PCA) in STATA to identify patterns in order to reduce the dimension of the data while keeping information intact. The objective is deriving a subspace of data with less than 13 dimensions that represent the data well. To do this, we need to compute eigenvectors (the components), which are associated with their eigenvalues, which represent the length and magnitude of the eigenvectors. The higher eigenvalues will contain more information about data distribution and those will be the candidates for forming the subspace.

The procedure for conducting PCA includes detecting highest correlation between the co-variables and then calculating eigenvalues based on the correlation matrix. For all steps of the analysis refer to the Appendix: STATA Output.

As we can see in Table 3 (Appendix, page 31) correlations among response variables range from as low as 0.1, for example, between *humiliated* and *knife* to as high as 0.9, for example, between *humiliated* and *emotional_vio*. While near perfect correlation in the latter example is trivial: the variable *emotional_vio* contains women's responses to the a question whether or not they have *ever* felt humiliated, insulted, or made feel bad in any other way. The differences between *humiliated – knife* (0.1), *humiliated-insulted* (0.5), and the *humiliated-pushed* (0.3) correlations are worth exploring further.

The underlying reason for the differing correlation is the nature of domestic abuse. Women who report feeling humiliated are most likely to have been insulted, or made feel bad in any other way; i.e. their partners have tendency to resort to the non-physical forms of abuse. Low correlation between the non-physical form of violence and more serious ones with potential serious bodily injuries, such as *knife*, or *strangled* is a somewhat surprising finding as it is reasonable to think the less harmful forms of abuse are a harbinger of the more serious ones. It may also be the case that those who suffer from "serious" abuse do not regard lesser abuse as worth reporting.

As we can see in Table 4 (Appendix, page 32), the first three components have eigenvalues higher than 1. The first component explain 38% variation in data, second -12.6% percent variation. Cumulatively, the first three components explain 62.8% variation in the data. We choose to keep components with eigenvalues above 1 (Appendix: Figure 1).

To better interpret the principle components, we can use the VARIMAX command in STATA, which is one of the orthogonal rotation methods. VARIMAX enables minimization of the complexity of PCA interpretation by amplifying the larger components loadings and diminishing the smaller loadings. Component loadings represent the correlation between the components and the original variables. After rotating components and dropping the loading with absolute values less than 0.3, we can see which of the original variables load highly on the components:

Table 2

Rotated components

(blanks are abs (loading) < 0.3)

Variable	Comp1	Comp2	Comp3	Unexplained
humiliated			0.60	0.15
threatened			0.33	0.58
insulted			0.39	0.47
pushed		0.48		0.36
slapped		0.57		0.20
punched	0.32			0.50
kicked	0.50			0.28
strangled	0.40			0.58
knife				0.82
twisted				0.53
any_less_severe		0.59		0.10
emotional_vio			0.61	0.10
any_severe	0.54			0.17

We can see in Table 2 that component 1 represents the more severe forms of physical violence, which include the survey respondents reporting being kicked or dragged, strangled or burnt, or having ever experienced any severe form of violence. Remember that the response variable is a multinomial variable with the higher ordered responses being affirmative regarding the incidence of domestic violence. Therefore, component 1 can be an indicator of severe physical violence, and named as PHYS_SEV. Component 3 is an indicator of emotional violence, or EMOT, Component 2 is an indicator of less severe physical violence, PHYS.

Notice that variables knife (ever been threatened with knife/gun or any other weapon by partner/spouse) and twisted (ever had arms twisted or hair pulled by husband/partner) are not correlated significantly with any of the principal components; i.e., the variables are not correlated with any of the forms of the violence in question. One way to interpret such a result is taking into account the specific context of the domestic violence, which involves male husband/partner inflicting harm on the female spouse, and the connotation of the acts of violence such as *knife* and twisted. Using a weapon in a confrontation is a means of equalizing one's power with or surpassing the power of a counterpart in a confrontation. For example, a weaker husband may resort to weapons as an appropriate means to deal with a stronger wife. The act of twisting arms or pulling hair is often resorted to in a physical confrontation of individuals with comparable strength, with one attempting to subdue the other. For example, if an equally strong wife confronts the abusive husband by fighting back, the husband may have to subdue her by pulling her hair or twisting her arms. Since such a scenario can play out in a unique circumstances (the husband feeling the need to resort to weapons also interacts with their availability, as citizens are not allowed to own guns in Tajikistan; and/or a certain physical preparedness of the wife and her audacity to confront the husband, as women are traditionally raised to be submissive), it is reasonable that these two variables are not highly correlated with any of the principal components.

Next, we must justify the use of the principal component in lieu of the original variable. We can do that by using the Kaiser – Meyer – Olkin measure of sampling adequacy, which should be above 0.5. For full details of the principal component analysis of the response variable please refer to the Appendix: Table 5.

Principal Component Analysis of Explanatory Variables

For all the details of the analysis, please refer to the Appendix: STATA Output. The key findings of the PCA analysis are as follows:

Table 3

Rotated components

(blanks are abs (loading) < 0.3)

Variable	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
cur_age			0.55					
educ_years					0.58			
num_members				0.60				
num_chil_5			-0.43					
num_women				0.59				
age_hh				0.41				
wealth					0.46			
cur_age_chil			0.63					
mar_to_birth								0.60
term_preg							0.7	
age_at_mar								0.69
employed								
beating_just1		0.44						
beating_just2		0.47						
beating_just3		0.46						
beating_just4		0.42						
beating_just5		0.44						
owns_house						0.68		
owns_land						0.69		
contr_hus	0.34							
contr_hus2	0.44							
contr_hus3	0.46							
contr_hus4	0.49							
contr_hus5	0.48							
hus_tot_sch.					0.62			
total_abort							0.69	

In Table 3, component 1 encompasses variables indicating how controlling the husband is. The group of variables named *contr_bus* include women's responses to the question whether or not their spouses exhibit jealousy, suspect women of being unfaithful, or limit the time and frequency of women's visitants to their families and friends, where a higher order of responses is affirmative of the fact of being controlled by the husband. We thus name this component as CONTR.

Component number 2 includes variables on women's justification of the violence. For instance, the participants were asked whether or not they think that the beating is justified in cases of the wife's neglecting children, or burning meals. This variable represents the respondent's acceptance of the violence that is influenced by overall cultural acceptance of violence against women. Similar to the first component, higher order responses in this multinomial variable are affirmative, i.e., the respondents justify or do not condemn violence. We call this component ACCEPT. The third component includes such variables as cur_age, cur_age_children, num_chil_5, where the last stands for the number of children in the household under age of 5, which is also negatively correlated with the other two variables. Older women in the sample tend to have older children and a fewer number of children under 5 years old. Thus, we designate these components as TENURE to signify the length of the women's marriage. The fourth component includes variables assigned for the number of family members, the number of females in the household eligible for the survey (15-49 years old), and the age of the head of household. This component can be best characterized as family size, FAM_SIZE. Component 5 includes variables assigned for the total years of schooling of both the respondent and her spouse, as well the as the wealth index assigned to the household. These variables are positively correlated, leading to an intuitive interpretation: more affluent individuals tend to be more educated and choose a partner who is educated. Thus this component stands for socio-economic class, or SEC. Component 6 corresponds to financial independence of the women, FIN_IND. Component 7 can be summarized as personal independence, PER_IND; i.e., a woman's ability to make decisions regarding termination of pregnancy. Component 8 includes variables corresponding to the age at the time of marriage and how soon a married woman bears her first child. Newlywed women are commonly encouraged, or even put under pressure outright, to bear children soon after marriage. It is expected that women living with their in-laws would be more exposed to such pressure and often submit to the pressure. Positive correlation between the two variables mean that women who marry at older ages tend to take longer before having their first child. While the reason could be medical, i.e., older women have harder time getting pregnant, but given that women in Tajikistan get married at a young age on average, the reason for the delay of childbearing could also reflect some women's unwillingness to submit to the pressure. Thus, this component represents the lack of submissiveness, or SUBMIS.

It is interesting to note that variable *employed* does not substantially contribute to any of the components; i.e. there is no strong multicollinearity of the variable with other explanatory variables in the set. To interpret such a result one must remember that women's formal employment outside the realms of the household in Tajikistan remains a culturally sensitive issue. Thus, the factors that conventionally determine the employment status of an individual woman, such as education, social class, age, number of children and so forth, have less importance in the lives of daughters-in-law. It is often the case that women with university education become full-time homemakers after marriage. It is also often the case that regardless of low income in the household, women are not encouraged to seek employment; likewise, in the upper class families, daughters-in-law do not have any more autonomy in deciding whether or not to pursue a career. The factors contributing to the

employment status are more relevant for the women who hold a different status in the families; i.e., they are not daughters- in-law.

VI: Queen Bee Effect: Effect of the Treatment

While every woman getting married faces the prospect of living with a Queen Bee at least for a period of time or indefinitely, we suspect there still exists a selection bias. Customarily, it is the firstborn son who remains in the household with his spouse and children to take care of the aging parents and who also inherits the parent's assets. We have good reasons to believe that the birth order of the man does not enter the women's consideration of the marriage prospect. First, living with in-laws is a widely accepted tradition and respect for a mother-in-law figure (and father-in-law for that matter) is instilled in Tajik girls since young age. Second, it is not always the first-born son in the family who remains living with parents. The choice is often circumstantial. It is not unusual for the youngest son to carry the torch for the family.

However, we have good reasons to believe that the prospects of living in the in-law family, possibly indefinitely, does enter into the selection process of the daughter-in-law, where the mother of the prospective groom is the key player. The existence of brides of different culturally valued attributes and qualities, such as virginity, skills of housewifery, meek character, physical appearance, family background and so forth endows important roles and responsibilities on future mothers-in-law, as the selection process and final outcome are rife with uncertainties. The interaction of quality differences and uncertainty necessitates and explain the presence of a strong female figure on the marriage market, who serve as proxy for their sons, the prospective husbands.

In assessing the quality of the prospective daughter-in-law, a mother-in-law relies on some characteristics of a given prospective bride: age (most important), years spent in school; in case of advanced degree: years remaining to graduate, prospective profession; if graduated, whether or not in a workforce; family income and social status. The number of siblings is likely irrelevant, unless the number is large.

Although there are no used category in the brides market, the information asymmetry about the quality of the future daughter-in-law exists still exists. Parents know best if they have brought up an obedient daughter or not, or an overall adept girl willing to live in patrilocal family structure, something that the future mother-in-law and her son can never fully investigate via a background check.

Girls who will end up living in a traditional patrilocal families are the ones possessing certain characteristics. Such brides are more likely to have gotten married at younger age, are more likely to have fewer years of schooling and therefore are less likely to hold an advanced degree; are less likely to hold a formal job; are more likely to bear children in the first year after the marriage and have a close interval between subsequent births, especially if the children already born are female. Further, these women are less likely to own any property and more likely to be financially dependent.

Therefore, in order to correctly assess the Queen Bee effect we must employ a propensity matching technique to balance characteristics in treatment and control groups and estimate the effect of the treatment; i.e. the effect of being of living with a mother-in-law on the incidences of domestic violence. Let y_0 be a random variable that is the response variable in the absence of the treatment and y_1 be the outcome when TREAT = 1; i.e when a woman indicated her relationship to the head of household as "daughter-in-law". The average treatment effect on the population is as follows (Greene, 2012, p. 934):

$$ATE = E[y_1 - y_0] \tag{2}$$

ATE denotes the effect of the treatment on the individual randomly selected from the entire population. A more desired estimate is ATET – the average treatment effect on the treated – which is an estimation of the Queen Bee effect on in the lives of the daughters-in-law:

$$ATET = E[y_1 - y_0|TREAT = 1]$$
(3)

If the treatment is completely random then

$$E[y_j | TREAT = 1] = E[y_j | TREAT = 0] = E[y_j | TREAT = j], where j = 0, 1$$
(4)

$$ATE = E[y_1|TREAT = 1] - E[y_0|TREAT = 0]$$
(5)

The use of propensity matching technique to estimate the treatment effect is motivated by the expectation that the treatment assignment is not absolutely random.

Recall that after reducing the dimensionality of the response variables, three major components – PHYS_SEV, PHYS, EMOT – were identified. In the proceeding analysis we measure the Queen Bee effect in terms of each of the dimension of domestic violence. The goal is to estimate the average treatment effect of TREAT on the treated and the average treatment effect in the population.

Propensity Score Matching

To establish a correlational relationship between the presences of the Queen Bee and the level of domestic violence we employ a propensity score matching technique. Matching involves selecting observations from the non-treated group to match to the ones in the control group, where the distribution of observed variables is as similar as possible to the distribution in the control group. Since assignment to the treatment group is not random, using propensity score matching (PSM)

technique will allow to create a "quasi-randomized" experiment. PSM involves calculating the propensity score, which is the probability of being in the treatment group given the observation has same characteristics.

We match observations in the two groups by finding the propensity score using a parametric method, logit or probit technique, to estimate the probability of a person being in the treatment group while possessing certain characteristics. The probit/logit model uses *TREAT* as dependent variable and all the characteristics of the observations as independent variables. Let p(X) stand for propensity score, then:

$$p(X) = prob(TREAT = 1|X) = E(TREAT|x)$$
(6)

The propensity score is the conditional expectation of being in the treatment group given the characteristics X. PSM then assigns weights to the control group to make variables in the control group as similar as possible to the treatment group. After matching, the outcomes can be compared using weighted differences in mean outcomes between treatment and control group to find effect.

The estimation of the treatment effect through propensity score matching is conducted in STATA using *teffects psmatch* command and *logit* for the treatment model. The treatment effect was estimated for each of the components of the domestic violence – PHYS_SEV, PHYS, EMOT – and each individuals in each group were matched along eight explanatory variable – components – ACCEPT, CONTROL, FAM_SIZE, PER_IND, FIN_IND, SEC, TENURE, SUBMIS. The entire analysis can be found in the Appendix: STATA Output.

The major findings are the following:

• Unmatched Characteristics

For each of the component of domestic violence, the balancing property was not satisfied along such characteristics as FAM_SIZE, PER_IND, FIN_IND, TENURE. It is trivial that the two groups would not match on the FAM_SIZE and TENURE characteristics, since larger family sizes tend to include two to three generations of the family members and older women tend not to have their in-law parents living. It is quite tragic that the two groups would not match along the PER_IND and FIN_IND characteristics. Women in the control group – the daughters-in-law - lack personal and financial independence, where the latter is defined by the fact of holding property, compared to their peers who do not live with their in-law family. By implication, we are unable to reject the possibility that differences in wealth or socio-economic status drive the results reputed below.

• Re-specification of the Propensity Score

To satisfy the balancing property the number of explanatory components was reduced to four through the process of step-by-step elimination. As the result the space of the explanatory variables was reduced to include: ACCEPT, CONTROL, SEC, SUBMIS. By excluding variables that do not satisfy balancing property, we reduce the dimension of explanatory variable to only those that are shared by women in both groups. The resulting collection of matching characteristic is telling on its own and intuitive: the tradition of living with the mother-in-law is pervasive. It transcends socio-economic barriers, irrespective of the individual's level of autonomy or cultural attitude towards domestic violence, or the man's culturally informed way of demonstrating masculinity.

• Treatment Effects

After satisfying the balancing property the following results were found in terms of each of the dimensions of domestic violence:

PHYS_SEV – ATE and ATET are not statistically significantly different from zero (Appendix: STATA Output)

PHYS_SEV - ATE and ATET are not statistically significantly different from zero (Appendix: STATA Output)

EMOT - ATE and ATET are statistically significant (Table 4)

Table 4

Treatment-effects estimation

Estimator:	propensity-score matching
Outcome model:	matching
Treatment model:	logit
Number of obs =	3,534
Matches: requested =	1
Min =	1
Max =	1

			AI Robust						
EMOT		Coef.	Std. Err.	Z	P > z	[95% Conf.]	Interval]		
ATET									
	TREAT								
	(1 vs 0)	0.18127	0.0709586	2.55	0.011	0.0421905	0.320343		
ATE									
	TREAT								
	(1 vs 0)	0.18492	0.0686544	2.69	0.007	0.0503599	0.3194801		

First of all, recall that variable EMOT is a principal component (PC) that is highly correlated with the variables dealing with the non-physical form of violence, such as *humiliated, insulted, threatened* and *emotional_vio*. PC EMOT has mean 0 (precisely: 4.47e-10), standard deviation of 1.58, minimum score of -1.27 and maximum score of 11.22. EMOT increases as the survey responses go from 0, indicating response "never" [never experienced any form of emotional abuse], to higher order responses: "often" (1), sometimes (2), yes but not in the past 12 months (3). The result of the analysis indicate that women who live with the in-law family score 0.18 points higher on EMOT than the women who do not, which represents 11.4% of a standard deviation.

Conclusion

According to the results in Table 4, the observational study of the existence of the Queen Bee effect in a patrilocal marriage established that there is a positive correlation between the incidences of domestic violence, particularly, of the emotional violence committed by husband/partner and the presence of the Queen Bee. Women's principal component score reflecting emotional violence is 0.18 points higher when they live with the in-law family, which represents 11.4% of one standard deviation. The study, however, did not find such correlation between physical violence, either severe or less severe, and the presence of the Queen Bee in the household, which is not a surprising result. Regardless of the inferior position of the daughter-in-law, conspicuous abuse of the daughter-in-law as expressed in the physical manifestation of the violence is still frowned upon especially by the older generation, although a small number of women, 1.6% of the entire sample, did indicate that their mothers-in-law had ever laid her hands on them. Emotional abuse, on the other hand, does not generate a physical evidence and in many cultures, including Tajikistan, is not generally regarded as abuse; thus the presence of in-law parents does not prevent the intimate partner from committing it. In fact, the result of the study shows that that the presence of the in-laws contributes to the incidents the domestic violence.

Future Research: Spatial Analysis of Domestic Violence

The DHS Survey identifies regional variations the level of domestic violence. For example, in terms of physical violence, 13% of women living in the Districts of the Republican Subordination (DRS) – the central province of Tajikistan - who were selected for domestic violence module indicated that they experienced physical violence in their life since the age 15. This comes in marked contrast with 22.2% of women living in Sughd region, who indicated that they experienced physical violence in their life since the age 15. This comes in marked contrast with 22.2% of women living in Sughd region, who indicated that they experienced physical violence in their lives since the age of 15 (2012, p. 196). Sughd, the northern region of Tajikistan, is a more developed, industrialized region of Tajikistan where women historically have been more educated and employed in both private and public sectors. Thus, women in the northern region tend to be more outspoken and transgress culturally appropriate norms of behavior. Alternatively, they also simply may be keener on reporting the violence. DRS, on the contrary, is rural, less developed, and

more conservative, where women tend to be less educated and married at younger age, are more obedient and docile, thus experience less abuse since, as mentioned earlier "nobody beats a good, obedient wife" (Sharipova, 2008, p. 92); alternatively, they simply may not report abuse for all the reasons mentioned above. Going forward it will be a compelling study to conduct a spatial analysis of domestic violence to identify regional spillovers and their causes and, potentially the domestic violence hot-beds.

References

- Akiner, S. (1997b). Between tradition and modernity: the dilemma facing contemporary Central Asian women. In M. Buckley, *Post-Soviet Women: From the Baltic to Central Asia*. Cambridge: Cambridge University Press.
- Benson, M. L., & Fox, G. L. (2004, September). When violence hits home: How economics and neighborhood play a role. *National Institute of Justice*, pp. 1-12.
- Beson, M. L., Fox, G. L., DeMaris, A., & Van Wyk, J. (2003, September). Neighborhood Disadvantage, Individual Economic Distress and Violence Against Women in Intimate Relationships. *Journal of Quantitative Criminology*, 19(3), 207-235.
- Breiding, M., Chen, J., & Black, M. (2014). Intimate Partner Violence in the United States 2010. Atlanta: National Center for Injury Prevention and Control of the Centers for Desease Control and Prevention.
- Farmer, A., & Tiefenthaler, J. (1997). An economic analysis of domestic violence. Review of Social Economy(55.3), 337+. Retrieved from http://go.galegroup.com.proxy.lib.duke.edu/ps/i.do?id=GALE%7CA20057462&v=2.1&u =duke_perkins&it=r&p=AONE&asid=61579a90ed2b9bb651a4d2b03f5714cf
- Greene, W. L. (2012). Econometric Analysis. New York: Pearson.
- Harris, C. (2004). Control and Subversion. Sterling, Virgina: Pluto Press.
- Kasimova, S. R. (2007). (Transformation of Gender Order in Tajik Society) Трансформация гендерного порядка а Таджикском обществе. Dushanbe: Irfon.
- Lloyd, S. (1997). The Effects of Domestic Violence on Women's Employment. Law & Policy, 19(2), 139–167.
- Louw, M. E. (2007). Everyday Islam in Post_soviet Central Asia. New York: Routledge.
- Manser, M., & Brown, M. (1980, February). Marriage and Household Decision Making: A Bargaining Analysis. *International Economic Review*, 21(1), 31-44.
- McElroy, M. B., & Horney, M. J. (1981). Nash-Bargained Household Decisions: Toward a Generalization of the Theory of Demand. *International Economic Review*, 22(2), 333-349.
- Osborne, J. W. (2013). *Best Practices in Data Cleaning*. Los Angeles, London, New Dehli, Songapore, Washington DC: SAGE Publications.
- Renzetti, C. M. (2009). *Economic Stress and Domestic Violence*. National Online Resource Center on Violence Against Women .
- Roy, O. (2000). The New Central Asia: The Creation of Nations. New York: NYU Press.
- Rubin, D. B. (1987). *Multiple Imputation for Nonresponse in Surveys*. New York: JOHN WILEY & SONS.

- Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological methods, 7(2), 147-177.
- Schafer, J. L., & Schenker, N. (1997, June). Inference with imputed conditional means. *Journal of the American Statistical Association*, *95*, 144-154.
- Sharipova, M. (2008). One More War Against Women: Historical and Socio-Cultural Apects of Violence Against Women in Tajikistan. In C. Hammerle, N. Langreiter, M. Lanzinger, & E. Saurer (Eds.), Gender Politics in Central Asia. Historical Perspectives and Current Living Conditions of Women (pp. 67 - 94). Bohlou.
- Staines, G., Tavris, C., & Jayaratne, T. (1973). The Queen Bee Syndrome. In C. Tavris, *The Female Experience*. Del Mar, California: CRM Books.
- (2012). *Tajikistan Demographic and Health Survey*. Statistical Agency under the President of the Republic of Tajikistan; Ministry of Health, Tajikistan; MEASURE DHS ICF International, Calverton, Maryland, USA.
- Turaeva, M. (2015, May 2). Tenacity of Social Norms: How Economic Models Explain Perpetuation of Gender-based Discrimination. Durham: Unpublished.

Appendix

Table 1: Overview of Data

Total number of observations – 3,396

Explanatory Variables

Variable name	Description	Response	Data type	Missing
		range/category		values
				(%)
cur_age	Current age	17 - 49	Numerical,	0
			discrete	
educ_years	Total number of years of	0-21	Numerical,	0
	schooling		discrete	
num_members	Number of household	1-24	Numerical,	0
	members		discrete	
num_women	Number of women in the	1-8	Numerical,	0
	household, ages 15-49		discrete	
qbee	Relationship to	Head; wife;	Categorical,	0
-	household head	daughter; daughter-	multinomial	
		in-law;		
		granddaughter;		
		mother; sister;		
		etc		
mar_to_birth	Marriage to first birth	0-221, incl. negative	Numerical,	8.28
	interval, in months	interval	discrete	
term_preg	Ever terminated	Yes/no	Categorical,	
	pregnancy		binary	
mar_status	Marital status	Married only	Categorical,	0
			nominal	
age_at_mar	Age at first cohabitation	10-47	Numerical,	0
			discrete	
employed	Currently working	Yes/no	Categorical,	0.17
			binary	
owns_house	Respondent owns a	Does not own;	Categorical,	0.30
	house	owns alone; owns	multinomial	
		jointly; both alone		
		and jointly		
owns_land	Respondent owns land	Does not own;	Categorical,	0.54
	-			

		owns alone; owns jointly; both alone and jointly	multinomial	
native_langauge	Native language of the respondent	Tajik; Uzbek; Kyrgyz; other	Categorical, multinomial	0.07
Cur_age_child	Current age of child	0 - 27	Numeric, discrete	10.7
beating_just (1 though 5)	Beating is justified if wife (1-goes out without telling husband; 2 – neglects children; 3 – argues with husband; 4 – refuses to have sex ; 5 – burns the food)	No; yes; don't know	Categorical, multinomial	0.10 - 0.15
Contr_hus (1 – 5)	Controlling husband (1 – husband is jealous; 2 – accuses wife of unfaithfulness; 3 – does not allow wife to meet with family/friends; 4 - limits wife's contact with family; 5 – whants to know where wife is all the time)	No; yes; don't know	Categorical, multinomial	0.37 - 0.44
hus_tot_school	Husband's total years of schooling	0 - 22	Numeric, discrete	0.12
Region	Place of the respondent's residence	Dushanbe; Sughd; Khatlon; DRS; GBAO	Numeric, discrete	0
Rur_urb	Type of place of residence	Rural; urban	Categorical, binary	0
Num_chil_5	Number of children of age 5 and under	0 -9	Numeric, discrete	0
age_hh	Age of the head of the household	17-95	Numeric, discrete	0
Wealth	Wealth index	Poorest; poorer; middle ; richer; richest	Categorical, multinomial	0

Response Variables

Variable name	Description	Response range/category	Data type	Missing values (%)
humiliated	Ever been humiliated by husband/partner	Never; often; sometimes; yes, but not in the past 12 month	Categorical, ordinal	0.35%
threatened	Ever been threatened with harm by husband/partner	Never; often; sometimes; yes, but not in the past 12 month	Categorical, ordinal	0.37
insulted	Ever been insulted or made feel bad by husband/partner	Never; often; sometimes; yes, but not in the past 12 month; yes, but frequency in the past 12 months mi	Categorical, ordinal	0.37
Emotional_vio	Experienced any emotional violence	Yes/no	Categorical, binary	0.35
pushed	Ever been pushed, shook or had something thrown by husband/partner	Never; often; sometimes; yes, but not in the past 12 month; yes, but frequency in the past 12 months mi	Categorical, ordinal	0.37
slapped	Ever been slapped by husband/partner	Never; often; sometimes; yes, but not in the past 12 month; yes, but frequency in the past 12 months mi	Categorical, ordinal	0.37
punched	Ever been punched with fist or hit by something harmful by husband/partner	Never; often; sometimes; yes, but not in the past 12 month; yes, but frequency in the past 12 months mi	Categorical, ordinal	0.40
kicked	Ever been kicked or dragged by husband/partner	never, often, sometimes, yes, but not in the past 12 month, yes, but frequency in the past 12 months mi	Categorical, ordinal	0.37
Strangled	Ever been strangled or burnt by husband/partner	Never; often; sometimes; yes, but not in the past 12 month	Categorical, ordinal	0.42

knife	Ever been	never, often, sometimes,	Categorical,	0.40
	threatened with	yes, but not in the past 12	ordinal	
	knife/gun or	month		
	other weapon by			
	husband/partner			
Twisted	Ever had arm	Never; often; sometimes;	Categorical,	0.37
	twisted or hair	yes, but not in the past 12	ordinal	
	pulled by	month; yes, but frequency		
	husband/partner	in the past 12 months mi		
any_severe	Experienced any	Yes/no	Categorical,	0.40
	severe violence by		binary	
	husband/partner			
any_less_severe	Experienced any	Yes/no	Categorical,	0.37
	severe violence by		binary	
	husband/partner			

Methods of dealing with missing data

Case deletion

Simple deletion of the missing data may be problematic if a large portion of the observations is missing. There are two types of deletion method: list-wise deletion (LD) and pairwise deletion (PD), or available case analysis – these are the traditional methods of dealing with missing data. Under MCAR, the remaining observations give unbiased estimates, but under MAR and MNAR the resulting estimates are usually erroneous (Osborne, 2013, p. 117). Under either case, deletion of the missing data leads to reduction of the power of the analysis, which potentially deteriorates the quality of the results. Power is the probability of rejecting the null hypothesis when the alternative hypothesis is false, thus committing Type II error. Software is available for computing power, or G*Power. Osborne (2013) estimates a sample of size 20 gives a power of 0.5, which means that with such a sample size there is 50% chance of committing Type II errors. Thus, the simple deletion method is reasonable when only a small portion of the data are missing and the missing data are MAR (Osborne, 2013, p. 118).

Single Imputation

• Mean substitution

Imputing unconditional means, or mean substitution – replacing each missing value with the sample mean, resolves the power issue, may give an accurate prediction of the missing values but distorts the sample's correlations and variances. In a large sample with 95% confidence interval for the population mean is $\bar{y} \pm 1.96 \frac{s}{\sqrt{N}}$, where \bar{y} is the sample mean, S is the sample standard error and N is

the sample size. Mean substitution biases the sample variance downwards ($S^2 < \sigma^2$); i.e., the sample variance becomes lower than the true population variance; and overestimates the sample size. The confidence interval is a range of values around the sample mean that is likely to contain the true population mean. Thus, the coverage probability is:

$$P\left(\bar{y} - 1.96\frac{S}{\sqrt{N}} \le \mu \le \bar{y} + 1.96\frac{S}{\sqrt{N}}\right) = 0.95$$
 (1)

Under MCAR the coverage probability after mean substitution, when the response rate, $r = \frac{S}{\sqrt{N}} = 0.75$ with 25% missing values, the coverage probability is reduced to $P(1.96r \le Z \le 1.96r)$, where $Z = \sqrt{N} \frac{\bar{y} - \mu}{\sigma}$ and $Z \sim N(0,1)$. Therefore $P(Z \le 1.96 * 0.75) + P(Z \le 1.96 * 0.75) = 0.4292 * 2 = 85.8\%$

Thus, the error rate is nearly three times as high as in the complete data case. In addition to reducing variances, mean substitution also reduces the covariance and inter-correlation between variables. Thus, in case of MCAR mean substitution is a less preferable method than simple deletion (given reasonably small portion of missing values).

• Imputing from an unconditional distribution

To offset the drawbacks of the mean substitution, other single imputation methodologies have been used that preserve the shape of the distribution. One procedure is known as *hot deck imputation*, which is the process of filling the missing data with the actual data drawn from the observed values randomly. Although this method does not distort the variance it still distorts the correlations (Schafer & Graham, 2002).

Imputing conditional means

Conditional mean substitution, also known as a *cold deck* imputation is performed by running a regression model for predicting Y from a set of independent variables. The regression is first run on the set of the observed values of Y, then using the covariate values for the missing observations, one obtains the predicted values \hat{Y} for the missing values of Y, and this way \hat{Y} estimates the conditional mean of Y given independent variables. Such a method produces more accurate predictions but distorts the covariances and correlations as it overestimates the strength of relationship between Y and X.

Multiple imputation method

The multiple imputation (MI) method (Rubin, 1987) addresses the problems posed by the conditional mean imputation. With multiple imputation, Y_{mis} is replaced with a number of random draws from the predictive distribution (Schafer & Schenker, 1997). MI is a Monte Carlo technique,

where each missing values is replaced by the *j*th element of a list of m > 1 simulated values, where j = 1, ..., m. Such procedure produces m data sets, each of which is analyzed by the same complete-data method. (Schafer & Graham, 2002). A crucial feature of MI is that the missing values for each participant are predicted from his or her own observed characteristics.

Test for Randomness of Missing Values

To perform a test for randomness of missing values, we create a dummy variable r. Let r = 1, be the incidents of missing values in *mar_to_birth* variable, and r = 0, when the data are observed. We use the logistic regression to predict the randomness of missingness based on the variables *age_at_mar* and *cur_age* as a set of independent variable. The dependent variables is a dichotomous variable:

$$r_i = \begin{cases} 1 \text{ if ith person missed the question} \\ 0 \text{ otherwise} \end{cases}$$
(2)

Since the dependent variable is a dichotomous dummy variable, we cannot use a regular linear model for testing the randomness of missing values and instead employ a logit model.

We view r_i as realizations of random variable R_i that takes the values between 1 and 0 with probabilities p_i and 1- p_i , respectively. Thus $Y_i \sim Bernouli(p_i)$, which can be written in compact form as:

$$P(R_i = r_i) = p_i^{r_1} (1 - p_i)^{1 - r_1},$$
(3)

For $R_i = 0, 1$.

$$P(R_i = r_i) = \begin{cases} 1 - p_i \text{ when } r_i = 0\\ p_i \text{ when } r_i = 1 \end{cases}$$

$$\tag{4}$$

Let p_1 and p_2 be the probabilities of missing and not missing the survey question:

$$p_1 = Prob(R = 1 | \mathbf{X}) = F(\mathbf{X}, \boldsymbol{\beta})$$
(5)

$$p_2 = Prob(R = 0|\mathbf{X}) = 1 - F(\mathbf{X}, \boldsymbol{\beta})$$
⁽⁶⁾

Then,

$$E[p|\mathbf{X}] = 0[1 - F(\mathbf{X}, \boldsymbol{\beta})] + 1[F(\mathbf{X}, \boldsymbol{\beta})] = F(\mathbf{X}, \boldsymbol{\beta})$$
(7)

Here, $F(\cdot)$ is the cdf of the random variable. The vector of parameters $\boldsymbol{\beta}$ shows the effect of changes in \boldsymbol{X} on probability. We are interested in finding the marginal effects at the means (MEMS) of the different categories of women with regard to their relationship to the head of household on the probability of leaving the survey question blank.

Ideally, we would like the probabilities of leaving the question blank to be a linear function of the covariate X_i , i.e., $F(X, \beta) = x'_i\beta$. But since $0 < p_i < 1$, while the linear predictor can take any real value, the predicted value may not be in the plausible range. To fix this problem we need to transform to data and we can do it in two steps:

1) We find the odds of missing the survey question:

$$Odds_i = \frac{p_i}{1 - p_i} \tag{8}$$

The odds can take any positive value, thus have no upper bound restrictions.

We then take the log of odds ratio to remove the lower bound restriction, this will give the logit (pi)

$$x_i'\beta = logit(p_i) = \log(\frac{p_i}{1 - p_i})$$
(9)

Solving for p_i will give us:

$$p_i = logit^{-1}(x_i'\beta) = \frac{\exp(x_i'\beta)}{1 + (x_i'\beta)} = \Lambda(x_i'\beta)$$
(10)

Finally, in order to estimate the marginal effects of being in a different category of relationship to the head of household on the probability of nonresponse to the survey question on domestic violence, the marginal effect in the logit model can be calculated by differentiating with respect to the covariates:

$$\frac{\partial E[p|\mathbf{X}]}{\partial \mathbf{X}} = \Lambda(x_i'\beta)[1 - \Lambda(x_i'\beta)]\beta$$
(11)

Since in our model *qbee* is a multinomial categorical variable while derivatives are taken with respect to small changes it is not appropriate to employ the above equation in finding the marginal effect. The appropriate marginal effect for a binary independent variable would be (Greene, 2012, p. 730) : *Marginal Effect* = $Prob(R = 1 | \overline{x}, X = 1) - Prob(R = 1 | \overline{x}, X = 0)$, there \overline{x} is the means of other covariates included.

The marginal effects at means for *qbee* variable (Table 2) show the predicted probabilities of leaving the survey question without response for two hypothetical, average individuals with average an age of 32 years, married at age 20, living in a family with 6.5 members and so on, compared to the reference category. In this case the reference category are the respondents who indicated themselves to be head of household. The marginal effect calculation did not show any statistically significant results (p-value greater than 5%). Therefore, we can conclude we are not dealing with the case of MNAR. In this case, the missing data are ignorable. The logit regression and marginal effects estimation on variable *cur_age_child* showed similar results (Appendix: STATA output). Since the number of the missing values is reasonably small, we may simply delete the missing values.

Table 2

Logit Regression Results

Number of Observations = 3,934

	dy/dx	Delta-method z P Std. Err. z		P > z	[95% Conf. Interval]
qbee					
Wife	-0.0062	0.0070	-0.89	0.374	-0.01997 0.00751
Daughter	-0.0129	0.0071	-1.81	0.070	-0.02690 0.00104
Daughter-in-law	-0.0011	0.0076	-0.15	0.884	-0.01598 0.01377
Granddaughter		(not estimable)			
Mother		(not estimable)			
Sister		(not estimable)			
Other Relative	-0.0036	0.0094		0.703	-0.02209 0.01489
Adopted/Foster Child		(not estimable)			
Not Related		(not estimable)			

Table 3

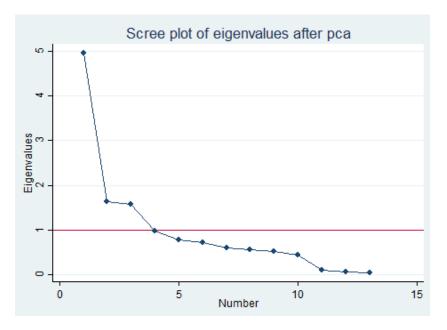
Correlations of response variables

Number of observations = 3,956

	humil.	threat.	insul.	push.	slap.	punch.	kick.	strang.	knife	twisted	any_less	emot.	any_sev
humil.	1.000												
threat.	0.3816	1.000											
insul.	0.4514	0.3969	1.000										

push.	0.2780	0.2532	0.2332	1.000									
slap.	0.2799	0.2091	0.1856	0.5354	1.000								
punch.	0.24799	0.2953	0.2998	0.3408	0.3459	1.000							
kick.	0.2576	0.2790	0.3583	0.2858	0.2744	0.4616	1.000						
strang.	0.1699	0.2953	0.2673	0.1652	0.1411	0.2971	0.3051	1.000					
knife	0.0977	0.1221	0.0866	0.0974	0.0743	0.1651	0.1658	0.2778	1.000				
twisted	0.2543	0.2763	0.2725	0.4093	0.3381	0.5095	0.4108	0.2755	0.1639	1.000			
any_less	0.3255	0.2414	0.2418	0.6829	0.8749	0.4222	0.3105	0.1759	0.0920	0.4021	1.000		
emot.	0.9170	0.4460	0.5250	0.2890	0.2819	0.2693	0.2822	0.2035	0.1288	0.2648	0.3543	1.000	
any_sev	0.2806	0.3187	0.3679	0.2919	0.2676	0.4723	0.9252	0.4731	0.2360	0.4447	0.3341	0.3264	1.000

Table 4


Principal components/correlation

Number of obs = 3,956 Number of comp. = 13 Trace = 13 Rho = 1.0000

Rotation: (unrotated = principal)

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1	4.94	3.31	0.38	0.38
Comp2	1.64	0.07	0.13	0.51
Comp3	1.57	0.60	0.12	0.63
Comp4	0.97	0.20	0.08	0.70
Comp5	0.78	0.06	0.06	0.76
Comp6	0.72	0.11	0.06	0.82
Comp7	0.61	0.04	0.05	0.86
Comp8	0.57	0.04	0.04	0.95
Comp9	0.53	0.09	0.04	0.95
Comp10	0.44	0.33	0.04	0.98
Comp11	0.11	0.04	0.01	0.99
Comp12	0.07	0.21	0.00	0.99
Comp13	0.05		0.00	1.00

Figure 1

Kaiser – Meyer – Olkin measure of sampling adequacy

Variable	kmo
humiliated	0.68
threatened	0.92
insulted	0.91
pushed	0.82
slapped	0.68
punched	0.91
kicked	0.64
strangled	0.65
knife	0.86
twisted	0.92
any_less_severe	0.68
emotional_vio	0.67
any_severe	0.66

STATA Output

Principal Component Analysis: Response Variable

Statistics/Data Analysis

1 . global xlist humiliated threatened insulted pushed slapped punched kicked strangled knife twisted

3 . 4 . global ncomp 3

5 . describe \$xlist

variable nam	storage e type	display format	value label	variable label
humiliated	byte	%8.0g	D103A	ever been humiliated by husband/partner
threatened	byte	%8.0g	D103B	ever been threatened with harm by husband/partner
insulted	byte	%8.0g	D103C	ever been insulted or made to feel bad by husband
pushed	byte	%8.0g	D105A	ever been pushed, shook or had something thrown by
slapped	byte	%8.0g	D105B	ever been slapped by husband/partner
punched	byte	%8.0g	D105C	ever been punched with fist or hit by something
kicked	byte	%8.0g	D105D	ever been kicked or dragged by husband/partner
strangled	byte	%8.0g	D105E	ever been strangled or burnt by husband/partner
knife	byte	%8.0g	D105F	ever been threatened with knife/gun or other weapon
twisted	byte	%8.0g	D105J	ever had arm twisted or hair pulled by husband
any_less_severe	byte	%8.0g	D106	experienced any less severe violence (d105a-c,j) by
emotional_vio	byte	%8.0g	D104	experienced any emotional violence (d103x series)***
any_severe	byte	%8.0g	D107	experienced any severe violence (d105d-f) by husband

6 . summarize \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
humiliated threatened insulted pushed slapped	3,956 3,956 3,956 3,956 3,956 3,956	.1620324 .0427199 .0573812 .1953994 .317998	.5501723 .2982377 .3402886 .6360347 .8079814	0 0 0 0	3 3 4 4 4
punched kicked strangled knife twisted	3,956 3,956 3,956 3,956 3,956 3,956	.0803842 .0568756 .0131446 .0032861 .0705258	.4232311 .3506191 .1584665 .0794375 .3899247	0 0 0 0 0	4 4 3 3 4
any_less_s~e emotional ~o anv severe	3,956 3,956 3,956	.1683519 .0935288 .0298281	.3742258 .2912089 .1701344	0 0 0	1 1 1

7 . corr \$xlist (obs=3,956)

	humili~d	threat~d	insulted	pushed	slapped	punched	kicked	strang~d	knife	twi
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted any less s~e emotional ~o any_severe	$\begin{array}{c} 1.0000\\ 0.3816\\ 0.4514\\ 0.2780\\ 0.2799\\ 0.2470\\ 0.2576\\ 0.1699\\ 0.0977\\ 0.2543\\ 0.3255\\ 0.9170\\ 0.2806\end{array}$	1.0000 0.3969 0.2532 0.2091 0.2953 0.2790 0.2931 0.1221 0.2763 0.2414 0.4460 0.3187	1.0000 0.2332 0.1856 0.2998 0.3583 0.2673 0.0866 0.2725 0.2418 0.5250 0.3679	1.0000 0.5354 0.3408 0.2858 0.1652 0.0974 0.4093 0.6829 0.2890 0.2919	1.0000 0.3459 0.2744 0.1411 0.0743 0.3381 0.8749 0.2819 0.2676	1.0000 0.4616 0.2971 0.1651 0.5095 0.4222 0.2693 0.4723	1.0000 0.3051 0.1658 0.4108 0.3105 0.2822 0.9252	1.0000 0.2778 0.2755 0.1759 0.2035 0.4731	1.0000 0.1639 0.0920 0.1288 0.2360	1. 0. 0.

8 . pca \$xlist

Principal components/correlation	Number of obs	=	3,956
	Number of comp.	=	13
	Trace	=	13
Rotation: (unrotated = principal)	Rho	=	1.0000

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1	4.9486	3.31085	0.3807	0.3807
Comp2	1.63775	.0658115	0.1260	0.5066
Comp3	1.57194	.596966	0.1209	0.6276
Comp4	. 974977	.198119	0.0750	0.7026
Comp5	.776857	.0600592	0.0598	0.7623
Comp6	.716798	.109502	0.0551	0.8175
Comp7	. 607296	.0404019	0.0467	0.8642
Comp8	.566894	.0367777	0.0436	0.9078
Comp9	.530116	.093304	0.0408	0.9486
Comp10	. 436812	.326073	0.0336	0.9822
Comp11	.110739	.0394346	0.0085	0.9907
Comp12	.0713047	.0213966	0.0055	0.9962
Comp13	.0499081	•	0.0038	1.0000

Principal components (eigenvectors)

Variable	Compl	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
humiliated	0.2837	0.1842	-0.4996	0.0131	-0.2464	0.1376	-0.1995	-0.2353
threatened	0.2510	0.2004	-0.1631	0.0781	0.5547	-0.1990	0.6355	-0.3209
insulted	0.2655	0.2602	-0.2041	-0.1326	0.1631	-0.0983	0.0177	0.8628
pushed	0.2810	-0.3888	-0.0282	0.0676	0.0630	-0.0476	0.1106	0.1327
slapped	0.2804	-0.4982	-0.0524	0.0680	-0.1093	-0.2297	-0.0056	-0.0209
punched	0.2943	-0.0355	0.2139	-0.0814	0.2527	0.4523	-0.1184	-0.0210
kicked	0.3102	0.1810	0.3474	-0.3673	-0.3428	-0.0984	0.1968	-0.0539
strangled	0.2147	0.2445	0.2499	0.3454	0.3043	-0.4686	-0.6010	-0.1129
knife	0.1222	0.1634	0.2067	0.8023	-0.3367	0.2141	0.2890	0.1602
twisted	0.2875	-0.0739	0.1893	-0.0365	0.2861	0.5778	-0.1573	-0.0462
any less s~e	0.3184	-0.4900	-0.0535	0.0635	-0.0749	-0.1649	-0.0149	0.0273
emotional ~o	0.3025	0.2093	-0.4867	0.0270	-0.1981	0.0922	-0.1324	-0.1543
any_severe	0.3302	0.2213	0.3626	-0.2373	-0.2738	-0.1661	0.0617	-0.1040

Variable	Unexplained
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted any less s~e emotional ~o any_severe	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 . pca \$xlist, comp(\$ncomp) blanks(.3)

Principal components/correlation	Number of obs	=	3,956
	Number of comp.	=	3
	Trace	=	13
Rotation: (unrotated = principal)	Rho	=	0.6276

Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1 Comp2 Comp3 Comp5 Comp6 Comp7 Comp8 Comp9 Comp10 Comp11 Comp12	4.9486 1.63775 1.57194 .974977 .776857 .716798 .607296 .566894 .530116 .436812 .110739 .0713047	3.31085 .0658115 .596966 .198119 .0600592 .109502 .0404019 .0367777 .093304 .326073 .0394346 .0213966	$\begin{array}{c} 0.3807\\ 0.1260\\ 0.1209\\ 0.0750\\ 0.0598\\ 0.0551\\ 0.0436\\ 0.0436\\ 0.0408\\ 0.0336\\ 0.0085\\ 0.0055\\ \end{array}$	0.3807 0.5066 0.6276 0.7026 0.7623 0.8175 0.8642 0.9078 0.9486 0.9822 0.9907 0.9962
Comp12 Comp13	.0713047 .0499081	.0213966	0.0055 0.0038	0.990 1.000

Principal components (eigenvectors) (blanks are abs(loading)<.3)</pre>

Variable	Compl	Comp2	Comp3	Unexplained
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted	0.3102	-0.3888 -0.4982	-0.4996 0.3474	.1539 .5806 .4748 .3604 .2 .4974 .2804 .5759 .8152 .5257
any less s~e emotional ~o any_severe	0.3184 0.3025 0.3302	-0.4900	-0.4867 0.3626	.1008 .103 .1736

10. rotate, varimax blanks(.3)

	nts/correlation	(Kaiser off)	Number of obs Number of comp. Trace Rho	= 3,956 = 3 = 13 = 0.6276
Component	Variance	Difference	Proportion	Cumulative
Comp1 Comp2 Comp3	3.07221 2.59618 2.48991	.476024 .106271	0.2363 0.1997 0.1915	0.2363 0.4360 0.6276

•

Rotated components (blanks are abs(loading)<.3)

Variable	Compl	Comp2	Comp3	Unexplained
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted	0.3194 0.4984 0.3965	0.4798 0.5729	0.5995 0.3317 0.3935	.1539 .5806 .4748 .3604 .2 .4974 .2804 .5759 .8152 .5257
any less s~e emotional ~o severe	0.5368	0.5864	0.6091	.1008 .103 .1736

Component rotation matrix

	Comp1	Comp2	Comp3
Comp1	0.6644	0.5381	0.5186
Comp2	0.3816	-0.8410	0.3837
Comp3	0.6426	-0.0570	-0.7641

11. estat loadings

	Compl	Comp2	Comp3
humiliated	.2837	.1842	4996
threatened	.251	.2004	1631
insulted	.2655	.2602	2041
pushed	.281	3888	02823
slapped	.2804	4982	05243
punched	.2943	03547	.2139
kicked	.3102	.181	.3474
strangled	.2147	.2445	.2499
knife	.1222	.1634	.2067
twisted	.2875	07395	.1893
any less s~e	.3184	49	05348
emotional ~o	.3025	.2093	4867
any severe	.3302	.2213	.3626

12. predict PHYS_SEV PHYS EMOT, score

Scoring coefficients for orthogonal varimax rotation
 sum of squares(column-loading) = 1

Variable	Compl	Comp2	Comp3
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted any less s~e	$\begin{array}{c} -0.0623\\ 0.1384\\ 0.1445\\ 0.0203\\ -0.0375\\ 0.3194\\ 0.4984\\ 0.3965\\ 0.2764\\ 0.2845\\ -0.0098\end{array}$	0.0262 -0.0241 -0.0644 0.4798 0.5729 0.1760 -0.0051 -0.1043 -0.0834 0.2061 0.5864	$\begin{array}{c} 0.5995\\ 0.3317\\ 0.3935\\ 0.0182\\ -0.0057\\ -0.0244\\ -0.0351\\ 0.0142\\ -0.0319\\ -0.0239\\ 0.0180\end{array}$
emotional ~o	-0.0318	0.0145	0.6091
anv severe	0.5368	-0.0291	-0.0209

13. estat kmo

Variable	kmo
humiliated threatened insulted pushed slapped punched kicked strangled knife twisted any less s~e emotional ~o any_severe	0.6757 0.9203 0.9053 0.8200 0.6807 0.9102 0.6372 0.6474 0.8563 0.9153 0.6779 0.6743 0.6555
Overall	0.7315

Statistics/Data Analysis

1 . log using "C:\Users\mt216\Desktop\Nov28\Untitled13.smcl"

name: <unnamed>
 log: C:\Users\mt216\Desktop\Nov28\Untitled13.smcl
 log type: smcl
 opened on: 29 Nov 2015, 17:31:14

2 . do "C:\Users\mt216\AppData\Local\Temp\STD0000000.tmp"

3 . global xlist cur_age educ_years num_members num_chil_5 num_women age_hh wealth cur_age_child_imp > beating_just2 beating_just3 beat_just4 beat_just5 owns_house owns_land contr_hus contr_hus2 contr

4.

5 . global ncomp 8

6 . summarize \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
cur_age educ years num members num chil 5 num_women	3,956 3,956 3,956 3,956 3,956 3,956	32.8458 10.21764 6.522245 1.155713 1.548028	8.186016 2.906969 2.802791 1.175399 .8428887	17 0 1 0 1	49 21 24 9 6
age_hh wealth cur age ch~p mar to bir~p term_preg	3,956 3,956 3,956 3,956 3,956 3,956	49.12285 3.332154 4.857829 33.35286 .2712336	13.88375 1.464243 5.076154 114.7033 .4446526	17 1 -3.810233 -2.636776 0	95 5 27 996 1
age_at_mar employed beating ju~1 beating ju~2 beating_ju~3	3,956 3,956 3,956 3,956 3,956 3,956	20.12563 .2550556 .8447927 .8187563 .8988878	3.294809 .4359476 1.473122 1.576298 1.841202	10 0 0 0 0	47 1 8 8 8
beat_just4 beat just5 owns house owns land contr_hus	3,956 3,956 3,956 3,956 3,956 3,956	.9974722 .7836198 1.534378 .8940849 .8356926	2.201136 1.907519 1.131586 1.190419 1.035306	0 0 0 0 0	8 8 3 3 8
contr_hus2 contr hus3 contr hus4 contr hus5 hus_tot_sc~1	3,956 3,956 3,956 3,956 3,956 3,956	.281092 .3319009 .2229525 .5533367 11.84808	1.149223 1.187931 1.092134 1.137983 2.839388	0 0 0 0 0	8 8 8 8 22
total abort	3,956	.2257331	.6582013	0	10

7 . corr \$xlist (obs=3,956)

	cur_age	educ_y~s	num_me~s	num_ch~5	num_wo~n	age_hh	wealth	cur_ag~p	mar_to~p	term
cur_age educ years num members num chil 5 num women age hh wealth cur_age_ch~p mar to bir~p	cur_age 1.0000 0.1311 -0.1946 -0.4087 -0.0502 -0.0508 -0.0131 0.7365 0.0793	1.0000 -0.1531 -0.1410 -0.0752 -0.0289 0.2650 0.1189	1.0000 0.6057 0.6380 0.3821 -0.1985 -0.2734	1.0000 0.2597 0.1179 -0.0925 -0.5287	1.0000 0.2456 -0.1033 0.0440	age_hh 1.0000 -0.1302 -0.0138 0.0243	wealth 1.0000 0.1033 -0.0328	1.0000		
<pre>term_preg age_at_mar employed beating ju~1 beating ju~2 beating_ju~3</pre>	0.1948 0.1597 0.2016 -0.0626 -0.0641 -0.0648	0.2297 0.2094 -0.1246 -0.1204	-0.1036 -0.0492 0.0299 0.0197	-0.0253 -0.0973 0.0617 0.0215	-0.0503 0.0055 0.0040 0.0165	-0.0379 0.0720 -0.0132 0.0272 0.0243 0.0091	0.0426 0.0152 -0.0187 -0.0878 -0.0830 -0.0620	-0.0199 0.1613 -0.0661 -0.0612	0.1879 0.0106 0.0278 0.0070	-0. 0. -0. -0.

<pre>beat_just4 beat just5 owns house owns land contr hus2 contr hus3 contr hus4 contr hus5 hus tot sc~l total_abort</pre>	-0.0510 -0.0532 0.1976 0.1336 -0.0872 -0.0221 -0.0599 -0.0434 -0.0696 -0.0024 0.1811	-0.1317 -0.1139 -0.0035 -0.0630 -0.0292 -0.0381 -0.0320 -0.0354 -0.0483 0.3583 0.0614	0.0269 0.0128 -0.0761 0.0311 0.0159 0.0158 -0.0137 0.0028 0.0030 -0.0848 -0.0140	0.0343 0.0059 -0.1046 -0.0399 0.0320 0.0060 -0.0033 -0.0166 0.0055 -0.0187 -0.0915	0.0172 0.0065 -0.0656 0.0090 -0.0078 -0.0056 -0.0158 -0.0130 -0.0162 -0.0710 0.0057	0.0038 0.0154 -0.0554 0.0051 0.0025 0.0188 -0.0020 0.0109 0.0078 -0.0974 -0.0411	-0.0554 -0.0484 -0.0920 -0.3039 0.0275 -0.0158 0.0081 0.0025 -0.0073 0.3342 0.0759	-0.0453 -0.0563 0.1218 0.0451 -0.0722 -0.0200 -0.0301 -0.0262 -0.0546 0.0095 0.1603	0.0050 0.0018 0.0041 0.0113 0.0208 0.0119 0.0217 -0.0121 -0.0121 -0.0122 -0.0240 -0.0108 hus_to~1	0. -0. 0. -0. -0. -0. -0. 0.
beat_just5 owns house owns land contr hus contr hus2 contr hus3 contr hus4 contr hus5 hus_tot_sc~1 total_abort	1.0000 0.0114 0.0496 0.0630 0.0672 0.1068 0.1305 0.1183 -0.0799 -0.0348	1.0000 0.5924 -0.0083 -0.0072 0.0121 0.0030 0.0315 -0.0286 0.0288	1.0000 -0.0377 -0.0429 -0.0456 -0.0266 -0.0263 -0.0922 0.0170	1.0000 0.4254 0.4105 0.4220 0.4261 -0.0193 -0.0354	1.0000 0.5865 0.6431 0.5948 -0.0553 -0.0221	1.0000 0.7172 0.6562 -0.0413 -0.0312	1.0000 0.7928 -0.0472 -0.0292	1.0000 -0.0343 -0.0213		1.

8 . pca \$xlist

Principal components/correlation	Number of obs	=	3,956
	Number of comp.	=	26
	Trace	=	26
Rotation: (unrotated = principal)	Rho	=	1.0000

€	Cumulative	Proportion	Difference	Eigenvalue	Component
)	0.1480	0.1480	.917584	3.84825	Comp1
7	0.2607	0.1127	.233767	2.93066	Comp2
5	0.3645	0.1037	.738658	2.6969	Comp3
3	0.4398	0.0753	.29485	1.95824	Comp4
7	0.5037	0.0640	.204907	1.66339	Comp5
3	0.5598	0.0561	.15696	1.45848	Comp6
9	0.6099	0.0501	.156995	1.30152	Comp7
9	0.6539	0.0440	.164398	1.14453	Comp8
6	0.6916	0.0377	.10903	.980128	Comp9
L	0.7251	0.0335	.12356	.871098	Comp10
9	0.7539	0.0288	.0566201	.747538	Comp11
1	0.7804	0.0266	.0257571	.690918	Comp12
)	0.8060	0.0256	.0579072	.665161	Comp13
1	0.8294	0.0234	.0305111	. 607253	Comp14
6	0.8516	0.0222	.0730737	.576742	Comp15
Э	0.8709	0.0194	.0499489	.503669	Comp16
1	0.8884	0.0175	.00729057	. 45372	Comp17
6	0.9056	0.0172	.0267649	.446429	Comp18
7	0.9217	0.0161	.00216189	.419664	Comp19
3	0.9378	0.0161	.0615602	.417502	Comp20
5	0.9515	0.0137	.00558815	.355942	Comp21
9	0.9649	0.0135	.0324611	.350354	Comp22
2	0.9772	0.0122	.0795806	.317893	Comp23
3	0.9863	0.0092	.0473457	.238312	Comp24
7	0.9937	0.0073	.0262175	.190967	Comp25
2	1.0000	0.0063	•	.164749	Comp26

Principal components (eigenvectors)

VariableComp1Comp2Comp3Comp4Comp5Comp6Comp7Comp8cur_age-0.14430.19690.32420.27810.14550.2096-0.1140-0.0770educ years-0.14140.16300.0602-0.19810.19390.22210.4504-0.1010num members0.0973-0.2620-0.32970.26310.30160.06500.0951-0.1298num chil 50.1095-0.2604-0.35260.00130.1003-0.07300.22730.0987num women0.0463-0.1730-0.19790.27970.36030.1697-0.0153-0.2606age hh0.0474-0.1190-0.14270.20910.21390.2851-0.0265-0.0571wealth-0.07990.14890.0320-0.38710.2099-0.05320.1216-0.2218cur age ch~p-0.06820.07810.13660.14300.4966-0.42060.03330.3063age at mar-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed-0.08310.06790.09860.06660.13130.26260.1253-0.0255beating ju~10.2911-0.1561-0.07140.0591-0.0717-0.0310.0410-0.213beating ju~30.2978-0.19620.2641-0.07330.04810.02040.0431-0.0245owns haud0.0226-0.16230.2497-0.16900.2644<									
educ years num members num dembers-0.14140.16300.0602-0.19810.19390.22210.4504-0.1010num members num chil 50.0973-0.2620-0.32970.26310.30160.06500.0951-0.1298num women age hh0.0463-0.1730-0.17990.27970.36030.1697-0.0153-0.2606age hh0.0474-0.1190-0.14270.20910.21390.2851-0.0265-0.0571wealth-0.07990.14890.0320-0.38710.2099-0.05320.1216-0.2218cur age ch~p-0.13910.21710.32150.21850.17120.1844-0.2526-0.2677mar to bir~p-0.06820.07810.13660.14300.4096-0.42060.03230.3063age at mar-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed-0.08310.06790.09860.06660.13130.26260.1253-0.0252beating ju~10.2978-0.19670.2739-0.07640.05940.04050.0241-0.0170beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns haue-0.01740.05360.15880.3659-0.2824-0.14280.4366-0.1244owns land <th>Variable</th> <th>Compl</th> <th>Comp2</th> <th>Comp3</th> <th>Comp4</th> <th>Comp5</th> <th>Comp6</th> <th>Comp7</th> <th>Comp8</th>	Variable	Compl	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
num members num chil 50.0973-0.2620-0.32970.26310.30160.06500.0951-0.1298num chil 50.1095-0.2604-0.35260.00130.1003-0.07300.22730.0987num women age hh0.0463-0.1730-0.19790.27970.36030.1697-0.0153-0.2606age hh0.0474-0.1190-0.14270.20910.21390.2851-0.0265-0.0571wealth-0.07990.14890.0320-0.38710.2099-0.05320.1216-0.2218cur age ch~p mar to bir~p-0.00000.01180.03260.05800.04070.26260.05560.5605term preg deat mar-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~20.3036-0.19670.2491-0.0211-0.0252-0.0251-0.0025beating ju~20.3036-0.19670.2491-0.02240.0410-0.0213beat just40.2826-0.16230.2491-0.05210.0717-0.00310.0410-0.0213beat just40.2826-0.16230.2491-0.05210.0717-0.00310.0410-0.0213beat just40.2826-0.16230.2491-0.14280.4366-0.1244owns hause-0.01740.05360.15580.365	cur age	-0.1443	0.1969	0.3242	0.2781	0.1455	0.2096	-0.1140	-0.0770
num chil 5 num women age hh0.1095-0.2604-0.35260.00130.1003-0.07300.22730.0987age hh0.0463-0.1730-0.19790.27970.36030.1697-0.0153-0.2606age hh0.0474-0.1190-0.14270.20910.21390.2851-0.0265-0.0571wealth-0.07990.14890.0320-0.38710.2099-0.05320.1216-0.2218cur age ch~p-0.13910.21710.32150.21850.17120.1844-0.2526-0.2677mar to bir~p-0.00000.01180.03260.05800.04070.26260.05560.5605deg at mar-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed-0.08310.06790.09860.06660.13130.26260.0223-0.0033beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~30.2978-0.19120.2691-0.08150.07220.00200.0225-0.0250beat just40.2826-0.16230.2497-0.05360.15580.3659-0.2824-0.14280.4366-0.1244owns hause-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns hause-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244 <tr <tr="">owns ha</tr>	educ years	-0.1414	0.1630	0.0602	-0.1981	0.1939	0.2221	0.4504	-0.1010
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	num members	0.0973	-0.2620	-0.3297	0.2631	0.3016	0.0650	0.0951	-0.1298
age hh wealth0.0474-0.1190-0.14270.20910.21390.2851-0.0265-0.0571cur age ch~p mar to bir~p-0.13910.21710.32150.21850.17120.1844-0.2526-0.2218cur age ch~p mar to bir~p-0.00000.01180.03260.05800.04070.26260.05560.5605term preg eg at mar-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0032beating ju~2 beat just40.2826-0.16230.2497-0.05710.05110.0171-0.00310.0410-0.0213beat just5 owns house owns land0.0264-0.04280.1580.3659-0.2824-0.14280.4331-0.0433contr hus2 contr hus30.28840.3109-0.11340.06220.02730.0313-0.0436-0.0431contr hus4 contr hus40.30890.3245-0.1063-0.0144-0.01230.0341-0.0433contr hus4 contr hus40.32960.3455-0.11190.06220.02730.0313-0.01620.0118contr hus5 contr hus50.32960.3455-0.11190.05460.01390.00380.0058-0.0257contr hus4 contr hus50.32050.3068-0.11710.05460.01390.01030.0585-0.0257contr hus5 contr hus5 </th <th>num chil 5</th> <td>0.1095</td> <td>-0.2604</td> <td>-0.3526</td> <td>0.0013</td> <td>0.1003</td> <td>-0.0730</td> <td>0.2273</td> <td>0.0987</td>	num chil 5	0.1095	-0.2604	-0.3526	0.0013	0.1003	-0.0730	0.2273	0.0987
wealth cur age ch~p mar to bir~p-0.07990.14890.0320-0.38710.2099 0.2185-0.05320.1216 0.1844-0.2218 -0.2526mar to bir~p term preg age at mar-0.06820.07810.13660.14300.40970.26260.05560.5605age at mar employed-0.04360.04960.0474-0.05760.03740.45050.24220.4700employed beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~20.3036-0.19670.2691-0.08150.07220.00200.0225-0.0250beating ju~30.2978-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4011-0.2889-0.11250.4102-0.0311contr hus20.28840.3109-0.11340.06220.02730.0313-0.01620.0118contr hus40.32960.3455-0.11560.03850.01450.00390.00880.0090contr hus50.32050.3011-0.11710.05450.0076 <t< th=""><th>num women</th><td>0.0463</td><td>-0.1730</td><td>-0.1979</td><td>0.2797</td><td>0.3603</td><td>0.1697</td><td>-0.0153</td><td>-0.2606</td></t<>	num women	0.0463	-0.1730	-0.1979	0.2797	0.3603	0.1697	-0.0153	-0.2606
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	age hh	0.0474	-0.1190	-0.1427	0.2091	0.2139	0.2851	-0.0265	-0.0571
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	wealth	-0.0799	0.1489	0.0320	-0.3871	0.2099	-0.0532	0.1216	-0.2218
term preg age at mar employed-0.06820.07810.13660.14300.4096-0.42060.03230.3063age at mar employed-0.04360.04960.0474-0.05760.03740.45050.24220.4700beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~20.3036-0.19670.2739-0.07640.05940.04050.0241-0.0170beating ju~30.2978-0.19120.2691-0.08150.07220.00200.0225-0.0250beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus20.28840.3109-0.11340.06220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.03850.01450.00390.00880.0900contr hus40.32960.3455-0.11190.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	cur age ch~p	-0.1391	0.2171	0.3215	0.2185	0.1712	0.1844	-0.2526	-0.2677
age at mar employed-0.04360.04960.0474-0.05760.03740.45050.24220.4700beating ju~10.08310.06790.09860.06660.13130.26260.1253-0.0252beating ju~20.3036-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~20.3036-0.19670.2739-0.07640.05940.04050.0241-0.0170beating ju~30.2978-0.19120.2691-0.08150.07220.00200.0225-0.0250beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus0.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus20.28840.3109-0.11340.62220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.3850.01450.00390.00880.0090contr hus40.32960.3455-0.11190.05460.01390.01030.058-0.0257contr hus50.32050.3301-0.11	mar to bir~p	-0.0000	0.0118	0.0326	0.0580	0.0407	0.2626	0.0556	0.5605
employed beating ju~1-0.08310.06790.09860.06660.13130.26260.1253-0.0252beating ju~10.2911-0.19910.2551-0.06870.04930.03910.0329-0.0003beating ju~20.3036-0.19670.2739-0.07640.05940.04050.0241-0.0170beating ju~30.2978-0.19120.2691-0.08150.07220.00200.0225-0.0250beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus0.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus20.28840.3109-0.11340.6220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.03850.01450.00390.00880.0090contr hus40.32960.3455-0.11190.05460.01390.01030.058-0.0257contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.0986	term preg	-0.0682	0.0781	0.1366	0.1430	0.4096	-0.4206	0.0323	0.3063
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	age at mar	-0.0436	0.0496	0.0474	-0.0576	0.0374	0.4505	0.2422	0.4700
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	employed	-0.0831	0.0679	0.0986	0.0666	0.1313	0.2626	0.1253	-0.0252
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	beating ju~1	0.2911	-0.1991	0.2551	-0.0687	0.0493	0.0391	0.0329	-0.0003
beat just40.2826-0.16230.2497-0.05210.0717-0.00310.0410-0.0213beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus0.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus20.28840.3109-0.11340.06220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.03850.01450.00390.00880.0090contr hus40.32960.3455-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	beating ju~2	0.3036	-0.1967	0.2739	-0.0764	0.0594	0.0405	0.0241	-0.0170
beat just50.2947-0.16900.2644-0.07330.04810.02040.0431-0.0433owns house-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus0.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus20.28840.3109-0.11340.06220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.03850.01450.00390.00880.0900contr hus40.32960.3455-0.11190.05460.01390.01030.0058-0.0257contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	beating ju~3	0.2978	-0.1912	0.2691	-0.0815	0.0722	0.0020	0.0225	-0.0250
owns house owns land contr hus-0.01740.05360.15580.3659-0.2824-0.14280.4366-0.1244owns land contr hus0.026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus0.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus20.28840.3109-0.11340.06220.02730.0313-0.01620.0151contr hus30.30890.3245-0.10560.03850.01450.00390.00880.0090contr hus40.32960.3455-0.11190.05460.01390.01030.0058-0.0257contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	beat just4	0.2826	-0.1623	0.2497	-0.0521	0.0717	-0.0031	0.0410	-0.0213
owns land contr hus0.0026-0.04280.12810.4401-0.2889-0.11520.4102-0.0341contr hus contr hus20.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus2 contr hus30.28840.3109-0.11340.06220.02730.0313-0.01620.0151contr hus3 contr hus40.32960.3455-0.10560.03850.01450.00390.00880.0090contr hus5 contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	beat just5	0.2947	-0.1690	0.2644	-0.0733			0.0431	-0.0433
contr hus contr hus2 contr hus30.23580.2231-0.1063-0.00140.0112-0.01420.03560.0118contr hus3 contr hus40.3890.3245-0.10560.03850.01450.00390.00880.0090contr hus4 contr hus50.32050.3301-0.11710.05460.01390.01030.0058-0.0257hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	owns house	-0.0174	0.0536	0.1558	0.3659	-0.2824	-0.1428	0.4366	-0.1244
contr hus2 contr hus3 contr hus40.28840.3109 0.3089-0.11340.0622 0.02730.0273 0.02730.0313 0.0313-0.0162 0.03900.0151 0.0039contr hus4 contr hus50.32960.3455 0.3205-0.1119 0.11710.0546 0.05450.0139 0.00760.0058 -0.0152-0.0257 0.0320hus tot sc~1-0.10220.09860.0068 0.0068-0.28760.1975 -0.0624-0.04445 0.4445-0.2354	owns land	0.0026	-0.0428	0.1281	0.4401	-0.2889		0.4102	
contr hus3 contr hus40.30890.3245-0.10560.03850.01450.00390.00880.0090contr hus4 contr hus50.32050.3455-0.11190.05460.01390.01030.0058-0.0257hus tot sc~l-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	contr hus								
contr hus40.32960.3455-0.11190.05460.01390.01030.0058-0.0257contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~l-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	contr hus2								
contr hus50.32050.3301-0.11710.05450.0076-0.01520.0320-0.0069hus tot sc~1-0.10220.09860.0068-0.28760.1975-0.06240.4445-0.2354	contr hus3	0.3089	0.3245	-0.1056	0.0385	0.0145	0.0039	0.0088	0.0090
hus tot sc~l -0.1022 0.0986 0.0068 -0.2876 0.1975 -0.0624 0.4445 -0.2354									
total abort -0.0752 0.0852 0.1246 0.1274 0.4255 -0.4356 0.0226 0.2436									
	total_abort	-0.0752	0.0852	0.1246	0.1274	0.4255	-0.4356	0.0226	0.2436

Variable	Comp15	Comp16	Comp17	Comp18	Comp19	Comp20	Comp21	Comp22
cur_age	0.3400	0.3008	-0.0161	0.1285	0.0150	0.0318	0.0224	-0.0089
educ years	-0.5489	0.4694	-0.1201	-0.0405	0.0068	0.0183	-0.0144	-0.0390
num members	0.0720	0.1324	0.0202	0.0609	-0.0031	0.0029	0.0004	-0.0065
num chil 5	0.3568	0.4363	-0.0330	0.1233	0.0134	0.0687	0.0878	0.0347
num women	-0.3737	-0.4002	-0.0254	-0.1114	0.0139	-0.0413	-0.0834	-0.0152
age hh	0.1511	0.0117	-0.0097	-0.0038	-0.0123	0.0059	0.0104	0.0172
wealth	0.0409	-0.0647	0.0552	-0.0313	0.0978	-0.0096	0.2382	-0.0617
cur age ch~p	0.0767	0.0993	-0.0150	0.0076	0.0072	0.0638	0.0821	0.0109
mar to bir~p	-0.1018	0.0695	0.0219	0.0076	-0.0164	0.0040	-0.0038	-0.0254
term preg	0.0338	-0.0650	-0.4425	-0.0593	0.5047	-0.1532	-0.0608	-0.0664
age at mar	0.1283	-0.2945	0.0281	-0.0177	-0.0309	0.0056	-0.0128	0.0132
employed	0.1341	-0.1729	0.0763	0.0516	-0.0159	-0.0196	-0.0045	0.0175
beating ju~1	0.0554	-0.0271	0.1135	-0.1447	0.0955	0.2003	-0.0634	-0.2686
beating ju~2	-0.0531	-0.1238	0.0305	0.0092	0.1707	0.1498	-0.0568	0.4211
beating ju~3	0.0327	-0.0466	-0.5237	0.0927	-0.5651	-0.2364	0.1599	-0.2871
beat just4	0.0665	0.1987	0.0593	-0.5687	0.0358	0.2504	0.0080	0.1531
beat just5	-0.1155	0.0794	0.3417	0.5731	0.2580	-0.3679	-0.0809	-0.0183
owns house	0.0297	0.0098	-0.1060	0.0047	-0.1447	-0.0354	-0.5871	0.1282
owns land	-0.0701	-0.1144	0.1218	-0.0508	0.1420	0.0033	0.6605	-0.1267
contr hus	0.0143	0.0130	0.0226	0.0780	0.0113	0.0941	-0.0065	-0.0185
contr hus2	0.0880	0.1067	0.2299	-0.4427	-0.0345	-0.6896	-0.0213	0.0250
contr hus3	-0.0536	-0.0471	-0.2726	0.1954	-0.0900	0.0761	0.2345	0.6188
contr hus4	-0.0212	-0.0199	0.0150	0.0896	0.0386	0.1776	0.0352	-0.2113
contr hus5	0.0120	-0.0588	0.0171	0.0808	0.0737	0.3221	-0.1916	-0.4035
hus tot sc~l	0.4229	-0.2939	0.0543	0.0134	-0.0311	-0.0287	-0.0513	0.0487
total_abort	-0.1180	-0.0060	0.4598	0.0615	-0.4996	0.1413	0.0286	0.0729

9 . pca \$xlist, comp(\$ncomp) blanks(.3)

Rotation: (unrotated = principal)

Principal components/correlation

Number	of	obs	=	3,956
Number	of	comp.	=	8
Trace		-	=	26
Rho			=	0.6539

Component	Eigenvalue	Difference	Proportion	Cumulative
Compl	3.84825	.917584	0.1480	0.1480
Comp2	2.93066	.233767	0.1127	0.2607
Comp3	2.6969	.738658	0.1037	0.3645
Comp4	1.95824	.29485	0.0753	0.4398
Comp5	1.66339	.204907	0.0640	0.5037
Comp6	1.45848	.15696	0.0561	0.5598
Comp7	1.30152	.156995	0.0501	0.6099
Comp8	1.14453	.164398	0.0440	0.6539
Comp9	.980128	.10903	0.0377	0.6916
Comp10	.871098	.12356	0.0335	0.7251
Comp11	.747538	.0566201	0.0288	0.7539
Comp12	.690918	.0257571	0.0266	0.7804
Comp13	.665161	.0579072	0.0256	0.8060
Comp14	. 607253	.0305111	0.0234	0.8294
Comp15	.576742	.0730737	0.0222	0.8516
Comp16	. 503669	.0499489	0.0194	0.8709
Comp17	. 45372	.00729057	0.0175	0.8884
Comp18	. 446429	.0267649	0.0172	0.9056
Comp19	.419664	.00216189	0.0161	0.9217
Comp20	.417502	.0615602	0.0161	0.9378
Comp21	. 355942	.00558815	0.0137	0.9515
Comp22	.350354	.0324611	0.0135	0.9649
Comp23	.317893	.0795806	0.0122	0.9772
Comp24	.238312	.0473457	0.0092	0.9863
Comp25	.190967	.0262175	0.0073	0.9937
Comp26	.164749	•	0.0063	1.0000

Principal components (eigenvectors) (blanks are abs(loading)<.3)</pre>

Comp8	Comp7	Comp6	Comp5	Comp4	Comp3	Comp2	Compl	Variable
					0.3242			cur_age
	0.4504							educ years
			0.3016		-0.3297			num member
					-0.3526			num chil 5
			0.3603					num women
								age hh
				-0.3871	0 0015			wealth
0 5 6 0 5					0.3215			cur age ch
0.5605 0.3063		-0.4206	0.4096					mar to bir
0.3063		0.4206	0.4096					term preg
0.4700		0.4505						age at mar employed
								beating ju
							0.3036	beating ju
							0.3030	beating ju
								beat just4
								beat just5
	0.4366			0.3659				owns house
	0.4102			0.4401				owns land
								contr hus
						0.3109		contr hus2
						0.3245	0.3089	contr hus3
						0.3455	0.3296	contr hus4
						0.3301	0.3205	contr hus5
	0.4445							hus tot sc
		-0.4356	0.4255					total_abor

10. rotate, varimax blanks(.3)

Principal components/correlation Number of obs	=	3,956
Number of comp	. =	8
Trace	=	26
Rotation: orthogonal varimax (Kaiser off) Rho	=	0.6539

Component	Variance	Difference	Proportion	Cumulative
Compl	3.3139	.131612	0.1275	0.1275
Comp2	3.18229	.963225	0.1224	0.2499
Comp3	2.21906	.137788	0.0853	0.3352
Comp4	2.08128	. 409993	0.0800	0.4153
Comp5	1.67128	.00531228	0.0643	0.4795
Comp6	1.66597	.0875745	0.0641	0.5436
Comp7	1.5784	.288609	0.0607	0.6043
Comp8	1.28979		0.0496	0.6539

Rotated components (blanks are abs(loading)<.3)

Variable	Compl	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
cur_age			0.5521					
educ years					0.5797			
num members				0.5985				
num_chil_5			-0.4301					
num women				0.5924				
_ age_hh				0.4148				
wealth					0.4619			
cur_age_ch~			0.6349					
mar to bir~								0.5966
term preg							0.6987	
age at mar								0.6929
employed								
beating ju~		0.4449						
beating ju~		0.4660						
beating ju~		0.4583						
beat just4		0.4210						
beat just5		0.4430						
owns house						0.6760		
owns land						0.6890		
contr hus	0.3394							
contr hus2	0.4431							
ComponentrrataBio								
contr hus4	0.4937							
contr_hus5	0 <u>C</u> 47783	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
hus tot sc~	- compa	compz	compo	eomp i	0.6162	compo	comp /	Compo
total & BBP	0.6672	0.6571	-0.2405	0.1212	-0.1972	-0.0091	0 9. 68835	-0.0451
Comp2	0.6960	-0.4113	0.3745	-0.3688	0.2355	-0.0036	0.1112	0.0478
Comp3	-0.2436	0.5878	0.5628	-0.4437	0.0609	0.2017	0.1810	0.0660
Comp4	0.0964	-0.1615	0.3436	0.4619	-0.4779	0.6060	0.1907	0.0356
Comp5	0.0329	0.1349	0.2113	0.5378	0.3447	-0.4172	0.5909	0.0703
Comp6	0.0079	0.0435	0.3572	0.2734	0.0850	-0.1711	-0.6291	0.6029
Comp7	0.0227	0.0695	-0.3250	0.0925	0.6537	0.6168	0.0373	0.2671
Comp8	-0.0049	-0.0513	-0.2987	-0.2580	-0.3467	-0.0909	0.4035	0.7418

11. estat loadings

Principal component loadings component normalization: sum of squares(column) = 1

	Compl	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
cur age	1443	.1969	. 3242	.2781	.1455	.2096	114	07702
educ years	1414	.163	.0602	1981	.1939	.2221	.4504	101
num members	.09734	262	3297	.2631	.3016	.06503	.0951	1298
num chil 5	.1095	2604	3526	.001349	.1003	07301	.2273	.09866
num women	.04631	173	1979	.2797	.3603	.1697	01529	2606
age hh	.04736	119	1427	.2091	.2139	.2851	02654	05712
wealth	07992	.1489	.03198	3871	.2099	05323	.1216	2218
cur age ch~p	1391	.2171	.3215	.2185	.1712	.1844	2526	2677
mar to bir~p	000031	.01179	.03261	.05804	.04071	.2626	.0556	.5605
term preg	06816	.07813	.1366	.143	.4096	4206	.03229	.3063
age at mar	04362	.04965	.0474	05764	.03743	.4505	.2422	. 47
employed	08309	.06791	.09863	.06663	.1313	.2626	.1253	02517
beating ju~1	.2911	1991	.2551	06871	.04931	.03906	.0329	000256
beating ju~2	.3036	1967	.2739	0764	.05937	.04051	.02411	01704
beating ju~3	.2978	1912	.2691	08151	.07215	.002039	.0225	02502
beat just4	.2826	1623	.2497	05207	.07172	003148	.04101	02126
beat just5	.2947	169	.2644	07334	.04808	.02045	.04314	04333
owns house	01743	.05357	.1558	.3659	2824	1428	.4366	1244
owns land	.002588	04282	.1281	.4401	2889	1152	.4102	03413
contr hus	.2358	.2231	1063	00137	.01121	01419	.03558	.01178
contr hus2	.2884	.3109	1134	.06217	.02732	.03133	01622	.01513
contr hus3	. 3089	.3245	1056	.03845	.01453	.003858	.00883	.008962
contr hus4	. 3296	.3455	1119	.05458	.01391	.01029	.005845	02571
contr hus5	. 3205	.3301	1171	.05452	.007626	01518	.03197	006871
hus tot sc~l	1022	.09862	.006838	2876	.1975	06241	.4445	2354
total_abort	07523	.08522	.1246	.1274	. 4255	4356	.0226	.2436

12. predict ACCEPT CONTROL FAM_SIZE PER_IND FIN_IND SEC PLAN SUBMIS, score

Scoring coefficients for orthogonal varimax rotation
 sum of squares(column-loading) = 1

Variable	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
cur age	-0.0071	-0.0054	0.5521	0.0394	-0.0182	0.0746	0.0665	0.0962
educ years	0.0042	-0.0203	0.0650	0.0372	0.5797	0.0609	-0.0441	0.2040
num members	0.0015	-0.0078	-0.1219	0.5985	-0.0100	0.0265	0.0403	-0.0398
num chil 5	-0.0147	-0.0073	-0.4301	0.2959	0.0377	0.0315	0.0502	0.0563
num women	-0.0002	0.0084	0.1283	0.5924	0.0234	-0.0353	-0.0058	-0.0833
age hh	0.0127	0.0047	0.1083	0.4148	-0.0456	-0.0513	-0.0808	0.1277
wealth	0.0156	0.0134	0.0121	-0.0908	0.4619	-0.2113	0.0289	-0.1504
cur age ch~p	0.0037	0.0003	0.6349	0.0496	-0.0039	-0.0368	0.0053	-0.0971
mar to bir~p	0.0078	-0.0030	-0.0403	-0.0378	-0.1446	-0.0368	0.1053	0.5966
term preg	-0.0012	0.0038	0.0059	-0.0025	-0.0078	0.0077	0.6987	0.0320
age at mar	-0.0037	0.0055	-0.0143	-0.0268	0.0973	-0.0112	-0.0553	0.6929
employed	-0.0164	0.0038	0.2122	0.1124	0.1648	0.0407	-0.0469	0.1982
beating ju~1	-0.0104	0.4449	-0.0109	0.0041	-0.0140	0.0009	-0.0118	0.0274
beating ju~2	-0.0056	0.4660	0.0055	0.0021	-0.0074	-0.0084	-0.0129	0.0147
beating ju~3	-0.0048	0.4583	-0.0036	-0.0026	0.0000	-0.0114	0.0150	-0.0140
beat just4	0.0131	0.4210	0.0009	0.0062	0.0048	0.0146	0.0270	-0.0075
beat just5	0.0105	0.4430	0.0058	-0.0066	0.0148	0.0138	-0.0140	-0.0114
owns house	0.0231	-0.0086	0.0223	-0.0404	0.0698	0.6760	-0.0053	-0.0549
owns land	-0.0178	0.0098	-0.0187	0.0224	-0.0424	0.6890	0.0054	0.0165
contr hus	0.3394	0.0037	-0.0513	-0.0048	0.0220	-0.0066	0.0039	0.0034
contr hus2	0.4431	-0.0119	0.0223	0.0172	-0.0240	-0.0171	-0.0003	0.0243
contr hus3	0.4621	0.0035	-0.0001	-0.0103	-0.0013	-0.0041	0.0043	0.0083
contr hus4	0.4937	0.0039	0.0183	0.0049	0.0019	0.0046	-0.0120	-0.0141
contr hus5	0.4783	0.0001	-0.0128	-0.0011	0.0060	0.0251	0.0071	-0.0097
hus tot sc~l	-0.0117	0.0097	-0.0882	0.0064	0.6162	0.0515	0.0449	-0.0801
total_abort	0.0009	-0.0043	0.0181	0.0119	0.0216	-0.0085	0.6883	-0.0257

13. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

Variable	kmo
cur_age educ years num members num chil 5 num women age hh wealth cur age ch~p mar to bir~p term preg age at mar employed beating ju~1 beating ju~2 beating ju~2 beating ju~2 beat just4 beat just5 owns house owns land contr hus2 contr hus3 contr hus4 contr hus4 contr hus5 hus tot sc~1 total_abort	0.5904 0.6971 0.5620 0.7238 0.5175 0.5552 0.6496 0.5766 0.5328 0.3492 0.7316 0.8291 0.8282 0.8690 0.8733 0.5337 0.9244 0.9023 0.8795 0.7862 0.8212 0.6700 0.5749
Overall	0.7256

Propensity Score Matching: Severe Physical Violence

10.

- 11. global treatment TREAT
- 12. global ylist PHYS_SEV

13. global xlist ACCEPT CONTROL FAM_SIZE PER_IND FIN_IND SEC TENURE SUBMIS

- 14. global breps 5
- 15. describe \$treatment \$ylist \$xlist

variable name	storage type	display format	value label	variable label
TREAT PHYS_SEV ACCEPT CONTROL FAM_SIZE PER_IND FIN_IND SEC PER_IND	byte float float float float float float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		RECODE of qbee (relationship to household head) Scores for component 1 Scores for component 2 Scores for component 1 Scores for component 4 Scores for component 7 Scores for component 5 Scores for component 6 Scores for component 7
SUBMIS	float	%9.0g %9.0g		Scores for component 8

16. summarize \$treatment \$ylist \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
TREAT PHYS SEV ACCEPT CONTROL FAM_SIZE	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 -4.57e-09 -1.42e-09 2.73e-10 -1.31e-10	.4740085 1.745534 1.773876 1.805192 1.443617	0 9574195 -1.260467 9490442 -2.313617	1 20.77108 9.492954 15.89445 7.686239
PER_IND FIN IND SEC PER IND SUBMIS	3,534 3,534 3,534 3,534 3,534 3,534	-7.75e-10 9.37e-12 -6.72e-10 -7.75e-10 1.57e-10	1.25713 1.29128 1.286082 1.25713 1.143865	-1.177323 -2.349422 -5.165536 -1.177323 -2.477531	11.08654 2.703691 3.770026 11.08654 10.42847

17. bysort \$treatment: summarize \$ylist \$xlist

-> TREAT = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS_SEV ACCEPT CONTROL FAM SIZE PER_IND	2,330 2,330 2,330 2,330 2,330 2,330	.0283401 0341784 0374653 5606351 .1409324	1.839316 1.7137 1.813146 1.065653 1.339412	9574195 -1.260467 9490442 -2.313617 -1.093585	20.21262 9.444988 15.87103 7.686239 11.08654
FIN_IND SEC PER IND SUBMIS	2,330 2,330 2,330 2,330 2.330	.1297371 .1115556 .1409324 013657	1.239402 1.300357 1.339412 1.177426	-2.074306 -5.165536 -1.093585 -2.477531	2.639933 3.770026 11.08654 10.42847
-> TREAT = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS_SEV ACCEPT CONTROL FAM SIZE PER_IND	1,204 1,204 1,204 1,204 1,204 1,204	0548442 .0661426 .0725034 1.08495 2727347	1.547252 1.883856 1.788219 1.461172 1.027207	8423139 -1.254708 9321543 -1.372819 -1.177323	20.77108 9.492954 15.89445 7.677022 6.940488
FIN_IND SEC SUBMIS	1,204 1,204 1,204	2510693 2158842 .0264293	1.351766 1.230103 1.075931	-2.349422 -5.163577 -2.108523	2.703691 3.507075 7.697233

18. reg \$ylist \$treatment

Source	SS	df	MS		er of obs		3,534
Model Residual	5.49285005 10759.1657	1 3,532	5.49285005 3.04619642	Prob R-sq	Jared	= =	0.1794 0.0005
Total	10764.6586	3,533	3.04688893		K-squarec MSE	i =	0.0002 1.7453
PHYS_SEV	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
TREAT _cons	0831842 .0283401	.0619471 .0361577	-1.34 0.78	0.179 0.433	20463 04255		.0382715 .0992322

19. reg \$ylist \$treatment \$xlist note: PER IND omitted because of collinearity

	note:	PER	TND	omitted	pecause	ΟL	COILINEALILY	
			-				-	

Source	SS	df	MS		per of obs 3525)	=	3,534
Model Residual	54.191011 10710.4676	8 3,525	6.77387638 3.03843052	B Prok R-sc	yuared R-squared	=	0.0227 0.0050 0.0028
Total	10764.6586	3.533	3.04688893		MSE	=	1.7431
PHYS_SEV	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
TREAT ACCEPT CONTROL FAM SIZE PER IND FIN IND SEC PER IND SUBMIS	1352275 .0042992 .0330379 .0269257 .0555718 0438051 0272966 0 .0259246	.0755694 .0168666 .0164156 .0244814 .0237704 .0232896 .0238959 (omitted) .0257488	-1.79 0.25 2.01 1.10 2.34 -1.88 -1.14 1.01	0.074 0.799 0.044 0.271 0.019 0.060 0.253 0.314	283391 0287699 .0008529 0210734 .0089660 0894679 0741479	9 9 4 5 9	.0129368 .0373684 .065223 .0749248 .1021769 .0018573 .0195546 .0764087

cons	.0460707	.0390207	1.18	0.238	0304348	.1225762
------	----------	----------	------	-------	---------	----------

20. pscore \$treatment \$xlist, pscore(the_score) blockid(blocks) comsup

The treatment is TREAT

RECODE of qbee (relationsh ip to household head)	Freq.	Percent	Cum.
0 1	2,330 1,204	65.93 34.07	65.93 100.00
Total	3.534	100.00	

Estimation of the propensity score

note: PER_IND dropped because of collinearity
Iteration 0: log likelihood = -2267.0341
Iteration 1: log likelihood = -1646.0038
Iteration 2: log likelihood = -1608.3571
Iteration 3: log likelihood = -1607.895
Iteration 4: log likelihood = -1607.8949

Probit regression

Log likelihood = -1607.8949

Number of obs	=	3534
LR chi2(7)	=	1318.28
Prob > chi2	=	0.0000
Pseudo R2	=	0.2907

TREAT	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ACCEPT	.0065523	.0142451	0.46	0.646	0213675	.0344721
CONTROL	.0260453	.0135589	1.92	0.055	0005296	.0526202
FAM SIZE	.6065074	.0207545	29.22	0.000	.5658294	.6471854
PER IND	2092979	.0226538	-9.24	0.000	2536986	1648973
FIN IND	1712587	.0197802	-8.66	0.000	2100271	1324902
SEC	0396031	.0203821	-1.94	0.052	0795512	.000345
SUBMIS	.0412381	.0218046	1.89	0.059	0014981	.0839742
_cons	5117307	.0256165	-19.98	0.000	5619381	4615233

Note: the common support option has been selected The region of common support is [.05875213, .99999646]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .0616481 .0761342 .0939188 .1478593	Smallest .0587521 .0589325 .0591935 .0592022	Obs Sum of Wgt.	3,207 3,207
50%	.2762242		Mean	.3611419
		Largest	Std. Dev.	.2638001
75%	.5114398	.9999602		
90%	.812487	.9999718	Variance	.0695905
95%	.9316362	. 9999955	Skewness	.9388525
99%	.9961979	.9999965	Kurtosis	2.788074

The final number of blocks is 10

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

Variable FAM SIZE is not balanced in block 1 Variable PER IND is not balanced in block 1 Variable PER_IND is not balanced in block 1 Variable FAM SIZE is not balanced in block 2 Variable PER IND is not balanced in block 2 Variable PER IND is not balanced in block 2 Variable FAM SIZE is not balanced in block 3 Variable FAM SIZE is not balanced in block 4 Variable PER IND is not balanced in block 4 Variable PER_IND is not balanced in block 4 Variable FAM SIZE is not balanced in block 5 Variable PER IND is not balanced in block 5 Variable FIN IND is not balanced in block 5 Variable PER_IND is not balanced in block 5 Variable FAM SIZE is not balanced in block 6 Variable PER IND is not balanced in block 6 Variable FIN IND is not balanced in block 6 Variable PER IND is not balanced in block 6

Variable PER_IND is not balanced in block 8 Variable PER_IND is not balanced in block 8 Variable PER_IND is not balanced in block 9 Variable PER_IND is not balanced in block 9 Variable FIN_IND is not balanced in block 10 The balancing property is not satisfied

Try a different specification of the propensity score

Inferior of block of pscore	RECODE o (relation househole 0	ship to	Total
0 .1 .125 .1375 .15 .2 .3 .4 .6 .8	361 208 107 98 352 372 200 178 67 60	11 7 19 37 141 174 314 218 276	372 215 114 117 389 513 374 492 285 336
Total	2,003	1,204	3,207

Note: the common support option has been selected

21.

22. teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate note: PER_IND omitted because of collinearity

Treatment-effe Estimator Outcome model Treatment mode	: propensity 1 : matching	on y-score matc i	hing	Number c Matches:	of obs = requested = min = max =	3,534 1 1 1
PHYS_SEV	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE TREAT (1 vs 0)	2377605	.0861916	-2.76	0.006	4066929	0688281

23. teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet note: PER_IND omitted because of collinearity

Treatment-effe Estimator Outcome model Treatment mod	: propensit : matching		ching		f obs = requested = min = max =	3,534 1 1 1
PHYS_SEV	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf	. Interval]
ATET TREAT (1 vs 0)	1631876	.1428016	-1.14	0.253	4430736	.1166983

24.
25. drop the_score blocks

26. 27. //With smaller number of X valiable to satisfy the balancing property $\frac{1}{2}$

28. 29.

30. global treatment TREAT

31. global ylist PHYS_SEV

32. global xlist ACCEPT CONTROL SEC SUBMIS

33. global breps 5

34. describe \$treatment \$ylist \$xlist

variable	storage name type	display format	value label	variable label
TREAT	byte	%9.0g		RECODE of qbee (relationship to household head)
PHYS SEV	float	%9.0g		Scores for component 1
ACCEPT	float	%9.0g		Scores for component 2
CONTROL	float	%9.0g		Scores for component 1
SEC	float	%9.0g		Scores for component 6
SUBMIS	float	%9.0g		Scores for component 8

35. summarize \$treatment \$ylist \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
TREAT PHYS SEV ACCEPT CONTROL SEC	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 -4.57e-09 -1.42e-09 2.73e-10 -6.72e-10	.4740085 1.745534 1.773876 1.805192 1.286082	0 9574195 -1.260467 9490442 -5.165536	1 20.77108 9.492954 15.89445 3.770026
SUBMIS	3.534	1.57e-10	1.143865	-2.477531	10.42847

36. bysort \$treatment: summarize \$ylist \$xlist

\rightarrow TREAT = 0					
Variable	Obs	Mean	Std. Dev	. Min	Max
PHYS_SEV ACCEPT CONTROL SEC SUBMIS	2,330 2,330 2,330 2,330 2,330 2,330	.0283401 0341784 0374653 .1115556 013657	1.839316 1.7137 1.813146 1.300357 1.177426	9574195 -1.260467 9490442 -5.165536 -2.477531	20.21262 9.444988 15.87103 3.770026 10.42847
-> TREAT = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS_SEV ACCEPT CONTROL SEC SUBMIS	1,204 1,204 1,204 1,204 1,204 1,204	0548442 .0661426 .0725034 2158842 .0264293	1.547252 1.883856 1.788219 1.230103 1.075931	8423139 -1.254708 9321543 -5.163577 -2.108523	20.77108 9.492954 15.89445 3.507075 7.697233

 Source	SS	df	MS	- F(1,	er of ob 3532)	s = =	3,534 1.80
 Model Residual	5.49285005 10759.1657	1 3,532	5.49285005 3.04619642	Prob R-sq	> F uared	=	$0.1794 \\ 0.0005$
 Total	10764.6586	3,533	3.04688893		R-square MSE	ed = =	0.0002 1.7453
 PHYS_SEV	Coef.	Std. Err.	t	P> t	[95% C	conf.	Interval]
 TREAT _cons	0831842 .0283401	.0619471 .0361577		0.179 0.433	20463 04255		.0382715 .0992322

37. reg \$ylist \$treatment

38. reg \$ylist \$treatment \$xlist

Source	SS	df	MS	Number	er of obs 3528)	=	3,534 1,50
Model Residual	22.7932626 10741.8653	5 3,528	4.55865252 3.04474641	Prob	> F uared R-squared	=	0.1872 0.0021 0.0007
Total	10764.6586	3,533	3.04688893	2	MSE	=	1.7449
PHYS_SEV	Coef.	Std. Err.	t	P> t	[95% Coi	nf.	Interval]
TREAT ACCEPT CONTROL SEC SUBMIS _CONS	0944774 .0030848 .032482 019882 .0224896 .0321875	.0624261 .0168798 .0164124 .02334 .025753 .0362476	0.18 1.98 -0.85 0.87	0.130 0.855 0.048 0.394 0.383 0.375	2168723 0300103 .0003033 0656433 028002 0388808	523	.0279176 .03618 .0646608 .0258793 .0729819 .1032558

39. pscore \$treatment \$xlist, pscore(the_score) blockid(blocks) comsup

Algorithm to estimate the propensity score

The treatment is TREAT

RECODE of qbee (relationsh ip to household head)	Freq.	Percent	Cum.
0 1	2,330 1,204	65.93 34.07	65.93 100.00
Total	3,534	100.00	

Estimation of the propensity score

Iteration	0:	log likelihood = -2267.0341
Iteration	1:	log likelihood = -2238.8453
Iteration	2:	log likelihood = -2238.831

Probit regression	Number of obs	=	3534
	LR chi2(4)	=	56.41
	Prob > chi2	=	0.0000
Log likelihood = -2238.831	Pseudo R2	=	0.0124

TREAT	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ACCEPT	.0043967	.0124258	0.35	0.723	0199573	.0287507
CONTROL	.0151555	.0119735	1.27	0.206	0083121	.0386231
SEC	1234757	.0174822	-7.06	0.000	1577403	0892112
SUBMIS	.0290461	.0189768	1.53	0.126	0081477	.06624
_cons	4163445	.0218864	-19.02	0.000	459241	3734479

Note: the common support option has been selected The region of common support is [.19617583, .59031676]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .2227071 .2415032 .2619649 .2987655	Smallest .1961758 .2021643 .2036559 .2059477	Obs Sum of Wgt.	3,530 3,530
50%	.3414558	Largast	Mean Std. Dev.	.3403867
75응 90응 95응 99응	.378146 .408803 .4367075 .5078623	Largest .5820683 .5889891 .5902658 .5903168	Variance Skewness Kurtosis	.0035467 .3688394 3.576885

The final number of blocks is 5

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

The balancing property is satisfied

This table shows the inferior bound, the number of treated and the number of controls for each ${\rm block}$

Inferior of block of pscore	RECODE of (relations household 0	hip to	Total
.1961758 .2 .25 .3 .4	0 196 476 1,390 264	1 41 199 760 203	1 237 675 2,150 467
Total	2,326	1,204	3,530

Note: the common support option has been selected

40.

41. teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate

Treatment-effe Estimator Outcome mode Treatment mode	: propensity 1 : matching	on y-score matc	hing		of obs = requested = min = max =	3,534 1 1 1
PHYS_SEV	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE TREAT (1 vs 0)	0601774	.071295	-0.84	0.399	1999131	.0795583

42. teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet

Treatment-effe Estimator Outcome mode Treatment mode	: propensity : matching		hing		f obs = requested = min = max =	3,534 1 1 1
PHYS_SEV	Coef.	AI Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATET TREAT (1 vs 0)	0529275	.0776262	-0.68	0.495	205072	.0992171

Propensity Score Matching: Physical Violence (PHYS)

50. global treatment TREAT

51. global ylist PHYS

52. global xlist ACCEPT CONTROL FAM_SIZE PER_IND FIN_IND SEC TENURE SUBMIS

53. global breps 5

54. describe \$treatment \$ylist \$xlist

variable name	storage type	display format	value label	variable label
TREAT PHYS ACCEPT CONTROL	byte float float float	%9.0g %9.0g %9.0g %9.0g		RECODE of qbee (relationship to household head) Scores for component 2 Scores for component 2 Scores for component 1
FAM_SIZE PER_IND FIN_IND SEC PER_IND SUBMIS	float float float float float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		Scores for component 4 Scores for component 7 Scores for component 5 Scores for component 6 Scores for component 7 Scores for component 8

55. summarize \$treatment \$ylist \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
TREAT PHYS ACCEPT CONTROL FAM_SIZE	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 2.08e-08 -1.42e-09 2.73e-10 -1.31e-10	.4740085 1.602532 1.773876 1.805192 1.443617	0 -2.190639 -1.260467 9490442 -2.313617	1 10.15611 9.492954 15.89445 7.686239
PER_IND FIN IND SEC PER IND SUBMIS	3,534 3,534 3,534 3,534 3,534 3,534	-7.75e-10 9.37e-12 -6.72e-10 -7.75e-10 1.57e-10	1.25713 1.29128 1.286082 1.25713 1.143865	-1.177323 -2.349422 -5.165536 -1.177323 -2.477531	11.08654 2.703691 3.770026 11.08654 10.42847

56. bysort \$treatment: summarize \$ylist \$xlist

-> TREAT = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS ACCEPT CONTROL FAM SIZE PER_IND	2,330 2,330 2,330 2,330 2,330 2,330	003313 0341784 0374653 5606351 .1409324	1.613751 1.7137 1.813146 1.065653 1.339412	-2.190639 -1.260467 9490442 -2.313617 -1.093585	10.15611 9.444988 15.87103 7.686239 11.08654
FIN_IND SEC PER IND SUBMIS	2,330 2,330 2,330 2,330 2.330	.1297371 .1115556 .1409324 013657	1.239402 1.300357 1.339412 1.177426	-2.074306 -5.165536 -1.093585 -2.477531	2.639933 3.770026 11.08654 10.42847

-> TREAT = 1

Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS ACCEPT CONTROL FAM SIZE PER_IND	1,204 1,204 1,204 1,204 1,204 1,204	.0064114 .0661426 .0725034 1.08495 2727347	1.581242 1.883856 1.788219 1.461172 1.027207	-1.479326 -1.254708 9321543 -1.372819 -1.177323	7.304356 9.492954 15.89445 7.677022 6.940488
FIN_IND SEC SUBMIS	1,204 1,204 1,204	2510693 2158842 .0264293	1.351766 1.230103 1.075931	-2.349422 -5.163577 -2.108523	2.703691 3.507075 7.697233

57.	reg	Şylist	Ştreatment
-----	-----	--------	------------

	Source	SS	df	MS		er of obs	=	3,534
_	Model Residual	.075064527 9073.0549	1 3,532	.075064527 2.56881509	7 Prob R-sq	F(1, 3532) Prob > F R-squared Adj R-squared Root MSE		0.03 0.8643 0.0000 -0.0003
	Total	9073.12996	3,533	2.56810924				1.6028
_	PHYS	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
	TREAT _cons	.0097243 003313	.0568864 .0332039	0.17 -0.10	0.864 0.921	10180 06841	-	.1212579 .0617877

58. reg \$ylist \$treatment \$xlist
note: PER_IND omitted because of collinearity

Source	SS	df	MS		per of obs	s = =	3,534
 Model Residual	65.5945039 9007.53546	8 3,525	8.19931298 2.55532921	Prob R-sc	3525) > F Juared R-squared	=	3.21 0.0012 0.0072 0.0050
Total	9073.12996	3,533	2.56810924		MSE	=	1.5985
 PHYS	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
TREAT ACCEPT CONTROL FAM SIZE PER IND FIN IND SEC PER IND SUBMIS _CONS	.0600789 0197756 .015299 0138179 .0988924 .0014648 0437148 0 0040459 0204683	.0693019 .0154677 .0150541 .0224509 .021799 .021358 .0219141 (omitted) .0236133 .0357844	0.87 -1.28 1.02 -0.62 4.54 0.07 -1.99 -0.17 -0.57	0.386 0.201 0.310 0.538 0.000 0.945 0.046 0.864 0.567	07579 05010 01421 05783 .05615 04041 08668 05034 09062	021 L66 361 526 L05 303	.1959547 .0105509 .0448147 .0302003 .1416322 .0433401 0007493 .0422512 .049692

59. pscore \$treatment \$xlist, pscore(the_score) blockid(blocks) comsup

The treatment is TREAT

Estimation of the propensity score

note: PER IND dropped because of collinearity Iteration 0: log likelihood = -2267.0341 Iteration 1: log likelihood = -1646.0038Iteration 2: log likelihood = -1608.3571Iteration 3: log likelihood = -1607.895Iteration 4: log likelihood = -1607.8949

Probit regression	Number of obs	=	3534
	LR chi2(7)	=	1318.28
	Prob > chi2	=	0.0000
Log likelihood = -1607.8949	Pseudo R2	=	0.2907

TREAT	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ACCEPT	.0065523	.0142451	0.46	0.646	0213675	.0344721
CONTROL	.0260453	.0135589	1.92	0.055	0005296	.0526202
FAM SIZE	.6065074	.0207545	29.22	0.000	.5658294	.6471854
PER IND	2092979	.0226538	-9.24	0.000	2536986	1648973
FIN IND	1712587	.0197802	-8.66	0.000	2100271	1324902
SEC	0396031	.0203821	-1.94	0.052	0795512	.000345
SUBMIS	.0412381	.0218046	1.89	0.059	0014981	.0839742
CONS	5117307	.0256165	-19.98	0.000	5619381	4615233

Note: the common support option has been selected The region of common support is [.05875213, .99999646]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .0616481 .0761342 .0939188 .1478593	Smallest .0587521 .0589325 .0591935 .0592022	Obs Sum of Wgt.	3,207 3,207
50%	.2762242		Mean	.3611419
		Largest	Std. Dev.	.2638001
75%	.5114398	.9999602		
90%	.812487	.9999718	Variance	.0695905
95%	.9316362	. 9999955	Skewness	.9388525
99%	.9961979	.9999965	Kurtosis	2.788074

Step 1: Identification of the optimal number of blocks Use option detail if you want more detailed output *****

The final number of blocks is 10

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

Step 2: Test of balancing property of the propensity score Use option detail if you want more detailed output

Variable FAM_SIZE is not balanced in block 1

Variable PER_IND is not balanced in block 1 Variable PER IND is not balanced in block 1 Variable FAM_SIZE is not balanced in block 2 Variable PER IND is not balanced in block 2 Variable PER IND is not balanced in block 2 Variable FAM_SIZE is not balanced in block 3 Variable FAM_SIZE is not balanced in block 4 Variable PER IND is not balanced in block 4 Variable PER IND is not balanced in block 4 Variable FAM_SIZE is not balanced in block 5 Variable PER IND is not balanced in block 5 Variable FIN IND is not balanced in block 5 Variable PER IND is not balanced in block 5 Variable FAM_SIZE is not balanced in block 6 Variable PER IND is not balanced in block 6 Variable FIN IND is not balanced in block 6 Variable PER IND is not balanced in block 6 Variable PER IND is not balanced in block 8 Variable PER IND is not balanced in block 8 Variable PER IND is not balanced in block 9 Variable PER IND is not balanced in block 9 Variable FIN IND is not balanced in block 10 The balancing property is not satisfied

Try a different specification of the propensity score

Inferior of block of pscore	RECODE c (relatior househol 0	nship to	Total
0 .125 .1375 .15 .2 .3 .4 .6 .8	361 208 107 98 352 372 200 178 67 60	11 7 19 37 141 174 314 218 276	372 215 114 117 389 513 374 492 285 336
Total	2.003	1.204	3.207

Note: the common support option has been selected

60.

61. teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate
note: PER_IND omitted because of collinearity

Treatment-effe Estimator Outcome mode Treatment mode	: propensity 1 : matching		ing		f obs = requested = min = max =	3,534 1 1 1
PHYS	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE TREAT (1 vs 0)	.3616543	.2713052	1.33	0.183	1700942	.8934028

62. teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet note: PER_IND omitted because of collinearity

Estimator	ects estimat : propensit el : matching del: logit	y-score mate	ching		f obs = requested = min = max =	3,534 1 1 1
PHYS	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET TREAT (1 vs 0)	.0258522	.110971	0.23	0.816	191647	.2433513

63.

64. drop the_score blocks

65.

66. //With smaller number of X valiable to satisfy the balancing property 67.

68. global treatment TREAT

69. global ylist PHYS

70. global xlist ACCEPT CONTROL SEC SUBMIS

71. global breps 5

72. describe \$treatment \$ylist \$xlist

variable	torage type	display format	value label	variable label
TREAT PHYS ACCEPT CONTROL SEC SUBMIS	byte float float float float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		RECODE of qbee (relationship to household head) Scores for component 2 Scores for component 2 Scores for component 1 Scores for component 6 Scores for component 8

73. summarize \$treatment \$ylist \$xlist

	Variable	Obs	Mean	Std. Dev.	Min	Max
	TREAT PHYS ACCEPT CONTROL SEC	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 2.08e-08 -1.42e-09 2.73e-10 -6.72e-10	.4740085 1.602532 1.773876 1.805192 1.286082	0 -2.190639 -1.260467 9490442 -5.165536	1 10.15611 9.492954 15.89445 3.770026
_	SUBMIS	3,534	1.57e-10	1.143865	-2.477531	10.42847

74. bysort \$treatment: summarize \$ylist \$xlist

-> TREAT = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS ACCEPT CONTROL SEC SUBMIS	2,330 2,330 2,330 2,330 2,330 2,330	003313 0341784 0374653 .1115556 013657	1.7137 -: 1.813146 - 1.300357 -!	2.190639 1.260467 .9490442 5.165536 2.477531	10.15611 9.444988 15.87103 3.770026 10.42847
-> TREAT = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
PHYS ACCEPT CONTROL SEC SUBMIS	1,204 1,204 1,204 1,204 1,204 1,204	.0064114 .0661426 .0725034 2158842 .0264293	1.883856 -: 1.788219 - 1.230103 -!	1.479326 1.254708 .9321543 5.163577 2.108523	7.304356 9.492954 15.89445 3.507075 7.697233

75. reg \$ylist \$treatment

	Source	SS	df	MS		er of ob		3,534
-	Model Residual	.075064527 9073.0549	1 3,532	.075064527 2.56881509	R-sq	> F uared	=	0.03 0.8643 0.0000
-	Total	9073.12996	3,533	2.56810924	- Adj Root	K-square MSE	ed =	-0.0003 1.6028
_	PHYS	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
	TREAT _cons	.0097243 003313	.0568864 .0332039		0.864 0.921	10180 06843		.1212579 .0617877

76. reg \$ylist \$treatment \$xlist

Source	SS	df	MS	Number of obs	=	3,534
 Model Residual	12.7882471 9060.34171	-	2.55764942 2.56812407	F(5, 3528) Prob > F R-squared	= =	0.4185 0.0014
 Total	9073.12996	3.533	2.56810924	Adj R-squared Root MSE	=	-0.0000 1.6025

PHYS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TREAT	0011321	.0573322	-0.02	0.984	1135398	.1112755
ACCEPT	0208968	.0155025	-1.35	0.178	0512914	.0094979
CONTROL	.0144217	.0150732	0.96	0.339	0151313	.0439748
SEC	0356169	.0214355	-1.66	0.097	0776442	.0064103
SUBMIS	0073713	.0236516	-0.31	0.755	0537435	.0390009
_cons	.0003857	.0332898	0.01	0.991	0648835	.0656549

77. pscore \$treatment \$xlist, pscore(the_score) blockid(blocks) comsup

The treatment is TREAT

RECODE of qbee (relationsh ip to household head)	Freq.	Percent	Cum.
0 1	2,330 1,204	65.93 34.07	65.93 100.00
Total	3.534	100.00	

Estimation of the propensity score

Iteration	0:	log likelihood = -2267.0341
Iteration	1:	log likelihood = -2238.8453
Iteration	2:	log likelihood = -2238.831

Probit regression

Log likelihood = -2238.831

Number of obs	=	3534
LR chi2(4)	=	56.41
Prob > chi2	=	0.0000
Pseudo R2	=	0.0124

TREAT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ACCEPT	.0043967	.0124258	0.35	0.723	0199573	.0287507
CONTROL	.0151555	.0119735	1.27	0.206	0083121	.0386231
SEC	1234757	.0174822	-7.06	0.000	1577403	0892112
SUBMIS	.0290461	.0189768	1.53	0.126	0081477	.06624
_cons	4163445	.0218864	-19.02	0.000	459241	3734479

Note: the common support option has been selected The region of common support is [.19617583, .59031676]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .2227071 .2415032 .2619649 .2987655	Smallest .1961758 .2021643 .2036559 .2059477	Obs Sum of Wgt.	3,530 3,530
50%	.3414558		Mean	.3403867
		Largest	Std. Dev.	.0595543
75%	.378146	.5820683		
90%	.408803	.5889891	Variance	.0035467
95%	.4367075	.5902658	Skewness	.3688394
99%	.5078623	.5903168	Kurtosis	3.576885

The final number of blocks is 5

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

The balancing property is satisfied

This table shows the inferior bound, the number of treated and the number of controls for each block $% \left({{{\rm{D}}_{\rm{c}}}} \right)$

Inferior of block of pscore	RECODE of (relations household 0	hip to	Total
.1961758 .2 .25 .3 .4	0 196 476 1,390 264	1 41 199 760 203	1 237 675 2,150 467
Total	2.326	1.204	3.530

Note: the common support option has been selected

78. 79. teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet 3,534 Treatment-effects estimation Number of obs = Matches: requested = Estimator : propensity-score matching 1 Outcome model : matching min = 1 Treatment model: logit 1 max = AI Robust PHYS Coef. Std. Err. [95% Conf. Interval] P>|z| Ζ ATET TREAT .0030286 .0784349 0.04 0.969 -.150701 .1567581 (1 vs 0) 80. teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate Treatment-effects estimation Number of obs = 3,534 Estimator : propensity-score matching Matches: requested = 1 Outcome model : matching 1 min = Treatment model: logit max = 1

Propensity Score Matching: Emotional Violence (EMOT)

Coef.

-.0058298

86. global treatment TREAT

PHYS

TREAT

(1 vs 0)

ATE

87. global ylist EMOT

88. global xlist ACCEPT CONTROL FAM SIZE PER IND FIN IND SEC TENURE SUBMIS

AI Robust

Std. Err.

.066047

89. global breps 5

90. describe \$treatment \$ylist \$xlist

variable name	storage type	display format	value label	variable label
TREAT EMOT ACCEPT CONTROL FAM SIZE PER IND FIN IND	byte float float float float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		RECODE of qbee (relationship to household head) Scores for component 3 Scores for component 2 Scores for component 1 Scores for component 4 Scores for component 7 Scores for component 5
SEC PER_IND SUBMIS	float float float	%9.0g %9.0g %9.0g		Scores for component 6 Scores for component 7 Scores for component 8

P>|z|

0.930

Ζ

-0.09

[95% Conf. Interval]

.1236199

-.1352794

91. summarize \$treatment \$ylist \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
TREAT EMOT ACCEPT CONTROL FAM_SIZE	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 4.47e-10 -1.42e-09 2.73e-10 -1.31e-10	.4740085 1.575313 1.773876 1.805192 1.443617	0 -1.268915 -1.260467 9490442 -2.313617	1 11.21591 9.492954 15.89445 7.686239
PER_IND FIN IND SEC PER IND SUBMIS	3,534 3,534 3,534 3,534 3,534 3,534	-7.75e-10 9.37e-12 -6.72e-10 -7.75e-10 1.57e-10	1.25713 1.29128 1.286082 1.25713 1.143865	-1.177323 -2.349422 -5.165536 -1.177323 -2.477531	11.08654 2.703691 3.770026 11.08654 10.42847

92. bysort \$treatment: summarize \$ylist \$xlist

-> TREAT = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
EMOT ACCEPT CONTROL FAM SIZE PER_IND	2,330 2,330 2,330 2,330 2,330 2,330	0438032 0341784 0374653 5606351 .1409324	1.536443 1.7137 1.813146 1.065653 1.339412	-1.268915 -1.260467 9490442 -2.313617 -1.093585	11.21591 9.444988 15.87103 7.686239 11.08654
FIN_IND SEC PER IND SUBMIS	2,330 2,330 2,330 2,330	.1297371 .1115556 .1409324 013657	1.239402 1.300357 1.339412 1.177426	-2.074306 -5.165536 -1.093585 -2.477531	2.639933 3.770026 11.08654 10.42847

-> TREAT = 1

Variable	Obs	Mean	Std. Dev.	Min	Max
EMOT	1,204	.0847687	1.645276	-1.113674	9.879296
ACCEPT	1,204	.0661426	1.883856	-1.254708	9.492954
CONTROL	1,204	.0725034	1.788219	9321543	15.89445
FAM SIZE	1,204	1.08495	1.461172	-1.372819	7.677022
PER_IND	1,204	2727347	1.027207	-1.177323	6.940488
FIN_IND	1,204	2510693	1.351766	-2.349422	2.703691
SEC	1,204	2158842	1.230103	-5.163577	3.507075
SUBMIS	1,204	.0264293	1.075931	-2.108523	7.697233

93. reg \$ylist \$treatment

Source	SS	df	MS	Numbe	r of obs	=	3,534
Model Residual	13.1222577 8754.40966	1 3,532	13.1222577 2.47859843	R-squ	> F ared	= =	5.29 0.0215 0.0015
Total	8767.53192	3.533	2.48161107		-squared MSE	=	0.0012 1.5744
EMOT	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
TREAT _cons	.128572 0438032	.0558786 .0326156		0.021 0.179	.019014 107750	-	.2381295 .020144

94. reg \$ylist \$treatment \$xlist

Source	SS	df	MS		er of obs		3,534
Model Residual	89.2412967 8678.29062	8 3,525	11.1551621 2.46192642	Prob R-sq	uared	=	4.53 0.0000 0.0102 0.0079
Total	8767.53192	3,533	2.48161107		R-squared MSE	=	1.5691
EMOT	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
TREAT ACCEPT CONTROL FAM SIZE PER IND FIN IND SEC PER IND SUBMIS Cons	.1625976 044879 .0457374 0215896 .0459002 0537404 0013717 0 0237461 0553954	.0680235 .0151824 .0147764 .0220368 .0213968 .020964 .0215098 (omitted) .0231777 .0351243	-2.96 3.10 -0.98 2.15 -2.56 -0.06 -1.02	0.017 0.003 0.002 0.327 0.032 0.010 0.949 0.306 0.115	.029228 074646 .016766 064795 .003948 094843 043544 069189 124261	1 2 8 3 7	.295967 0151119 .0747086 .0216166 .0878517 0126376 .0408013 .021697 .0134706

95. pscore \$treatment \$xlist, pscore(the score) blockid(blocks) comsup

The treatment is TREAT

RECODE of qbee (relationsh ip to household head)	Freq.	Percent	Cum.
0 1	2,330 1,204	65.93 34.07	65.93 100.00
Total	3,534	100.00	

Estimation of the propensity score

note: PER	IND	dropped because of collinearity
Iteration [_]	0:	log likelihood = -2267.0341
Iteration	1:	log likelihood = -1646.0038
Iteration	2:	log likelihood = -1608.3571
Iteration	3:	log likelihood = -1607.895
Iteration	4:	log likelihood = -1607.8949

Probit regression

Log likelihood = -1607.8949

Number of obs	=	3534
LR chi2(7)	=	1318.28
Prob > chi2	=	0.0000
Pseudo R2	=	0.2907

TREAT	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ACCEPT	.0065523	.0142451	0.46	0.646	0213675	.0344721
CONTROL	.0260453	.0135589	1.92	0.055	0005296	.0526202
FAM SIZE	.6065074	.0207545	29.22	0.000	.5658294	.6471854
PER IND	2092979	.0226538	-9.24	0.000	2536986	1648973
FIN IND	1712587	.0197802	-8.66	0.000	2100271	1324902
SEC	0396031	.0203821	-1.94	0.052	0795512	.000345
SUBMIS	.0412381	.0218046	1.89	0.059	0014981	.0839742
_cons	5117307	.0256165	-19.98	0.000	5619381	4615233

Note: the common support option has been selected The region of common support is [.05875213, .99999646]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .0616481 .0761342 .0939188 .1478593	Smallest .0587521 .0589325 .0591935 .0592022	Obs Sum of Wgt.	3,207 3,207
50%	.2762242		Mean	.3611419
750	511/200	Largest	Std. Dev.	.2638001
90%	.812487	.9999718	Variance	.0695905
95% 99%	.9316362	.9999955	Skewness	.9388525
		.9999602 .9999718	Variance	.0695905

The final number of blocks is 10

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

Variable PER_IND is not balanced in block 1 Variable PER_IND is not balanced in block 1 Variable FAM_SIZE is not balanced in block 2 Variable PER_IND is not balanced in block 2 Variable PER_IND is not balanced in block 2 Variable FAM_SIZE is not balanced in block 3 Variable FAM SIZE is not balanced in block 4 Variable PER IND is not balanced in block 4 Variable PER IND is not balanced in block 4 Variable FAM_SIZE is not balanced in block 5 Variable PER IND is not balanced in block 5 Variable FIN_IND is not balanced in block 5 Variable PER IND is not balanced in block 5 Variable FAM SIZE is not balanced in block 6 Variable PER IND is not balanced in block 6 Variable FIN_IND is not balanced in block 6 Variable PER IND is not balanced in block 6 Variable PER IND is not balanced in block 8 Variable PER IND is not balanced in block 8 Variable PER IND is not balanced in block 9 Variable PER IND is not balanced in block 9 Variable FIN IND is not balanced in block 10 The balancing property is not satisfied

Try a different specification of the propensity score

Inferior of block of pscore	RECODE of (relations household 0	ship to	Total
0 .1 .125 .1375 .15 .2 .3 .4 .6 .8	361 208 107 98 352 372 200 178 67 60	11 7 19 37 141 174 314 218 276	372 215 114 117 389 513 374 492 285 336
Total	2,003	1,204	3,207

Note: the common support option has been selected

96.

97. teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet note: PER_IND omitted because of collinearity

Estimator Outcome model	Treatment-effects estimation Estimator : propensity-score matching Outcome model : matching Treatment model: logit				f obs = requested = min = max =	3,534 1 1 1
EMOT	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET TREAT (1 vs 0)	.1198114	.1201817	1.00	0.319	1157404	. 3553632

98. teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate note: PER_IND omitted because of collinearity

Treatment-effe Estimator Outcome mode Treatment mod	: propensit : matching	y-score mate	ching		of obs = requested = min = max =	3,534 1 1 1
EMOT	Coef.	AI Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE TREAT (1 vs 0)	. 576493	.3101388	1.86	0.063	0313678	1.184354

99.

100 drop the score blocks

101

102 //With smaller number of X valiable to satisfy the balancing property 103 $\,$

4 104 global treatment TREAT

105 global ylist EMOT

6 106 global xlist ACCEPT CONTROL SEC SUBMIS

107 global breps 5

108 describe \$treatment \$ylist \$xlist

	s	torage	display	value	
variable	name	type	format	label	variable label

TREAT EMOT ACCEPT CONTROL SEC	float float float float	%9.0g %9.0g %9.0g	RECODE of qbee (relationship to household head) Scores for component 3 Scores for component 2 Scores for component 1 Scores for component 6
SUBMIS		%9.0g	Scores for component 8

9 109 summarize \$treatment \$ylist \$xlist

Variable	Obs	Mean	Std. Dev.	Min	Max
TREAT EMOT ACCEPT CONTROL SEC	3,534 3,534 3,534 3,534 3,534 3,534	.3406904 4.47e-10 -1.42e-09 2.73e-10 -6.72e-10	.4740085 1.575313 1.773876 1.805192 1.286082	0 -1.268915 -1.260467 9490442 -5.165536	1 11.21591 9.492954 15.89445 3.770026
SUBMIS	3.534	1.57e-10	1.143865	-2.477531	10.42847

110 bysort \$treatment: summarize \$ylist \$xlist

-> TREAT = 0							
Variable	Obs	Mean	Std. De	v.	Min	Ma	ax
EMOT ACCEPT CONTROL SEC SUBMIS	2,330 2,330 2,330 2,330 2,330 2,330	0438032 0341784 0374653 .1115556 013657	1.713 1.81314 1.30035	7 -1.2 694 7 -5.2	260467 490442 165536	11.2159 9.44498 15.8719 3.77002 10.4289	88 03 26
-> TREAT = 1							
Variable	Obs	Mean	Std. De	v.	Min	Ma	ax
EMOT ACCEPT CONTROL SEC SUBMIS	1,204 1,204 1,204 1,204 1,204	.0847687 .0661426 .0725034 2158842 .0264293	1.88385 1.78821 1.23010	6 -1.2 993 3 -5.3	L13674 254708 321543 L63577 L08523	9.8792 9.4929 15.894 3.5070 7.6972	54 45 75
l reg \$ylist Source	\$treatment SS	df	MS				
Model Residual	13.1222577 8754.40966	1 3,532	13.1222577 2.47859843	Ŀ'(⊥,	oer of , 3532) o > F	obs = = =	3,534 5.29 0.0215
Total	8767.53192	3,533	2.48161107	Adj	quared K-squa t MSE	= red = =	0.0015 0.0012 1.5744
EMOT	Coef.	Std. Err.	t B	?> t	[95%	Conf. I	[nterval]
TREAT _cons	.128572 0438032	.0558786 .0326156		0.021 0.179	.0190 1077		.2381295 .020144
reg §ølige	\$treatme gg \$xl	ist df	MS				
Model Residual	60.0399315 8707.49198	5 3,528	12.0079863 2.46810997	£'(5,	er of ok 3528)	=	3,534
Total	8767.53192	3,533	2.48161107	R-sq Adj	> F uared R-square MSE	= = ed = =	0.0002 0.0068 0.0054 1.571
EMOT	Coef.	Std. Err.	t E	?> t	[95%	Conf. I	[nterval]
TREAT ACCEPT CONTROL SEC	.1334588 0458061 .0467939 .0133562	.0562048 .0151976 .0147768 .021014	-3.01 0 3.17 0	.018 .003 .002 .525	.0232 0756 .017 0278	6031 - 7822	.243656 .0160092 .0757658 .0545569

113 pscore \$treatment \$xlist, pscore(the score) blockid(blocks) comsup

RECODE of qbee (relationsh ip to household

The treatment is TREAT

household head)	Freq.	Percent	Cum.
0 1	2,330 1,204	65.93 34.07	65.93 100.00
Total	3.534	100.00	

Estimation of the propensity score

Iteration	0:	log likelihood	= -2267.0341
Iteration	1:	log likelihood	= -2238.8453
Iteration	2:	log likelihoo	d = -2238.831

Probit regression

Log likelihood = -2238.831

Number of obs	=	3534
LR chi2(4)	=	56.41
Prob > chi2	=	0.0000
Pseudo R2	=	0.0124

TREAT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ACCEPT	.0043967	.0124258	0.35	0.723	0199573	.0287507
CONTROL	.0151555	.0119735	1.27	0.206	0083121	.0386231
SEC	1234757	.0174822	-7.06	0.000	1577403	0892112
SUBMIS	.0290461	.0189768	1.53	0.126	0081477	.06624
_cons	4163445	.0218864	-19.02	0.000	459241	3734479

Note: the common support option has been selected The region of common support is [.19617583, .59031676]

Description of the estimated propensity score in region of common support

Estimated propensity score

1% 5% 10% 25%	Percentiles .2227071 .2415032 .2619649 .2987655	Smallest .1961758 .2021643 .2036559 .2059477	Obs Sum of Wgt.	3,530 3,530
50%	.3414558	Largest	Mean Std. Dev.	.3403867 .0595543
75% 90% 95% 99%	.378146 .408803 .4367075 .5078623	.5820683 .5889891 .5902658 .5903168	Variance Skewness Kurtosis	.0035467 .3688394 3.576885

The final number of blocks is 5

This number of blocks ensures that the mean propensity score is not different for treated and controls in each blocks

The balancing property is satisfied

i.

This table shows the inferior bound, the number of treated and the number of controls for each ${\rm block}$

Inferior of block of pscore	RECODE of (relations) household 0	hip to	Total
.1961758 .2 .25 .3 .4	0 196 476 1,390 264	1 41 199 760 203	1 237 675 2,150 467
Total	2,326	1,204	3,530

Note: the common support option has been selected

114

\$ 115 teffects psmatch (\$ylist) (TREAT \$xlist, logit), atet

Treatment-effe Estimator Outcome mode: Treatment mode	: propensity 1 : matching	on y-score match	ning		f obs = requested = min = max =	3,534 1 1 1
EMOT	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET TREAT (1 vs 0)	.1812667	.0709586	2.55	0.011	.0421905	. 320343

\$ 116 teffects psmatch (\$ylist) (TREAT \$xlist, logit), ate

Treatment-effe Estimator Outcome mode Treatment mode	: propensity 1 : matching	on y-score match	ling		f obs = requested = min = max =	3,534 1 1 1
EMOT	Coef.	AI Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE TREAT (1 vs 0)	.18492	.0686544	2.69	0.007	.0503599	.3194801

1 . log using "C:\Users\mt216\Desktop\nov15\9Untitled.smcl"

```
name: <unnamed>
    log: C:\Users\mt216\Desktop\nov15\9Untitled.smcl
    log type: smcl
    opened on: 15 Nov 2015, 17:41:57
```

- 2 . do "C:\Users\mt216\AppData\Local\Temp\STD0000000.tmp"
- 3 . logit R i.qbee age at mar cur age educ years num members num chil 5 num women wealth

note: 5.qbee != 0 predicts failure perfectly
 5.qbee dropped and 2 obs not used
note: 6.qbee != 0 predicts failure perfectly
 6.qbee dropped and 8 obs not used
note: 8.qbee != 0 predicts failure perfectly
 8.qbee dropped and 7 obs not used
note: 11.qbee != 0 predicts failure perfectly
 11.qbee dropped and 3 obs not used
note: 12.qbee != 0 predicts failure perfectly
 12.qbee dropped and 2 obs not used
Iteration 0: log likelihood = -1126.4134
Iteration 1: log likelihood = -578.83151
Iteration 3: log likelihood = -548.92984
Iteration 4: log likelihood = -548.66052

Iteration	5:	log	likelihood	=	-548.66024
Iteration	6:	log	likelihood	=	-548.66024

Logistic regression

Log likelihood = -548.66024

Number of obs	=	3,934
LR chi2(11)	=	1155.51
Prob > chi2	=	0.0000
Pseudo R2	=	0.5129

R	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
qbee wife daughter daughter-in-law granddaughter mother sister other relative adopted/foster child not related	5169806 -1.788126 0747121 0 0 0 2666115 0 0	.4715929 .6432371 .5006516 (empty) (empty) (empty) .7029009 (empty) (empty)	-1.10 -2.78 -0.15	0.273 0.005 0.881 0.704	-1.441286 -3.048848 -1.055971 -1.644272	.4073245 5274047 .9065469 1.111049
age_at_mar cur_age educ_years num_members num_chil_5 num_women wealth _cons	.2792448 2863729 0708894 0972882 -1.947292 .8235924 .0173837 1.911624	.0253419 .0181022 .0266333 .0534065 .1368532 .1253228 .0604424 .807274	11.02 -15.82 -2.66 -1.82 -14.23 6.57 0.29 2.37	0.000 0.000 0.008 0.069 0.000 0.000 0.774 0.018	.2295756 3218525 1230896 201963 -2.215519 .5779641 1010812 .3293958	.3289141 2508932 0186892 .0073866 -1.679065 1.069221 .1358485 3.493852

Note: 1 failure and 0 successes completely determined.

4 . margins, dydx(qbee) atmeans

	arginal effects OIM	Number of obs	= 3,934
dy/dx w.r.t. :	2.qbee = .5399085 3.qbee = .0236401 4.qbee = .3698526 10.qbee = .0180478 age_at_mar = 20.12405 cur_age = 32.82232 educ_years = 10.22166 num_members = 6.521098 num_chil_5 = 1.155821	(mean) (mean) (mean) (mean) (mean) (mean) (mean) (mean)	11.qbee 12.qbee

	dy/dx	Delta-method Std. Err.	Z	₽> z	[95% Conf.	Interval]
qbee wife daughter daughter-in-law	0062273 0129327 0011048	.0070108 .0071288 .0075896	-0.89 -1.81 -0.15	0.374 0.070 0.884	0199681 0269049 0159802	.0075136 .0010394 .0137706
granddaughter mother sister other relative adopted/foster child not related	0036006	(not estimation (not estimation) (not estimation) (not estimation) (not estimation)	ble) ble) -0.38 ble)	0.703	0220864	.0148852

Note: dy/dx for factor levels is the discrete change from the base level.

Test for Randomness: Current Age of Child (cur_age_child)

1 . log using "C:\Users\mt216\Desktop\nov15\10Untitled.smcl"

<pre>name: <unnamed> log: C:\Users\mt216\Desktop\nov15\10Unti log type: smcl opened on: 15 Nov 2015, 17:53:22</unnamed></pre>	tled.smcl
2 . do "C:\Users\mt216\AppData\Local\Temp\STD00000	000.tmp"
3 . logit Rm i.qbee age_at_mar cur_age educ_years	num_members num_chil_5 num_women wealth
note: 5.qbee != 0 predicts failure perfectly 5.qbee dropped and 2 obs not used	
note: 8.qbee != 0 predicts failure perfectly 8.qbee dropped and 7 obs not used	
note: 11.qbee != 0 predicts failure perfectly 11.qbee dropped and 3 obs not used	
note: 12.qbee != 0 predicts failure perfectly 12.qbee dropped and 2 obs not used	
Iteration 0: log likelihood = -1341.4927 Iteration 1: log likelihood = -1007.2209 Iteration 2: log likelihood = -888.48223 Iteration 3: log likelihood = -881.19158 Iteration 4: log likelihood = -881.15993 Iteration 5: log likelihood = -881.15993	
Logistic regression	Number of obs = 3,942

Number of 005		5,542
LR chi2(12)	=	920.67
Prob > chi2	=	0.0000
Pseudo R2	=	0.3431
	LR chi2(12) Prob > chi2	LR chi2(12) = Prob > chi2 =

Rm	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
qbee wife daughter daughter-in-law granddaughter mother sister	2078897 -1.170087 .3143884 0 2.824044 0	.3272225 .5126656 .3592273 (empty) 1.177108 (empty)	-0.64 -2.28 0.88 2.40	0.525 0.022 0.381 0.016	849234 -2.174894 3896841 .5169549	.4334546 1652812 1.018461 5.131133
other relative adopted/foster child not related	.6550299 0 0	.5437055 (empty) (empty)	1.20	0.228	4106134	1.720673
age_at_mar cur_age educ_years num_members num_chil_5 num_women wealth _cons	$\begin{array}{r} .1636761 \\1646192 \\0665643 \\141861 \\ -1.613235 \\ .830885 \\1231122 \\ 1.496812 \end{array}$.0185683 .0110792 .0220947 .0423584 .1054119 .0937213 .045921 .6141163	8.81 -14.86 -3.01 -3.35 -15.30 8.87 -2.68 2.44	0.000 0.003 0.001 0.000 0.000 0.000 0.007 0.015	.127283 186334 1098691 2248819 -1.819839 .6471946 2131157 .2931659	.2000692 1429044 0232596 05884 -1.406632 1.014575 0331086 2.700457

4 . margi	ns, dydx	(qbee)	atmeans
-----------	----------	--------	---------

Conditional marginal Model VCE : OIM	effects	Number of obs	=	3,942
at : 1.qbee 2.qbee 3.qbee 4.qbee 6.qbee 10.qbee age_at_1 cur_age educ_ye. num mem	3.qbee 4.qbee 5.qbee 6.q = .0484526 (= .5388128 (= .0235921 (= .369102 (= .0180112 (mar = 20.11948 (= 32.84602 (ars = 10.22146 (bers = 6.521816 (1_5 = 1.155758 (mean) mean) mean) mean) mean) mean) mean) mean) mean) mean) mean)	11.qbee	12.qbee
	Delta-metho dy/dx Std. Err		[95% (Conf. Interval]

	_							
qbee								
wife	0070361	.0120255	-0.59	0.558	0306055	.0165334		
daughter	026368	.0130255	-2.02	0.043	0518975	0008385		
daughter-in-law	.0135533	.0141769	0.96	0.339	0142329	.0413396		
granddaughter	. (not estimable)							
mother	.365463	.2741848	1.33	0.183	1719293	.9028553		
sister	. (not estimable)							
other relative	.0332387	.0313098	1.06	0.288	0281273	.0946047		
adopted/foster child	. (not estimable)							
not related	•	(not estima	ble)					

Note: dy/dx for factor levels is the discrete change from the base level.