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0.1 Abstract

Our paper asks and attempts to answer the following two questions: Does
an ARMA(1,1) Model with a constant Gaussian volatility parameter es-
timate better predict financial data than an ARMA(1,1) Model with a
GARCH volatility parameter estimate? Does the GJR-GARCH volatility
parameter estimate improve on the GARCH parameter estimate?
We show that the constant volatility parameter estimate does a better job
with the NASDAQ-500 index but worse with the 10-year treasury. Un-
der hypothesis testing, we show that the GJR-GARCH(1,1) is a better
model to use for the NASDAQ while GARCH(1,1) should be used to model
the treasury. Finally, using various goodness-of fit metrics, we determine
that GARCH(1,1) fits better than the GJR-GARCH(1,1) model on the
NASDAQ-500 and the 10-year treasury. 1 2

1
Dongkeun Lee Duke University Department of Economics dl163@duke.edu

2
David Liu Duke University Department of Economics dl110@duke.edu

1



0.1.1 Acknowledgements

This paper would not have been possible without the invaluable help and
advice of colleagues and professors. We want to thank Dr. Arlie Petters
for encouraging us to study GARCH in his financial derivatives course. We
also want to thank Dr. Edward Tower, Dr. Charles Becker and Dr. An-
drew Patton for their helpful advice and comments. Finally, we want to
thank all our friends at Duke as well as our families for their friendship and
unwavering support.

0.1.2 Paper Organization

The paper is organized as follows. In the first section (Section 0.2-0.5),
we motivate GARCH, introduce the Ljung-Box Q test and the GARCH
Model (Bollerslev (1986)), derive the log-likelihood form of GARCH(1,1)
and finally, motivate and introduce the GJR-GARCH(1,1) model (Glosten,
L. R., R. Jagannathan, and D. E. Runkle (1993)) model.
In the second section (Section 0.6-0.7), we present our analysis. We show
that under 20 di↵erent Monte-Carlo simulation trials, the GARCH Model
misses an average of 7.95 and 6.4 times, the GJR-GARCH Model misses
an average of 10.95 and 35.6 times while the constant volatility misses an
average of 4.6 and 27.95 times for the NASDAQ and the treasury, respec-
tively. We show that GARCH is preferable to GJR-GARCH using di↵erent
goodness-of-fit tests, but not necessarily in hypothesis testing. Finally, we
conclude by discussing which model we would use to forecast financial data
in the future.

0.2 Motivation for GARCH

Let WN denote a White Noise process. Consider a standard ARMA(1,1)
model for an asset return:

Yt+1 = �0 + �1Yt + ✏t+1 + ✓✏t

✏t+1 ⇠ WN(0, �2)

2



which implies that

Vt[Yt+1] = Vt[�0 + �1Yt + ✏t+1 + ✓✏t]

= Vt[✏t+1], since the other terms are known at time t

= �2 by assumption that ✏t+1 ⇠ WN(0, �2)

Thus, in standard models Vt[Yt+1] = �2, a constant, which means that Yt+1

is (conditionally) homoscedastic.

0.2.1 Testing Serial Correlation

McLeod and Li (1983) suggest using the Ljung-Box test on the squared
residuals to test jointly for evidence of serial correlation. If the squared
residuals of the data is serially correlated, Yt+1 cannot be (conditionally)
homoscedastic. The test is as follows. Assume that the the stock prices
are distributed IID logNormal (so returns are Normally distributed). Let
⇢j denote the jth autocorrelation i.e.

⇢j := Corr(Yt, Yt�j) =
Cov(Yt, Yt�j)p

Yt

p
Yt�j

Then the Ljung-Box Q-statistic tests the following.

H0 : ⇢1 = ⇢2 = ... = ⇢L = 0

H1 : ⇢j 6= 0 for some j=1,2...L

The Ljung-Box Q statistic, denoted QLB(L), is:

QLB(L) = T (T + 2)
LX

j=1

(
1

T � j
)⇢̂2j

Under the null hypothesis, the QBL(L) statistics is distributed as �2
L with L

degrees of freedom. The weakness of this test is that the test is not robust;
we need to assume that stock prices are distributed iid logNormal in order
to use the test.

0.3 GARCH Model

Let ⌘t+1 be defined as:

⌘t+1 = ✏2t+1 � Et[✏
2
t+1], ⌘t+1 ⇠ WN(0)
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GARCH(1,1) (Bollerslev (1986)) applies the ARMA(1,1) model for the con-
ditional variance.

✏2t+1 = ! + �✏2t + �⌘t + ⌘t+1⌘t+1 ⇠ WN(0)

Then, the conditional variance is

�2
t+1 := Vt[Yt+1] = Et[✏

2
t+1]

= Et[! + �✏2t + �⌘t + ⌘t+1]

= ! + �✏2t + �⌘t

= ! + �✏2t + �(✏2 � Et�1[✏
2
t ])

= ! + �✏2t + �(✏2 � �2)

= ! + (� + �)✏2t � ��2
t

= ! + ↵✏2t + ��2
t

where ↵ = (� + �) and � = ��. The equation states that conditional
variance of tomorrow’s return is equal to a constant, plus today’s residual
squared, plus today’s known variance.

0.4 Estimation of GARCH parameters

GARCH models are estimated using MLE. MLE requires us to make cer-
tain assumptions about the distribution of ✏t+1. The most common distri-
butional assumption is that of normality:

✏t+1|Ft ⇠ N (0, �2
t+1)

We assume that the conditional mean follows an ARMA(1,1) process.
Then, this implies that the time series is conditionally normally distributed.

Yt+1 = µt+1 + ✏t+1

µt+1 = Et[Yt+1] = �0 + �1Yt + �✏t

�2
t+1 = Vt[Yt+1] = ! + ↵✏2t + ��2

t

Thus, under properties of the Normal Distribution:

Yt+1|Ft ⇠ N (�0 + �1Yt + �✏t,! + ↵✏2t )
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The likelihood function is then

L(✓|y1, y2...yT ) = f(y1...yT )

= fy1(y1)⇥
TY

t=2

fyt|yt�1...y1(yt|yt�1...y1)

The distribution of y2|y1...yT |yT�1...y1 are all Normal densities with di↵er-
ent means and variances. We do not know what the unconditional distribu-
tion of y1 is. Thus, we will just instead maximize the conditional likelihood,
which is

f(y2..yT |y1; ✓) =
TY

t=2

fyt|yt�1...y1(yt|yt�1...y1) =
TY

t=2

1p
2⇡�2

t

exp{� ✏2t
2�2

t

}

where

✏t = Yt � �0 � �1Yt�1 � �✏t�1

�2
t = ! + ↵✏2t�1 + ��2

t�1

The conditional log-likelihood is thus:

1

T � 1
logf(y2...yT |y1; ✓) =

1

T � 1
logL(✓|y1, y2...yT )

=
�1

2
log(2⇡)� 1

2(T � 1)

TX

t=2

log�2
t �

1

2(T � 1)

TX

t=2

✏2t
�2
t

The MLE is thus

✓̂ = argmax
✓

logL(✓|y1...yT )

= argmax
✓

{�1

2
log(2⇡)� 1

2(T � 1)

TX

t=2

log�2
t �

1

2(T � 1)

TX

t=2

✏2t
�2
t

}

There is no closed-form solution for the MLE estimates so a common ap-
proach is to use numerical methods to maximize the likelihood. For this
paper, we will use EstMdl function in MATLAB to estimate the parame-
ters.
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0.5 GJR-GARCH

Black (1976) observed that stock returns are negatively correlated with re-
spect to changes in volatility i.e. lower stock returns than expected followed
with higher levels of volatility and higher stock returns than expected fol-
lowed with lower levels of volatility. This is intuitively explained by what
is called the ”leverage e↵ect”. If a firm uses both debt and equity to fi-
nance, as stock prices decline, its debt to equity ratio will increase, which
increases equity return volatility. Thus, lower stock returns than expected
leads to higher future volatility and higher stock returns than expected
leads to lower future volatility. The GJR-GARCH Model is a model within
the class of models that captures this ”leverage e↵ect.”
The standard GARCH Model, which shows that tomorrow’s volatility is
quadratic to today’s residual, so the sign of the residual does not matter.

�2
t+1 = ! + ��2

t + ↵✏2t

Glosten, Jagannathan and Runkle (1993) (called GJR-GARCH) extends
the GARCH Model to capture this e↵ect.

GJR-GARCH: �2
t+1 = ! + ��2

t + ↵✏2t + �✏2t {✏t < 0}

If � > 0 then the impact of tomorrow’s volatility is negative if today’s
residual is negative.

0.6 Analysis

We take the NASDAQ Composite (IXIC) and the CBOE Interest Rate 10-
year T-No (TNX) from 2/7/2000 to 11/6/2013. The Ljung-Box Test (done
in MATLAB) shows that we reject H0 for NASDAQ but cannot reject H0

for the 10 year treasury. Thus, for the treasury, there isn’t evidence that
the squared residuals are serially auto-correlated.

0.6.1 Parameter Estimates

For the NASDAQ Composite, the GARCH(1,1) Conditional Variance Model
parameter estimates are (in MATLAB)

Parameter Value Standard Error t statistic
Constant 1.5477e-06 5.8247e-07 2.65713
GARCH{1} 0.917646 0.0074822 122.644
ARCH{1} 0.0763399 0.00661047 11.5483
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and under the GJR-GARCH(1,1) Conditional Variance Model

Parameter Value Standard Error t statistic
Constant 2e-05 2.08912 9.57339
GARCH{1} 0.742542 0.0199526 37.2154
ARCH{1} 0.0535206 0.0135482 3.67884
Leverage{1} 0.267255 0.0289146 9.24292

The ARMA(1,1) parameters are

Parameter Value Standard Error t statistic
Constant -1.4158e-05 0.000149655 -0.094601
AR{1} 0.473452 0.113503 4.17129
MA{1} -.525954 0.108609 -4.84317
Variance 0.000303766 4.01074e-06 75.7381

For the 10 year Treasury, the GARCH(1,1) Conditional Variance Model
parameter estimates are (in MATLAB)

Parameter Value Standard Error t statistic
Constant 7.23721e-07 4.70219e-07 1.53911
GARCH{1} 0.947127 0.00437276 216.597
ARCH{1} 0.0523367 0.00468205 11.1782

and under the GJR-GARCH(1,1) Conditional Variance Model

Parameter Value Standard Error t statistic
Constant 2e-05 2.04482e-06 9.78082
GARCH{1} 0.800138 0.0131241 60.9673
ARCH{1} 0.131747 0.017005 7.72757
Leverage{1} 0.030674 0.0200255 1.53175

The ARMA(1,1) parameters are

Parameter Value Standard Error t statistic
Constant -0.000433322 0.0005393 -0.803296
AR{1} -0.623894 0.436365 -1.42975
MA{1} 0.636994 0.430507 1.47958
Variance 0.000360598 4.98113e-06 72.3928

0.6.2 t-test statistic

In the following two paragraphs, we will use the t-test statistic to compare
GARCH(1,1) with GJR-GARCH(1,1). Later on in our analysis, we will use
goodness-of-fit metrics to compare GARCH(1,1) with GJR-GARCH(1,1).
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For NASDAQ, the t-test statistic for the leverage is 9.24292, which illus-
trates there is indeed a significant ’leverage e↵ect.’ This implies that the
GJR-GARCH(1,1) is a better model to use than the GARCH(1,1).
However, for the treasury, the t test statistic for the leverage is 1.53175,
which is lower than the 95% (with 4 degrees of freedom) significant value of
2.132. Thus, since the treasury bill does not exhibit this ’leverage e↵ect,’
the t-test indicates that GARCH(1,1) is the appropriate model to use for
the treasury.

0.6.3 News Impact Curves

The following ’News Impact Curves’ (Figure 1) graphs the impact of to-
day’s residual squared term on tomorrow’s variance against di↵erent values
of ✏t. In the GARCH-Model the impact of today’s residual squared term
on tomorrow’s variance is invariant to the residual; thus the equations are
governed by

yt = 0.0763399✏2t

while in the GJR-GARCH Model, the equations are governed by

yt =

(
0.320776✏2t , if ✏t < 0

0.053521✏2t if ✏t � 0

In accordance to the motivation of GJR-GARCH, volatility is higher fol-
lowing a better than expected return to the stock and lower following a
lower than expected return.

0.6.4 Monte Carlo Simulation Results

The figures below (Figure 2 and 3) show one particular Monte-Carlo simu-
lation of returns on the NASDAQ and 10-Year US Treasury indexes. The
prediction model assumes that

Yt+1 = µt+1 + ✏t+1

where ✏t+1|Ft ⇠ N (0, �2
t+1)

with µt+1 driven by an ARMA(1,1) model and �2
t+1 driven by a GARCH(1,1)

model. Because GARCH gives us a model for the conditional variance, we
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Figure 1: News Impact Curves for NASDAQ-500

Figure 2: NASDAQ 500 Simluation

Figure 3: Treasury Simulation
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can construct a two standard deviation confidence interval around our pre-
dicted value µ̂t+1 whose width varies with time:

[µ̂t+1 � 2�̂t+1, µ̂t+1 + 2�̂t+1]

In contrast, a model that assumes constant conditional variances has a con-
fidence interval of constant width around the predicted return.
The simulations in Figure 2 and Figure 3 use historical data from 2/7/2000
to 11/6/2013 to estimate the model parameters, then based on those esti-
mates we forecast returns on the indexes for the next 100 days and compare
the results to the realized returns from 11/7/2013 to 4/2/2014. In both
figures we are able to observe how the width of the GARCH confidence
interval changes through time. Thus, we see that by capturing the time-
varying volatility of the assets, we are able to better estimate the uncer-
tainty of our forecasts than with a constant volatility model.
Looking at Figure 2, we see that the 95% CI for the constant volatility is al-
most always larger than the 95% CI for GARCH. Thus, all the ’misses’ with
constant volatility were also ’misses’ with GARCH plus GARCH ’misses’
all the realized returns outside the 95% CI of GARCH but within the 95%
CI of constant volatility. This begs the question: Is the CI for constant
volatility always larger than the CI for GARCH?
The answer is no, as Figure 3 demonstrates. In Figure 3, the GARCH 95%
CI is almost always larger than the constant volatility 95% CI. Thus, in
the treasury, GARCH ’misses’ a lot less than constant volatility.
Under the normality assumption of ✏t+1|Ft, we would expect to see about
5 observations outside of our two standard deviation confidence interval
over the course of 100 observations. Using GARCH volatility, we observed
7 and 4 points outside of our interval, while the constant volatility model
had 1 and 14 observations outside the interval. In 20 di↵erent simula-
tion trials, we observed that the GARCH interval missed an average of
7.95 and 6.4 times for the NASDAQ and Treasury respectively, while the
constant volatility model missed an average of 4.6 and 27.95 times. The
GJR-GARCH on the other hand, missed 10.95 times and 35.6 times on the
NASDAQ and Treasury, respectively. Thus, GARCH performed the best
in the Monte-Carlo Simulation Results for the treasury while the constant
volatility performed the best for NASDAQ-500. Figure 4 is the complete
summary statistic for the simulation results misses that lied outside the
two standard deviation confidence interval.

0.6.5 Goodness-of-fit metrics

We compared the goodness-of-fit of GARCH and GJR-GARCH on the
NASDAQ and the treasury using four di↵erent metrics (ln L, AIC, HQIC,
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BIC). Our results are displayed in Figure 5. * denotes which model the
specific test says is a better fit. The tests are ordered (left to right) by the
severity the test penalizes extra parameters. According to our tests, the
GARCH is a better fit than GJR-GARCH in all metrics. Since the AIC,
HQIC and BIC are most commonly used, we conclude that the GARCH is
preferred for both the NASDAQ and the treasury.

0.6.6 Analysis of the Simulation Results

Constant volatility performed best in out-of-sample simulations on NAS-
DAQ while GARCH performed best in out-of-sample simulations on the
treasury. This is a surprising result because the treasury is thought to be
less volatile than NASDAQ whilst GARCH is considered to be a more accu-
rate measure of volatility than constant volatility. One explanation on why
this may not be as surprising as first thought could be because the time
frame associated with the estimated parameters included the 2008 finan-
cial crises, and the first 100 sample days of NASDAQ was nothing like the
returns from the financial crises. Thus, it may be the case that the crises
’skewed’ the GARCH parameters enough that constant volatility became a
better measure for dates in which the NASDAQ returns were pretty normal,
as in the past 100 days. However, this ’skewing’ e↵ect would be smaller in
the treasury because the treasury wasn’t as a↵ected by the financial crises
as NASDAQ was. Thus, this could be the reason why GARCH performs
better than constant volatility on the treasury but does not perform as well
on NASDAQ.

Additionally, the t-test indicated that GJR-GARCH was a better model to
use for NASDAQ but GARCH was a better model for the treasury. The
goodness-of-fit metrics pointed to GARCH as the model to use. Addition-
ally, GARCH performed best in out-of-sample simulations on the treasury
while the constant volatility did best on NASDAQ. How does one elucidate
these seeming contradictions? The simulation results are an out-of-sample
analysis of the models while the goodness-of-fit tests analyzes how the
models fit for the on-the-sample data. Thus, they measure two completely
di↵erent things. Secondly, the simulations were performed during one spe-
cific interval. The results are unlikely to hold true if we were given another
time interval. For example, it would not surprise us if GJR-GARCH con-
vincingly beat GARCH and constant volatility in a Monte Carlo Simulation
performed on the next hundred days. Lastly, the interval length may be
too small for the models to work. GARCH(1,1) and GJR-GARCH(1,1) are
often used to analyze between a year to two years worth of out-of-sample
data. Thus, we could have su↵ered from a lack of sample size of sorts.
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Mean SD 25-tile 50-tile 75-tile
NASDAQ
Constant 4.6 3.330876 2.5 4 6
GARCH 7.95 2.781045 6 8 10
GJR-GARCH 10.95 6.747124 6.5 9.5 15
Treasury
Constant 29.45 10.99509 21 31 35
GARCH 6.4 1.902906 6 6 8
GJR-GARCH 35.6 9.582879 29.5 37 41.5

Figure 4: Summary Statistic for ’misses’

ln L AIC HQIC BIC
NASDAQ 500
GARCH 9.9332e03* -5.7416* -5.7397* -5.7383*
GJR-GARCH 9.8683e03 -5.7035 -5.7010 -5.6964
Treasury
GARCH 9.3862e03* -5.4333* -5.4314* -5.4279*
GJR-GARCH 9.2663e03 -5.3632 -5.3607 -5.3561

Figure 5: Goodness of Fit Tests
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0.7 Conclusion

In our paper, we took two financial time series models that modelled condi-
tional variance, did a Monte-Carlo simulation using the estimated param-
eters and studied how the predicted returns matched up with the realized
returns in a specified time interval. We wanted to study how the di↵erent
conditional variance models compared to its predecessor, the constant con-
ditional variance model. Finally, we performed goodness-of-fit tests as well
as the t-test statistic to compare GARCH and GJR-GARCH.
In out-of-sample data, the GJR-GARCH and the constant variance pro-
duces horrendous results in simulation against the treasury yield. The
GARCH does fairly well, but is not perfect. On the other hand, constant
volatility clearly beats GARCH and GJR-GARCH on the NASDAQ. We
suspected that the 2008 Financial Crises ’skewed’ the GARCH parameters
enough that it does worse on NASDAQ but not as bad in the treasury.
However, according to goodness-of-fit tests, GARCH is the model to use
(so consequently is the logical choice model to use to predict upcoming
data). The t-test tells us that GARCH is better on the NASDAQ but
GJR-GARCH is better on the treasury. And yet, with all these seeming
contradictions, the result is nothing too surprising in the always confus-
ing field of finance. GARCH may have been a refinement on the constant
volatility and GJR-GARCH a further refinement on the GARCH, but it
doesn’t necessarily translate into a better predictive model. In fact, if we
had to forecast financial data for the next hundred days, we would use the
GJR-GARCH model, despite it being the worst of the three models in both
NASDAQ and the treasury to use in the past hundred days! The reasons
we would prefer GJR-GARCH over GARCH or constant volatility is that
1) The Ljung-Box test shows that asset returns are serially auto-correlated,
which implies that constant volatility is the ’wrong’ model to use.
2) The leverage e↵ect is real and present in stocks and GARCH ignores
this.
3) Although we haven’t shown it, because of (1) and (2), we believe that
as we increase the number of times we do out-of-sample simulations on
di↵erent dates, GJR-GARCH will rise to be the better predictive model
over GARCH or constant volatility.
This leads us to two points: finance is still very unpredictable, as an anal-
ogy, it is similar to how unpredictable the NCAA basketball tournament is
nowadays even with all the advanced sports metrics in place and the 24/7
coverage of sports plastered online and on T.V. Secondly, if you develop a
model that does a good job in forecasting financial data, you could make a
lot of money if you kept it a secret (one such strategy would be to sell far
out-of-money calls and puts if you knew that the returns skewed far more
than predicted).
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Future Plans of the Authors

Dongkeun Lee will graduate with a Masters of Arts in Economics in Spring
of 2014. Afterwards, he will work as a consultant for CarMax in Richmond,
VA. His proudest achievement at Duke was placing 1st in the 2013 Fuqua
Poker Tournament after having learned the strength of each poker hand
minutes before.

David Liu will graduate with a Bachelors of Arts in Economics and a Bach-
elor of Science in Mathematics in Spring of 2014. Afterwards, he will work
at BlackRock in New York, NY. He almost agreed to eat 8 McDoubles
minutes before the financial derivatives final so that he could earn $5.
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