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Abstract 

 
Conventional models of volatility estimation do not capture the persistence in high-frequency market data 

and are not able to limit the impact of market microstructure noise present at very finely sampled intervals. 

In an attempt to incorporate these two elements, we use the beta-metric as a proxy for equity-specific 

volatility and use finely sampled time-varying conditional forecasts estimated using the Heterogeneous 

Autoregressive framework to form a predictive beta model. The findings suggest that this predictive beta is 

better able to capture persistence in financial data and limit the effect of microstructure noise in high-

frequency data when compared to the existing benchmarks.  
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1. Introduction 

 
An investor expects to be compensated in terms of the time value of money and the risk associated with a 

particular investment. The time value of money component is the concept that money available today is 

worth more than money available in the future due to multiple factors, including the potential earning 

capacity of the money via alternate investments, the possible inflation that could discount the present value, 

and the unrealized opportunity cost of receiving interest. Typically, investors associate the time value of 

money with the risk-free interest they could accrue by allocating the money today. For example, when 

governments issue bonds, they offer a specified return to the investor. Under the assumption that 

governments are free from default, this specified return signifies a guaranteed rate of return that is referred to 

as the risk-free rate. However, due to the minimal risk associated with this particular allocation of money, 

the associated return is relatively low. Alternatively, investors expect to be compensated for the incremental 

risk they take by investing in non risk-free, or risky assets. The rationale for investing in risky assets is the 

potential for excess returns they provide relative to the risk-free rate of return, referred to as the risk to 

reward ratio. The quantification of this excess risk can be done through a statistical measure called beta.  

 Beta is a commonly defined statistical measure that represents the volatility of a specific asset’s 

returns relative to that of the market returns. It is defined as the covariance of an asset’s returns with the 

market’s returns, divided by the variation of the market returns. Specifically, beta measures the portion of an 

asset’s statistical variance that cannot be mitigated by the diversification of a portfolio composed of many 

risky assets, or the market portfolio. By definition, the market portfolio has a beta of one because the 

covariance of the market with itself and its variation are the same. Alternatively, an asset with a beta of zero 

means that the returns of that asset change independently of changes in the market’s returns over time. But, 

if an asset moves more than the market, then the asset’s beta is higher than one and is said to be riskier with 

the potential of higher returns. 

In securities analysis and company valuation, the accuracy of beta is crucial in determining 

investment strategies and the pricing of individual equities. An essential feature of the beta-metric is the 

explanative power it lends to assess portfolio risk and returns. Given a lack of explanative power in the beta-

metric, portfolio managers cannot forecast returns and minimize risk to reward ratios (Klemkosky and 

Martin, 1975). For example, the Capital Asset Pricing Model (CAPM) uses beta as a key component in 
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calculating the cost of equity for a specific equity. The cost of equity represents the discount rate used to 

calculate the present value of a company’s future cash flows and eventually the company’s share valuation. 

More specifically, the cost of equity measures the rate at which investors need to be compensated to invest 

in that equity. It does this by calculating the expected excess return on the market by multiplying beta with 

the market risk premium, or the difference between the expected return on the market and the risk-free rate. 

Holding all else constant, the higher an equity’s beta, the higher the cost of equity discount rate and the 

lower the present value of the company’s future cash flows. From this example it can be seen that slight 

variations in beta can impact the discount rate, which can lead to diverging company share valuation results.  

Traditionally, the beta used within the CAPM is assumed to be constant over time and is typically 

estimated using moving estimation windows, typically of five to ten years. By constant, it is meant that betas 

are calculated on a set period-by-period basis, as oppose to a continuous evolution. But, numerous pieces of 

literature, including those from Bos and Newbold (1984), Collins, Ledolter and Rayburn (1987), Brooks, 

Faff and Lee (1992), and Choudhry (2002, 2004) have suggested that a constant-beta CAPM is unable to 

satisfactorily explain the cross-section of average returns on equities and the market to capture dynamics in 

volatility. Specifically, Adrian and Franzoni (2005) argued that models without time-evolving betas fail to 

capture investor characteristics and may lead to inaccurate estimates of the true underlying beta. Following 

this criticism, multiple time-varying beta models (Campbell and Vuolteenaho (2004), Fama and French 

(2005), Petkova and Zhang (2005), Lewellen & Nagel (2006), Ang and Chen (2007)) have been proposed 

to estimate a more precise method to measure volatility and calculate the true underlying beta of an asset. 

Many of these models utilize coarsely observed daily returns (typically squared returns) to extract 

information about the current level of volatility in returns and then utilize this to form expectations about the 

next period’s return volatility. In doing this, these models treat beta as an endogenous variable that varies 

slowly and continuously over time. But again, this method does not fully capture the dynamics of volatility 

in situations where volatility changes rapidly from one level to the next.  

One particular method utilized by Andersen, Bollerslev, Diebold and Wu (2006), highlights the 

usage of high-frequency data and realized measures to estimate the underlying beta. High-frequency data 

gives way to realized measures of volatility, including realized variance and realized covariance, which are 

computed on a finely sampled basis, such as 1 or 5 minutes. Unlike observed daily squared returns, realized 

measures are more informative about the current level of volatility because they instantaneously integrate 
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new information. Anderson et al. explore the dynamic nature of beta by introducing the concept of a 

“realized betas”, computed from high-frequency intraday returns. The realized beta is an estimator of the 

underlying beta that is calculated by taking the ratio of the realized covariance of an equity’s returns with the 

market returns and the realized variance of the market returns. In line with realized measures, the usage of a 

realized beta allows for the instantaneous information adjustment to capture dynamics in volatility and an 

increased number of data points for the purposes of estimation.  

In addition to capturing dynamics in volatility via high frequency data, it is imperative to take into 

account the long memory and persistence evident in financial data that are ideal for robust predictive 

measures. One way to incorporate long memory and persistence into models is through fractional 

integration or cointegration such as the autoregressive fractionally integrated moving average (ARFIMA), 

or the fractionally integrated generalized autoregressive conditional heteroskedasticity model (FIGARCH) 

developed by Baillie, Bollerslev, and Mikkelsen (1996). But, these models are not easy to estimate and they 

typically require nonlinear maximum likelihood estimation procedures. Literature by Andersen, Bollerslev, 

Diebold, and Labys (2003) and Andersen, Bollerslev, and Huang (2007) has empirically shown that linear 

models can oftentimes predict future volatility more accurately than nonlinear models such as the ARFIMA 

and FIGARCH models. The Heterogeneous Autoregressive (HAR) model developed by Corsi (2003) 

provides linear estimation via ordinary least squares and captures the effects of persistence in a 

parsimonious manner.  

This paper provides the development and evaluation of an alternative time-varying conditional 

forecasted beta model that expands on previous literature to utilize high-frequency data to estimate beta. The 

time-varying model that is developed within this paper uses the Heterogeneous Autoregressive (HAR) 

framework that uses a linear combination of moving averages computed over varying time horizons, 

particularly days, weeks and months, to calculate realized averages. Specifically, the Heterogeneous 

Autoregressive Beta model (HAR-Beta) developed within this paper uses a linear combination of daily, 

weekly, and monthly-realized betas computed from high-frequency intraday returns to calculate a predictive 

beta. Then, the predictive beta is conditioned on the observed market return to give a conditional expected 

return for a particular asset. If beta were constant, analyzing the conditional expected return would not 

provide additional information other than that contained in the conditional mean. However, if beta is in fact 

time varying, then the conditional probability distribution of returns depends on the conditional probability 
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distributions of the predicted betas. Hence, the use of conditional probability distributions revealed through 

the HAR-Beta model could better approximate the underlying beta and explain the excess returns on the 

market.   

First, in Section 2, this paper develops the elements of a time-varying beta model by explaining the 

concept of a beta and a realized beta. Then, Section 3 gives a brief description of the high frequency data 

used, including the estimation and out of sample datasets. To normalize the results, Section 3 also provides 

insight into market microstructure noise reduction and benchmark comparisons of a constant returns model 

and a constant beta model. Next, in Section 4, the theoretical basis behind the HAR-Beta model and the 

statistical methods for determining accuracy are developed. Within this section, key elements regarding the 

motivation for a time-varying beta, such as persistence and memory via statistical tools like standard 

deviation and first order autocorrelation are detailed. The HAR-Beta model is trained on the estimation 

dataset, and then the forecasts are produced over the out-of-sample period. The model is then evaluated 

based on the performance in the out-of-sample datasets, measured via the root mean squared error described 

in Section 4.3. Section 5 provides the estimation sample and out of sample results that are supplemented by 

final conclusion in Section 6.  

 
 
2. The Elements of a Time-Varying Beta 
 
The beta coefficient (β) is a key parameter in the one-factor Capital Asset Pricing Model (CAPM) and can 

be represented through the Security Characteristic Line (SCL) 

 

   (1) 

 

where ra,t  is the rate of return on asset a at time t, rm,t  represents the rate of return on the market at time t and 

rf  is the risk-free rate. For the ease of exposition, it will be assumed that markets are efficient and the 

expected value of the returns in excess of the compensation for the risk is zero for all portfolios, (E(αia) = 0). 

Additionally, this analysis will use high frequency data taken over finely sampled discrete intervals of time, 

like 1 or 5 minutes. Given the usage of these finely sampled discrete intervals of time, it is also assumed that 
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the effective risk-free rate, (rf), does not change significantly and hence will be assumed to be zero. The 

resulting equation of the SCL is 

 

     (2) 

 

Now, the SCL represents the relationship between the return of a given asset a at time t with the return of the 

market (rm,t) and a sensitivity measure of beta (β). Beta is a sensitivity measure that describes the relationship 

of an asset’s return in reference to the return of a financial market or index. Beta is derived from linear 

regression analysis in which the returns of an individual asset (ra) are regressed against the returns of the 

market (rm) in a specific time interval to find the covariance of the asset’s and the market’s returns. Then, the 

covariance is scaled by the variance of the returns on the market (rm) to measure the sensitivity of the asset’s 

returns to the market’s returns. Beta is defined as 

 

     (3) 

 

where ra,t is a measure of the rate of return on asset a at time t and rm,t  is a measure of the rate of return on 

the market or index at time t. Specifically, beta measures the statistical variance or systematic risk of an asset 

that cannot be mitigated through diversification. By definition, the market portfolio has a beta of one 

because the covariance of the market with itself and its variance are the same. Alternatively, an asset with a 

beta of zero means that the returns of that asset change independently of changes in the market’s returns 

over time.  

 To measure changes in stock prices, namely variance and covariance, this analysis will utilize the 

logarithmic of price and geometric returns as the scale of measurement. The rationale for logarithmic price 

and geometric returns is the comparability between two data points and the standardization of a scale that a 

logarithmic provides. Hence, the intraday geometric return is defined as 
 

    (4) 
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where p is the logarithmic of the stock price, t is the specific day, k is the frequency or sampling interval at 

which the logarithmic prices are sampled at, and  j = 1, 2, … , k. For intervals of time, the beta (β) of an asset 

is defined as the underlying ratio between the integrated stock and market return covariance and the 

integrated market variance. If the instantaneous volatility σ(t) were known, then the true variance and true 

covariance, called the integrated variance and integrated covariance, could be found by integrating the spot 

volatility over the time interval: 

 

          (5) 

.   (6) 

 

But, the underlying spot volatility is impossible to observe. Instead, given that it is possible to observe 

realized prices at discrete measures of time utilizing high frequency data, realized measures will be used to 

numerically approximate the integrated variance and integrated covariance.  

Calculating realized measures, such as the realized variance and realized covariance is intuitive and 

parsimonious. Given a set of geometric returns at over a specified time interval, as defined above, the 

realized variance (RV) is computed as 

 

      (7) 

 

The realized variance represents the sum of the squared geometric returns sampled at a specified sampling 

frequency, k. Anderson and Bollerslev (1998) pointed out that as the frequency approaches infinity, , 

or the time between observations approximates zero, the realized variance converges to the integrated 

variance and can serves a measure of underlying volatility. Huang and Tauchen (2005) confirmed this and 

found that realized variance is a reasonable and appropriate estimator of the integrated variance, even in the 

presence of jumps. The realized covariance is calculated in the same manner. It is defined as 
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     (8) 

 

where the sum of the covariance between the geometric return of asset a (ra,t,j) and geometric return of 

asset b (rb,t,j) is taken at a specific sampling frequency k. Overall, Anderson, Bollerslev, Diebold, and 

Labys (2003) reported that forecasting with realized measures outperforms a variety of more complicated 

stochastic volatility models in out-of-sample forecasting.  

 Hence, using the formula given above for beta, realized beta is calculated by 

 

       (9) 

 

where RCOV is the realized covariance of realized returns on an asset a and realized returns on the market 

over a sampling interval taken at a specific frequency, and RV is the realized variance of realized returns on 

the market over the same interval and frequency. The realized beta dismisses the null hypothesis of the 

period-by-period constant beta and allows for continuous evolution. More specifically, the realized beta is 

consistent for realizations of the underlying ratio between the integrated stock and market return covariance 

and the integrated stock market variance. Additionally, according to Anderson, Bollerslev, Diebold, Wu 

(2006), realized betas allows for a flexible econometric framework that avoids fractional integration and/or 

cointegration between the market variance and individual asset equity covariances with the market.  

 

 
3. Data 
 
The price data used in the analysis are based on minute-by-minute price quotes from a commercial vendor, 

price-data.com that includes every minute from 9:35 AM to 4:00 PM on trading days from 1997 to early 

2009. The Standard & Poor’s Repository Index 500 (SPY) was used as the market index for calculation. 

Additionally, there were a total of eight equities chosen for the analysis, including Coca Cola Company 

(KO), PepsiCo, Inc. (PEP), Microsoft Corporation (MSFT), JPMorgan Chase & Co. (JPM), Bank of 

America Corporation (BAC), Johnson & Johnson (JNJ), Wal-mart Stores Inc. (WMT), and Exxon Mobil 
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Corporation (XOM). These particular companies were chosen due to their liquidity, market capitalization 

and representation across industries including Consumer Goods, Technology, Financial, Healthcare, 

Services and Integrated Oil & Gas. The full time interval used for analysis is January 2, 2001 to January 3, 

2009, which includes 1989 trading days, and was chosen due to the availability of data for the equities.   

 

3.1 Market Microstructure Noise 

One method used to calculate the price of an equity is the constant growth model which takes the sum of all 

the expected discounted future cash flows to get a net present value. The model assumes that a firm’s profits 

per share, π, grow by a constant growth rate, g. Then, expected profits, πe, are discounted by the difference 

between a cost of equity component, k, calculated through the Capital Asset Pricing Model (CAPM) and the 

growth rate to estimate the price of the equity 

 

      (10) 

 

By using a constant growth rate and discount rate to estimate prices, the constant growth model does not 

account for changes in growth-rate expectations and market frictions such as the bid-ask spread, 

instantaneous information asymmetry and other trading anomalies. These short-term market price 

movements of assets may reflect a value other than the true price of the asset.  

For example, suppose a company is expected to produce profits per share, πe, of $3.00 according to 

analyst via a 5% long term growth rate, g. Under the current market condition, investors feel confidently 

about the company’s potential to meet these expectations and value of the cost of equity, k, at 8%. Then, 

according to the constant growth model, investors are valuing the price of the company’s equity at 
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Now, suppose that during this time, a public news release states that the company plans to launch a new 

product that could potentially increase expected profits. Now, the discount rate, or investor’s cost of equity, 

k, decreases from 8% to 7.5% to reflect a change in the underlying price of the equity 

 

 

 

But, the market price does not instantly adjust to the new fundamental price due to market delays and 

frictions following the public news release. Hence, marginal changes in the input factors of the constant 

growth model, such as frictions and delays in the discount rate, can lead to diverging valuations in the true 

underlying price of an equity.  

Typically, prices are modeled as a random process that is continuous in time and space. While this 

assumption of continuity may work for coarsely sampled datasets, it does not hold when using high 

frequency data. At finer scales of time, various market frictions (release of new information, bid-ask bounce, 

discreteness of prices, block trades, etc.) arise that impede the instantaneous adjustment to the fundamental 

price. Hansen and Lunde (2006) define these market frictions as market microstructure noise  

 

,     (11) 

 

where p(t) is the observed log price in the market at time t, p*(t) is the fundamental log price at time t, and 

u(t) is the microstructure noise. Market microstructure noise is a pertinent consideration when using high-

frequency data because as the frequency of data increases, the signal-to-noise ratio falls dramatically. This 

can be seen through changes in the underlying price defined as 

 

   (12) 

 

where θ is a real number increment , [p(t + θ) – p(t)] represents the change in log price over a time interval 

and u(t) is the i.i.d. microstructure noise applicable to the price change over the specified time interval. Now, 

as θ → 0 or the time interval is decreased, the magnitude of change in the fundamental log price, [p*(t + θ) - 
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p*(t)], should decrease. Intuitively, a lack of new information available during small time periods or liquidity 

factors that force smaller price movement at decreased time intervals could be the explanation. Although, 

since u(t) is i.i.d., the microstructure noise term,  [u(t + θ) – u(t)], is not forced to decrease. Hence, at 

decreasingly small time intervals, as θ → 0, the change in fundamental log price is minimal and the 

observed microstructure noise is relatively large. The market microstructure noise can then distort the results 

and provide an inaccurate measure of the equity price. 

 Andersen, Bollerslev, Diebold and Labys (1999) recommend a graphical tool, called a volatility 

signature plot, as an approach to minimize the effect of market microstructure noise. Volatility signature 

plots display how average realized variance corresponds to sampling frequency. The x-axis represents the 

sampling frequency, or θ, and the y-axis maps the average realized variance calculated at each specific 

sampling frequency. If no microstructure noise were present, then the volatility signature plot would display 

a flat horizontal line that does not bias the estimates. The intuition to find the optimal sampling frequency, 

minimal microstructure noise and highest number of data points is as follows. As noted in Equation 12, as 

the time interval θ decreases, the realized variance will increase due to microstructure noise [u(t + θ) – u(t)]. 

Though, as θ is increased by arbitrary amounts, given a liquid equity, the microstructure noises should 

diminish and subsequently lower the realized variance. Hence, at some point, the variance should stabilize, 

in which case the most number of data points can be used that are relatively robust to market microstructure 

noise. Figure 1A and Figure 1B show the volatility signature plots for all the equities used within the 

analysis. From these figures, it can be determined that below 10 minutes, there is a spike in average realized 

volatility as  Utilizing the aforementioned technique and visually inspecting Figures 1A and 1B, a 

sampling frequency of 10 minutes was chosen as optimal for subsequent analysis.  

 

3.2 Estimation Dataset 

The estimation sample time interval chosen for the HAR-Beta model prediction coefficients was January 2, 

2001 to January 2, 2006. The rationale for the particular estimation sample estimation interval was a balance 

between the overlap in the data available and the incorporation of a wide time interval containing numerous 

data points. The 5-year time period used to estimate the model is also useful in creating benchmark 

comparisons that will be explained in Section 4.1.1.  
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3.3 Out of Sample Dataset- A  

The first out of sample period used was a two-year period mapped from January 3, 2006 to January 3, 2008. 

The two-year sampling period was used as a benchmark length for a corresponding estimation sample 

period that would necessitate a significant amount of data points. Additionally, this specific time interval is 

utilized as a time interval independent of the 2008 financial crisis, which could be characterized by a lack of 

persistence and predictability.  

 

3.4 Out of Sample Dataset- B 

The second out of sample period used was a three-year period mapped from January 3, 2006 to January 3, 

2009. The reasoning for a secondary out of sample data period is to verify the robustness of the beta 

predictions in an alternate period characterized with the 2008 financial crisis. Hence, the reasoning for two 

out of sample periods is the comparison and depiction of the robustness of the beta predictions from the 

time-varying model given a time period of sporadic volatility.  

 
 
4. Statistical Methods and Framework 
 
4.1 Standard Deviations of Realized Beta  

An elemental consideration when calculating beta is determining whether the asset’s systematic risk, 

determined by its correlation with the market, is constant over time. But in order to assess this, it is necessary 

to characterize the persistence and predictability in the underlying components. Market betas, which are 

ratios of covariances to variances, are expected to display statistically persistent fluctuations over time 

(Andersen, Bollerslev, Diebold, and Wu, 2004). Tofalis (2008) provides a critique of the standard static beta 

by citing the associated volatility inherent within beta. By expressing beta from ordinary least squares (OLS) 

regression, one can find the resulting slope is 

 

      (13) 
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where σ is the standard deviations of the rates of return on asset a and the market, and ρ is the coefficient of 

correlation between the rates of return. Equation 13 is equivalent to the ratio of the covariance between 

market and investment returns to the variance of the market returns as noted by Tofalis. Hence, a 

decomposition portrays the combination of volatility and correlation in the calculation of beta. This leads to 

an inequality (since |r| is not greater than one) of 

 

      (14) 

 

According to Equation 14, if realized betas, , were constant over time, one would not expect the 

inequality to change statistically with time. But, Table 1 summarizes the standard deviations of the equity 

betas in the aforementioned interval that statistically deviate from the null hypothesis of no deviation. 

Additionally, Figure 2A and Figure 2B display a time-series plot of statistically significant fluctuations in 

realized betas over the whole sample interval used within this paper. Despite these fluctuations, Figures 2A 

and 2B show a mean reversion of the realized betas over the sampling interval that alludes to the persistence 

in betas. The movement in beta over time, evidenced through the statistically significant standard deviations, 

coupled with the mean reverting persistence, motivates a time-varying beta analysis. 

 

4.2 Autoregressive AR(1) Model 

The autoregressive process of order one, AR(1) model, is a linear time-series process used in statistics to 

capture dynamics. The model assumes that future values can depend on current and past values using linear 

approximations. Specifically, the AR(1) model is effective in its parsimonious usage of linear estimation 

and its ability to produce forecast results in line with more-complex forecasting models. It is defined as 

 

     (15) 

 

The AR(1) model has the same form as a simple linear regression model where  is dependent and  

is the explanatory variable, yet they have different properties. The mean and variance conditional on 
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past returns are  and . Hence, given the past 

return , the current return is centered on  with variance .  

To portray how this model captures dynamics, it is necessary to understand the coefficient 

of first-order autocorrelation. The coefficient of first-order autocorrelation, or the autocorrelation 

parameter, represents a scaled measure of linear dependence of the present value, Xt on the past value, Xt-1 

and is defined as 

 

     (16) 

 

To put this into context, now consider time indexed by t and let t {- ,…1,2… }. Let  

and i.i.d. which means that no matter how t varies,  retains a standard normal distribution. The random 

variable, , can now be represented by the AR(1) model as 

 

    (17) 

 

where , , and  are fixed scalars, or parameters of the process. If we were to now substitute this 

expression for  into the numerator of the autocorrelation parameter 

 

 

           

                      1 

 

Now, since  and  are unconditional moments of a stationary time series, Var(Xt-1) = Var(Xt). 

Therefore, Equation 16 can be expressed as  

 

                                                  
1 The formal presentation and proof for this illustration can be found in the textbook Time Series Analysis by James 
Hamilton, Princeton University Press, 1994.  
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      (18) 

 

Hence, we know that the dynamics in the AR(1) model, are summarized by the autocorrelation parameter, 

. If  = 0, then there is said to by no dynamics in the time series and  is said to be i.i.d. and normal. 

Alternatively, if  > 0, then there is said to be persistent dynamics in the time series which can 

lend itself to predictability. The first order autocorrelation for the  and  of equity betas used 

within the analysis are significantly positive and are summarized in Table 2. These positive autocorrelations 

suggest the persistence and predictability of beta and further the reasoning behind a time-varying beta 

analysis. 

 

4.3 HAR-Beta Regression Model 

Empirical tests evidenced in Andersen, Bollerslev, Diebold, and Labys (2003) and Andersen, Bollerslev, 

and Meddahi (2004) utilize the Heterogeneous Autoregressive (HAR) class of volatility models to show 

that simple linear forecasts can outperform the more complicated stochastic volatility models. Numerous 

alternative articles have suggested additional autoregressive moving averages, such as the Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) or the Fractionally Integrated Generalized 

Autoregressive Conditional Heteroskedasticity (FIGARCH), to supply better persistence in data. These 

models typically require nonlinear maximum likelihood estimation procedures other than the conventional 

Ordinary Least Squares (OLS). Andersen, Bollerslev and Huang (2007) have empirically tested models 

such as FIGARCH and ARFIMA, and deduced that simple linear models can oftentimes predict future 

volatility more accurately. To summarize, the HAR class of models have two main advantages over other 

models. Firstly, they are parsimonious in estimation. Secondly, they capture the extreme persistence of 

variation in a method that is intuitive and simple to calculate. Given this theoretical backing, the 

Heterogeneous Autoregressive (HAR) framework was adapted for the subsequent time-varying beta 

analysis. 

This paper formulates a Heterogeneous Autoregressive Beta model (HAR-Beta) that uses a linear 

combination of historical betas calculated over different time horizons, to capture the persistence of financial 

data. Specifically, the HAR-Beta model uses latent integrated variances and integrated covariances to 
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compute realized betas over different time horizons. Then, given these realized betas, the model estimates 

normalized sums of designated time intervals to calculate a simple average of the designated quantity 

 

     (19) 

 

In this paper, we estimate 1-day forward beta forecasts, which corresponds directly to one trading day 

within a calendar month. These 1-day forward beta predictions are estimated using the basic HAR model of 

 

  (20) 

 

where the dependent variables correspond to lagged daily (t =1), weekly (t = 5) and monthly (t = 22) 

regressors. The specific time horizons for the lagged explanatory variables are chosen for their intuitive 

appeal and natural economic interpretation of trading days in a day, week and month. The convention of 

lagged regressors is taken directly from the formulization of the HAR-RV model in Corsi (2003) and 

Muller et. al (2007).  

 

4.3.1 Calculating Beta Predictions 

First, realized betas, as described in Section 2, were computed for each of the chosen equities over 

the whole sample time interval, January 2, 2001 to January 3, 2009 at the optimal sampling frequency of 10 

minutes. These realized betas, specifically those from January 2, 2001 to January 2, 2006, were the first 

necessary component in the estimation required for the subsequent regression analysis. Then, the HAR-

framework from Equation 19 was used to estimate normalized average daily ( ), weekly ( ), and 

monthly ( ) realized betas over the whole sample time interval of January 2, 2001 to January 

3, 2009 at the optimal sampling frequency.  

Once the realized betas and the HAR realized betas were computed over the whole sample, 

regression analysis was used to estimate the beta coefficients on the estimation sample period. Specifically, 

the realized betas from the estimation sample period of January 2, 2001 to January 2, 2006 were regressed 
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on the HAR daily, weekly and monthly-realized betas from the estimation sample period. The results of this 

regression analysis were daily, weekly and monthly beta coefficients from the HAR-Beta in-sample 

regression. The computed coefficients are summarized in Table 3.  

Subsequently, the HAR-Beta framework from Equation 20 was employed to get the 1-day forward 

beta predictions. To do this, the computed beta coefficients from the estimation sample time interval, Table 

3, were used to approximate the weight of the corresponding out of sample realized beta. Specifically, the 

daily, monthly and weekly beta coefficients obtained from the regression in the estimation sample were 

multiplied by the corresponding HAR realized beta in the out of sample period. Then, the sum of these 

products was taken to formulate the corresponding 1-day forward beta prediction for the out of sample 

period.  

 

4.4 Evaluation Criteria 

4.4.1 Benchmarks of Comparison 

One of the benchmarks of comparison used within this time-series analysis will be the constant mean 

logarithmic return model. The model assumes that the value at time t-1 is independently drawn from a 

common probability distribution and values at time t will be drawn from the same distribution. The model is 

independent of a beta coefficient and a conditional beta distribution that tracks the movement of an asset 

with the market. Instead, this comparison assumes that returns follow a model such that 

 

      (21) 

 

where logarithmic returns at time t, R(t), are observed as a sum of all latent logarithmic returns leading up to 

time t-1, R(t - 1), divided by the number of observations n. Particularly, in this assumption, logarithmic 

returns at time t are thought to be estimated by the mean of all latent logarithmic realized returns noted at a 

corresponding sampling frequency. Hence, the natural forecast for future values is therefore the sample 

mean of past intraday return data. While the constant mean model may seem to be simplistic, it is in fact that 
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building block for a number of sophisticated models including the random walk and Autoregressive 

Moving Average Models (ARIMA).  

An alternate benchmark comparison to the time-varying beta used within this analysis is the 

conventional one-factor constant beta calculated for the Capital Asset Pricing Model (CAPM). Typically, 

beta is estimated using moving estimation windows of 5-10 years, presumably to guard against beta 

variation (Fama 1976, Campbell, Lo, & MacKinlay 1997). The constant beta is calculated on a set period-

by-period basis, as oppose to the allowance of continuous evolution in a time-varying method. Specifically, 

Banz (1981) cites the usage of a beta computed from monthly returns over a 5-year time period. Hence, given 

the estimation dataset of the 5-year period between January 2, 2001 and January 2, 2006, a constant beta 

was computed for all equities on the basis of monthly returns over the corresponding time interval. Analysis 

corresponding to the time-varying beta was done on the computed constant betas to gauge results.  

 

4.4.2  Root Mean Squared Error 

Accuracy measures on the predictability of beta involve the beta predictions computed using the simplified 

SCL from CAPM, referenced in Equation 2, 

 

     (22) 

 

where rm,t is the observed market return at time t,  is defined as the 1-day forward corresponding beta 

prediction at time t, εa,t is a random error term and ra,t represents the predicted return on Asset a at time t. The 

Mean Square Error (MSE) measures the test of return accuracy from the predicted beta that is conditioned 

on the observed market return. MSE is defined as 

 

   (23) 
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where n is the number of predictions contained, Ra,t is the predicted out of sample realized return on asset a 

at time t and  is the observed realized return on asset a at the corresponding time t. For the benchmark 

comparisons, the temporally corresponding out of sample constant mean return is used as the Ra,t.. 

Alternatively, the predictive return calculated as the sum of the temporally corresponding constant beta 

conditioned on the observed market return takes the form of Ra,t for MSE comparison. 

In order to standardize the results, the MSE is multiplied by the number of trading days in a year, 

252, to yield annualized units. Additionally, to further standardize the results and yield an ease of 

interpretation, the MSE is converted into standard deviation units via conversion to the Root Mean Square 

Error (RMSE) : 

 

    (24) 

 

The resulting RMSE can be interpreted in annualized standard deviation units and produces a reliable 

estimator of the variance, known as the standard error. RMSE will be used as the measure of accuracy and 

comparison for the predictive beta calculated from the model, the mean return, and the constant beta.  

 

 

5. Findings 
 
Table 1 summarizes the standard deviations of the estimation sample betas across all equities using the 10-

minute sampling frequency. As described in section 4.1, if beta were constant over time, then the inequality 

between the variation of an asset with respect to market variation would not statistically deviate over time. 

But, in account for the microstructure noise at the 10 minute sampling frequency, the average standard 

deviation of realized beta over the whole sample interval is still 0.3737, which is statistically significant 

under the null hypothesis of no deviations. Additionally, Table 2 summarizes the results of the first order 

autocorrelations from the whole sample interval. As described in section 4.2, positive first order 

autocorrelations suggest the persistence in the realize beta. The average first order autocorrelation is 

approximately 0.3484, which substantiates the predictability in the time-varying element. It is notable that 
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Microsoft Corporation (MSFT) and Exxon Mobil Corporation (XOM) display a relatively low first order 

autocorrelation of 0.0866 and 0.1521, respectively.  

The literature suggests that it is reasonable to expect that there is some instability in most 

econometric relationships across time or space. Typically in cross sections with market data, there is likely 

some degree of heterogeneity amongst assets (Elliott and Müller, 2006). There are numerous factors that 

contribute to the heterogeneity of a time series including regulation, economic and monetary policy, and 

exchange rates. Giacomini and White (2006) contest that as long as this heterogeneity is not “too strong”, 

standard regression methods still have reasonable properties. The resulting regression coefficients can then 

approximate the “true” values of the coefficients with averages of the individual and/or inter-temporal true 

values. Table 3 illustrates the HAR-Beta coefficients computed from the regression of the estimation sample 

realized betas on the estimation sample HAR-Beta estimates and contains the corresponding R2 values. The 

sum of the beta coefficients across all equities approximates one. Again, this alludes to the persistency of the 

regression coefficients and the accuracy in the resulting beta predictions. One exception is Microsoft 

Corporation (MSFT) that has a sum of coefficients equal to -0.2387. Notably, Exxon Mobil Corporation 

(XOM) has a sum of regression coefficients equal to 0.7623 that is relatively below one, especially when 

compared to the other results. These results make intuitive sense given the results from Table 2 which 

suggested that MSFT and XOM betas were relatively less predictable over the estimation sample period.  

 

5.1 Findings for Dataset A 

The out of sample dataset A refers to the time interval between January 3, 2006 and January 3, 2008. Table 

4 summarizes the root mean squared errors (RMSE) calculated from the difference between observed 

realized returns and predicted returns conditioned on the observed market return and the predictive beta 

from the HAR-Beta model. The results from the constant beta benchmark comparison and the constant 

return benchmark comparison are also included for assessment. The direct comparison of RMSE between 

the hypothesized HAR-Beta model and the benchmark comparisons display a significant reduction. When 

compared to the constant returns benchmark, the HAR-Beta model gives an approximate 21.94% reduction 

in RMSE. Additionally, when compared to the constant beta benchmark comparison, the HAR-Beta model 

gives an approximate reduction of 6.62%.  
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 Notably, Wal-mart Stores (WMT), has a 35.63% increase in RMSE when the HAR-Beta model is 

compared to constant returns. The result seems surprising when referring back to the results from Table 1, 

Table 2 and Table 3 in which WMT highest first order autocorrelation (0.5701) and the highest R2 value 

(0.5391). Perhaps, the result could be the outcome of outliers that complicate the extrapolation of OLS 

regression models. Poon and Granger (2003) note the common problems of possible sample outliers in 

volatility estimation and suggest alternate methods of robust regressions.  

The results from Table 2 and Table 3, which suggested that MSFT and XOM were relatively less 

predictable given the lack of persistence, are concurred by the subsequent analysis. The R2 values for MSFT 

and XOM, as displayed in Table 3 are also the lowest at 0.0113 and 0.1106, respectively. As noted in Table 

4, when constant returns of MSFT and XOM are compared to the HAR-Beta model, there is a relatively 

low 0.07% and 5.98% reduction, respectively. But, when compared to the constant beta benchmark 

comparison, MSFT and XOM display the largest RMSE reductions of 13.45% and 7.96%, respectively. 

This point is interestingly quite salient. Despite the low predictability of beta measured by the results from 

Table 2 and Table 3, which are then concurred with the low R2 values in Table 3, the RMSE of the HAR-

Beta model are still reduced in terms of both benchmark comparisons. Alternatively, in both the cases of 

MSFT and XOM, when the constant beta is compared to constant returns, there is a significant increase in 

RMSE. The overall reduction in the RMSE highlights the information revealed through the conditional 

probability distributions of the HAR-Beta model that gives better estimates of the true underlying beta. The 

results from these equities seemingly confirm the results displayed in Table 1 that beta deviates over time, 

despite the indicators of lacking persistence and predictability. 

 

5.2 Findings for Dataset B 

The out of sample dataset B refers to the time interval between January 3, 2006 and January 3, 2009. Table 

5 summarizes the root mean squared errors (RMSE) calculated from the difference between observed 

realized returns and predicted returns conditioned on the observed market return and the predictive beta 

from the HAR-Beta model. The results from the constant beta benchmark comparison and the constant 

return benchmark comparison are also included for assessment. The driver for this out of sample interval, as 

defined earlier, is to check the robustness of the HAR-Beta during a period characterized with financial 
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uncertainty and sporadic volatility. It is important to note, the increase in RMSE present when comparing 

constant returns to the HAR-Beta model of Microsoft Corporation (MSFT). The point once again can be 

surmised to the presence of an outlier that leads to extrapolation errors. Aside from this result, the RMSE are 

reduced by approximately 19.67% when compared to the constant Beta benchmark, and approximately 

39.28% (including the MSFT increase) when compared to the constant return benchmark.  

 

6 Conclusion 

 
In line with recent literature that suggests alternatives to the constant beta conventionally used within the 

Capital Asset Pricing model, this paper generates evidence for an alternative model that explains variation in 

beta over time. At a determined optimal sampling frequency of 10 minutes chosen to limit the effect of 

market microstructure noise, time-series plots and first order autocorrelations of beta reveal persistence in 

realized beta over time. The adaptation of the Heterogeneous Autoregressive framework in regression 

analysis yields predictive betas that produce returns with one-half to two-thirds the fraction of root mean 

squared error when compared to the constant mean or constant beta models. The conditional probability 

distributions of the predictive betas generated from the HAR-Beta model better represent the distribution of 

the true underlying beta and hence better explain changes in market and asset returns.  

It is important to note the inherent weakness of ordinary least squares regression analysis when 

dealing with outliers. Given one or two outliers, the R2 of a sample can inaccurately represent the actual fit 

of the regression and give imprecise approximates of the coefficient. Specifically, OLS may be bias to the 

outliers and artificially inflate the variance of the estimates. The misspecification can then lead to an 

incorrect probability distribution that may inaccurately represent the true data. But, this issue can be partially 

remedied with the usage of a logarithmic scale that normalizes the data points. Specifically within this 

analysis, the logarithmic scale is coupled with the optimal sampling frequency to further dismiss the effects 

of distortions and outliers present within the dataset. A similar but more effective approach is to use robust 

regressions that are designed to circumvent limitations in parametric and non-parametric methods, such as 

outliers. To the extent that outliers exist within the dataset, this approach may better produce estimates of the 

true underlying beta than the ordinary least squares approach. 

Overall, the results from this analysis emphasize the importance of looking beyond the constant 

beta to accurately asses the risk within a particular investment. By using temporally varying realized 
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measures to integrate instantaneous information in the calculation of conditional beta probability 

distributions, the true underlying beta can be better approximated. The replication of the true underlying beta 

can be instrumental to risk-advisors and portfolio managers in that they can better explain their rationale for 

taking incremental risk to investors.  
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7 Figures 

Figure 1A: Volatility Signature Plots (January 2, 2001- January 3, 2009) 
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Figure 1B: Volatility Signature Plots (January 2, 2001- January 3, 2009) 
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Figure 2A: Time Series- Realized Betas (January 2, 2001 – January 3, 2009) 
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Figure 2B: Time Series- Realized Betas (January 2, 2001 – January 3, 2009) 
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8 Tables 
 

 

All tables display statistics that use 10-minute sampling intervals. 

 

Table 1: Standard Deviation of Beta 
Company  Standard Deviation 

Coca Cola Company (KO) 0.3925 
PepsiCo, Inc. (PEP) 0.2745 
Microsoft Corporation (MSFT) 0.3417 
JPMorgan Chase & Co. (JPM) 0.4485 
Bank of America Corporation (BAC) 0.3721 
Johnson & Johnson (JNJ) 0.3822 
Wal-mart Stores Inc. (WMT) 0.4783 
Exxon Mobil Corporation (XOM) 0.2997 
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All tables display statistics that use 10-minute sampling intervals. 
 
 

 
Table 2: AR(1)- First Order Autocorrelation of Beta 

Equity  First Order 
Autocorrelation 

Coca Cola Company (KO) 0.5345 
PepsiCo, Inc. (PEP) 0.2910 
Microsoft Corporation (MSFT) 0.0866 
JPMorgan Chase & Co. (JPM) 0.3296 
Bank of America Corporation (BAC) 0.3550 
Johnson & Johnson (JNJ) 0.4673 
Wal-mart Stores Inc. (WMT) 0.5701 
Exxon Mobil Corporation (XOM) 0.1531 
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All tables display statistics that use 10-minute sampling intervals. 

 

Table 3: HAR-Beta Regression Coefficients 

  β0 Rβt, t-1  Rβt, t-5  Rβt, t-22  Sum of Coefficients R2 

KO 

   
     0.0096 
   (0.0199) 

 

 *0.0289 
  (0.0148) 

 *0.2695 
  (0.1396) 

**0.6367 
  (0.2457) 0.9447 0.4784 

PEP 

 
**0.0051 
  (0.0122) 

 

 *0.0201 
  (0.0101) 

 *0.0880 
  (0.0447) 

**0.6754 
  (0.2330) 0.7886 0.0019 

MSFT 

 
0.0107 

(0.0149) 
 

 **0.1023 
   (0.0499) 

   - 0.0226 
     (0.1142) 

  - 0.3291 
    (0.2669) - 0.2387 0.0113 

JPM 

 
 *0.0078 

  (0.0039) 
 

 *0.0210 
  (0.0104) 

 **0.4598 
  (0.1121) 

**0.3476 
  (0.1144) 0.8362 0.2547 

BAC 

  
*0.0011 

 (0.0002) 
 

 *0.0416 
  (0.2133) 

*0.0864 
 (0.0422) 

**0.7470 
  (0.1241) 0.8761 0.2797 

JNJ 

  
*0.0066 

 (0.0034) 
 

 *- 0.0375 
    (0.0193) 

 **0.3764 
  (0.1202) 

**0.5924 
  (0.1155) 0.9379 0.4361 

WMT 

  
*0.0094 

 (0.0048) 
 

  -0.0151 
      (0.0525) 

 **0.4014 
  (0.1196) 

**0.5613 
  (0.1115) 0.9570 0.5391 

XOM 

  
*0.0034 

 (0.0017) 
 

    0.0094 
    (0.0504) 

*- 0.0934 
   (0.0457) 

*0.8429 
  (0.4323) 0.7623 0.1106 

 

The significance levels of the coefficients are denotes by the asterisk: * → p < 0.05, ** → p < 0.01 
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All tables display statistics that use 10-minute sampling intervals. 

 

Table 4: Root Mean Squared Error (RMSE)-HAR-Beta, Constant Beta, Constant 
Return, and Standard Deviation of Beta (Out of Sample Dataset-A) 

  
RMSE 

HAR-Beta 

RMSE 
Constant 

Beta 
Constant 
Returns 

Standard Deviation 
of Beta (Out Sample) 

KO 0.1732 0.1867 0.4935 0.2628 
PEP 0.1963 0.2095 0.2511 0.2703 

MSFT 0.2831 0.3271 0.2833 0.3800 
JPM 0.4347 0.4763 1.1433 0.4410 
BAC 0.3340 0.3410 0.5289 0.3479 
JNJ 0.1650 0.1674 0.2716 0.2425 

WMT 0.3441 0.3652 0.2215 0.3614 
XOM 0.2892 0.3142 0.3076 0.3669 

 

All units are expressed in Annualized Standard Deviation Units. 
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All tables display statistics that use 10-minute sampling intervals. 

 

Table 5: Root Mean Squared Error (RMSE)-HAR-Beta, Constant Beta, Constant 
Return, and Standard Deviation of Beta (Out of Sample Dataset-B) 

  
RMSE HAR-

Beta 
RMSE 

Constant Beta 
Constant 
Returns 

Standard Deviation of  
Beta (Out Sample) 

KO 0.1953 0.2496 0.5994 0.2442 
PEP 0.1986 0.2195 0.3570 0.2575 

MSFT 0.2291 0.3796 0.1774 0.3613 
JPM 0.4262 0.6329 1.2493 0.4884 
BAC 0.4706 0.4924 0.6348 0.4208 
JNJ 0.2149 0.2230 0.5767 0.2207 

WMT 0.2293 0.3106 0.3274 0.3339 
XOM 0.2188 0.2719 0.4135 0.3476 

 

All units are expressed in Annualized Standard Deviation Units. 
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