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Abstract 

This paper presents a stochastic model of exchange rates, which is used to explain the forward 
premium anomaly. In the model, agents switch between four trading strategies, and these 
changes drive the evolution of the exchange rate. This framework is meant to more realistically 
represent the important market dynamics of exchange rates, as we suspect these to be the cause 
of the forward premium anomaly. Our simulations of the model indicate two conclusions: (i) 
many of the statistical regularities observed in currency markets, including the forward premium 
anomaly, can be thought of as results derived from the actions of heterogeneous agents, and (ii) 
the dynamics of estimates of the beta coefficient in tests of UIP are driven by perceived 
relationships between changes in interest rates and agents’ aggregate views on the value of the 
exchange rate, which we call the fundamental value. Section I presents an introduction to the 
topic, and section II provides the theoretical basis of our model, then the mathematical definition 
of the model. Section III presents the results of a typical simulation which section IV compares 
to relevant stylized facts of currency markets. Sections V and VI present our results and a 
conclusion of what we have drawn from the model. 
 



Hogan	  and	  Myer,	  1	  
	  

 
 

 
I. Introduction  

	  
Beginning in the early 1980s economists noticed a puzzling feature of international 

currency markets: low interest rate currencies tended to depreciate relative to high interest rate 

currencies. This well documented empirical regularity contradicts well-established economic 

theory and has wide ranging implications not only in international finance but also throughout 

macroeconomics, as exchange rate dynamics are fundamental to topics as disparate as 

international trade and monetary policy. Despite the importance of the puzzle, there is still no 

satisfying explanation for why it occurs.  

Standard economic theory and intuition suggests that when the interest rate in a foreign 

country is higher than the domestic interest rate, the foreign country’s currency should 

depreciate. This is based on uncovered interest rate parity (UIP) and covered interest rate parity 

(CIP). UIP is a no-arbitrage condition that states exchange rates between two currencies will 

fluctuate to exactly offset interest rate differentials such that investors are indifferent between 

interest incomes across currencies. Covered interest rate parity (CIP) states the price of forward 

contracts will adjust to offset differences in nominal interest rates. UIP, together with CIP, are 

two of the key requirements for a stable equilibrium with real interest rate parity and real 

exchange rate parity.  

Both conditions imply agents are indifferent between interest returns in two different 

currencies because the difference in interest rates between the domestic and foreign markets is 

exactly offset by changes in the exchange rate. Empirically, however, the UIP condition fails to 

hold across most currencies and most times: The foreign currency tends to appreciate when the 

foreign nominal interest rate exceeds the domestic interest rate. An equivalent finding is that the 

forward premium – defined as the difference between the forward and spot exchange rates – is a 

biased predictor of future spot exchange rates. Empirical estimates of the regression of returns in 

the currency market on the magnitude of the forward premium typically yield estimates of the 

slope coefficient that are less than 0 implying appreciation (depreciation) when UIP predicts 

depreciation (appreciation). This finding is known as the forward premium anomaly, and is 

considered one the most important puzzles in international finance.  

In this paper, we will explore the relationship between trading strategies at the micro-

level and the forward premium puzzle. Specifically, we aim to show how the forward premium 
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anomaly can arise out of agents’ decisions regarding which of four trading types to pursue in the 

spot market: value trading, carry trading, optimistic noise trading, and pessimistic noise trading. 

We aim to show that the interaction of agents’ choices regarding trading strategies and the 

resulting positions in the market determine the exchange rate in a manner inconsistent with UIP. 

This approach to the puzzle reflects a very basic insight; namely, that the exchange rate between 

two currencies is a market phenomenon. It is wholly determined by the buying and selling of 

speculative traders, and if traders do not trade according CIP or UIP, then the predicted 

relationship should not hold. 

II. Literature Review 

	  
The forward premium anomaly has been extensively reviewed in economic literature. 

The anomaly has been consistently found for most freely floating currencies, and appears robust 

to changes in the numeraire currency. Froot and Thaler (1990) find that the average estimated 

beta across 75 published studies is -0.88.  

A number of solutions to the problem have been proposed, and most center on one of 

three explanations. By far the most popular proposal is the presence of a time-variable risk 

premium in currency markets. Since UIP is derived from an assumption of risk neutrality, this 

seems like an intuitive and promising avenue. However, attempts to identify variable risk factors 

have proven largely unsuccessful, as have attempts to effectively reproduce the observed data 

patterns using models that incorporate time-variable risk premia. Engel (1996) provides a 

comprehensive survey of the literature regarding risk premia and the forward anomaly.  

The second, and somewhat less popular, set of explanations centers on behavioral factors. 

Extensive work has been done regarding potential explanations involving peso problems, 

learning, bandwagon effects, overconfidence, and irrational expectations among others. For 

example, Burnside, Han, and Wang (2011) propose an explanation for the forward premium 

puzzle based upon investor overconfidence. Overconfidence causes both the forward and the 

spot exchange rates to overshoot their average long-run levels in the same direction. However, 

the forward rate overshoots more than the spot rate, which implies that the forward premium 

rises in response to a positive signal. Later, the overreaction in the spot rate is, on average, 

reversed. The rise in the forward premium is a predictor of this correction, and is therefore, on 
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average, a negative predictor of future exchange rate changes. These attempts have also proven 

largely unsatisfactory. Our paper looks to build on these attempts to explain the forward 

premium anomaly by directly examining the role agents’ decisions regarding trading strategies 

play in producing the anomaly. Many of these behavioral effects may play a significant role in a 

particular agent’s choice of strategy, but the mechanism by which those behaviors influence the 

exchange rate is through the implementation of that strategy in the market. We therefore focus on 

the effects of choosing a particular trading strategy on the exchange rate rather than the 

motivation for choosing strategies themselves. 

Most research that attempts to model the forward premium anomaly uses consumption 

models based on a representative agent to predict spot and forward rates. For example, Lafuente, 

Perez, and Ruiz (2009) reformulate a consumption model by allowing for the existence of 

different monetary policy regimes. They simulate a model using two different consumers 

differentiated by the amount of information that they extract from central bank announcements 

and other news sources. They calibrate the exogenous and stochastic parameters using quarterly 

data from the US and Canada for the second quarter of 1984 through 2004. Their numerical 

simulations reveal that a bias can exist when the consumers are acting under incomplete 

information regarding the future size of the money supply. These types of consumption models 

are common in the literature, but do not provide a satisfactory answer to the anomaly. Most 

often, they require unrealistic assumptions about agent’s preferences (i.e. extreme risk aversion) 

in order to fully explain the anomaly. Furthermore, all of these models fail to take into account 

the interaction of different traders in the market. This is an important omission considering the 

interactions of traders are what drive the exchange rate. Representative agent models also seem 

particularly ill-suited to explain the forward premium anomaly, given the importance of 

heterogeneity in the market dynamics that also determine the exchange rate.  

More recently, some authors such as Baillie and Bollerslev (2000) and Maynard and 

Phillips (2001) have attempted to explain the forward premium anomaly as a largely statistical 

phenomenon arising from the persistent autocorrelation of forward premiums. Again, these 

attempts have achieved limited success.  

Other work has attempted to model the exchange rate as a random or pseudo-random 

walk. For example, Baillie and Bollerslev (2000) present a stylized model of the exchange rate as 

a semi-martingale that imposes UIP and allows the daily spot exchange rate to possess very 
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persistent volatility. This model accurately reproduces some of the observed data on the forward 

premium anomaly and concludes that the spot market will converge to UIP with larger sample 

sizes and longer time horizons. These models make an important contribution by allowing for 

stochastic variation in the exchange rate, but remain silent on the driving force behind the 

variation. Namely, they do not directly model the impact of traders’ decisions on the spot rate. 

Recently, a new branch of simple stochastic models of interacting agents has been 

proposed, predominately in models of the stock market. These models focus not on the direct 

modeling of the determinants of agents’ market behavior such as agent preferences, but rather on 

a set of rules that govern all agents’ decisions. For example, Lux and Marchesi (1999) present a 

simple model of a stock market in which agents switch between optimistic or pessimistic noise 

and fundamental trading strategies based on the perceived profit of each strategy in a given 

period. The model accurately reproduces many of the stylized facts found in empirical studies of 

the stock market from the fat tails on the distribution of returns to volatility clustering. In our 

paper, we seek to build on this new style of model by adapting it to the currency markets.  

III. Theoretical Framework 

	  

Consider three different investment strategies: buying domestic T-bills that pay interest 

rate i; converting domestic currency units (DCU) into foreign currency units (FCU) at the rate St 

(DCU/FCU), buy foreign T-bills that pay i*, and converting the proceeds back to DCU at time 

t+1 at the exchange rate St+1; or converting DCU to FCU at the rate St, buying the foreign T-

bills, and converting the proceeds back to DCU using forward contracts priced at time t with 

price Ft. The returns to the three strategies are 

 (1+ !)  

(1) 

 

 !!!!
!!

(1+ !∗)  

(2) 

and 

 !!
!!
(1+ !∗)  

(3) 
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where i* is the foreign interest rate, i is domestic interest rate, St+1 is the future spot price, St is 

the current spot price, and Ft is the forward rate. 

The first and third investment strategies both have payoffs at time t+1 that are fixed at 

time t, so according to a no-arbitrage condition 

 1+ ! =
!!
!!
(1+ !∗)  

(4) 

 

This equivalence is known as covered interest rate parity (CIP), and implies that the price of the 

forward contract will adjust to exactly offset any differences in interest rates. 

Similarly, if we assume that investors are risk-neutral with respect to nominal payoffs, 

the expected excess return of the second strategy must be zero:  

 !! 1+ !∗
!!!!
!!

− 1+ ! = 0 
 

(5) 

 

Here, Et(·) is the expectation conditional on all relevant information at time t. Equation (5) 

reduces to 

 

 
1+ ! =

!! !!!!
!!

(1+ !∗) 
 

(6) 

 

This is the typical formulation of uncovered interest rate parity (UIP), which implies that the 

foreign currency is expected to appreciate by the amount the domestic interest rate exceeds the 

foreign. 

We can use CIP to substitute for the term (1 + i) in the equation of UIP and arrive at 

 !! !!!!
!!

(1+ !∗) =
!!
!!
(1+ !∗) 

 

(7) 

  

By simplification, we can derive the following equivalencies: 

 !! = !!(!!!!) (8) 
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or 

 !! − !! = !! !!!! − !! (9) 

 

Both equations imply that the forward rate is an unbiased predictor of the future spot rate. 

We can test whether the forward rate is unbiased by running the regression 

 !!!! − !! = !! + !! !!!! − ! + !!!!,! (10) 

 

If both CIP and UIP hold, we should be unable to reject the null hypothesis that α=0 and β=1. 

Empirically, CIP holds as a virtual identity, so this regression is typically interpreted as a test of 

UIP. A rejection of the null hypothesis is tantamount to a rejection of UIP. However, empirical 

estimates of the regression consistently reject the null, and in some cases even find estimates of β 

that are less than 0. Using the full sample of available exchange rate data, Burnside (2014) shows 

that the regression in equation (10) yield both positive and negative estimates of the beta 

parameter for different currencies2, meaning the forward premium is either a biased or unbiased 

predictor of the future spot rate depending on the currency. Moreover, there does not seem to be 

any easily identifiable relationship between the sign of the beta coefficient and any relevant 

economic variable – or any easily identifiable risk premium – that can explain the sign of the 

beta coefficient for a particular currency. The only observed regularity is the tendency for 

systematic deviations from UIP to appear more significant in developed markets than emerging 

markets. Typical explanations for why currencies deviate from UIP often rely on restrictions on 

the free flow of capital or low levels of liquidity, which imply that deviations should be more 

persistent in emerging markets. Burnside (2014) also showed that rolling estimates of beta from 

five years’ worth of one month forwards display significant time variability, consistent with 

previous findings including Baillie and Bollerslev (2000). This implies a dynamic relationship 

between interest rates and exchange rates, not captured by UIP. 

We believe that there is an intuitive explanation for both observed regularities. Namely, 

rising interest rates signal different economic conditions in every economy, but the effects tend 

to be generalized for emerging and developed markets. In emerging markets, a rise in short term 

interest rates often signal the central bank’s attempt to combat inflation or influence economic 

activity. Similarly, a rise in longer-term interest rates typically reflects an increase in the risk 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  See	  the	  top	  panel	  of	  Appendix	  2.	  
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premium investors demand to compensate for holding that nation’s debt. Regardless of the cause 

of the interest rate hike, the signal of rising interest rates in an emerging market tends to indicate 

economic instability, which implies a future depreciation of the currency. In contrast, an increase 

in interest rates in developed markets typically indicates very little and may actually signal 

strong economic activity, which could lead investors to expect an appreciation of the currency.3 

Moreover, the relative importance of the interest rate signal, as well as the information it carries, 

can change across time within the same currency. For example, a rising interest rate in a period 

of high economic stress likely has greater relative importance as an indicator of future economic 

conditions than in a period of economic stability. Because UIP cannot account for the difference 

in information carried by the changing interest rate signal across economies and times, these 

types of signals likely influence the activity of traders in foreign exchange markets far more than 

UIP.4 Since the exchange rate is determined by the actions of traders in a market, we believe 

deviations from UIP are partially driven by traders’ responses to changing interest rate signals 

that do not conform to UIP. 

We attempt to replicate and explain the regularities in estimates of beta by creating a 

model more grounded in empirical market dynamics. In our model, a pool of traders is divided 

into four groups: value traders, carry traders, optimistic noise traders, and pessimistic noise 

traders. Value trading is a trading strategy that seeks to profit from expected reversions to a 

fundamental exchange rate. The value strategy consists of buying (selling) the foreign currency 

when the spot exchange rate is below (above) the fundamental value. Carry trading is a trading 

strategy that seeks to profit from differences in nominal interest rates across currencies. That is, 

an investor borrows in a low yielding currency and lends in a high yielding currency in order to 

capture the interest rate differential as profit. Both optimistic and pessimistic noise traders adjust 

their holdings according to measures of market sentiment and recent price changes. Instead of 

focusing on fundamentals, these traders attempt to identify price trends, and also consider the 

behavior of other agents as a source of information, which results in a tendency towards herding 

behavior. Optimistic noise traders anticipate an increase in the exchange rate, while pessimistic 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  One	  notable	  exception	  to	  this	  relationship	  can	  be	  observed	  during	  the	  European	  Sovereign	  Debt	  Crisis.	  
Rising	  long	  term	  interest	  rates	  in	  many	  European	  countries	  during	  this	  period	  reflected	  rising	  risk	  premia	  
and	  heightened	  economic	  instability.	  Our	  model	  predicts	  that	  UIP	  is	  more	  likely	  to	  hold	  during	  this	  time	  
period.	  One	  interesting	  avenue	  for	  future	  research	  would	  be	  to	  empirically	  investigate	  that	  prediction.	  
4	  Based on a survey of market participants carried out by Cheung and Chinn (2001) we conclude that most traders do 
not base trading decisions on UIP or any other equilibrium condition (such as PPP) in the currency market.	  
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noise traders anticipate a decrease in the exchange rate. Following Lux and Marchesi (1999), we 

have built a stochastic, probabilistic model of when agents are more likely to switch between the 

four trading strategies based on expected profit in each period. These changes in strategy drive 

changes in the exchange rate.5 

First, we define a set of probabilities that agents will switch between various positions in 

some increment of time. For optimistic and pessimistic noise traders, the probability of switching 

from an optimistic position to a pessimistic position, or vice versa, is dependent upon a measure 

of market sentiment and the change in the spot exchange rate over the given time increment. As 

market sentiment becomes increasingly positive (negative), traders are more likely to switch to 

optimistic (pessimistic) positions. Similarly, as the change in the exchange rate over the period 

becomes larger and more positive, traders are more likely to switch to optimistic positions. All 

other transitions – between value and carry strategies and between noise and value or carry 

positions – are determined by profit differentials. The profit of optimistic or pessimistic noise 

positions is the absolute value of the percent change in the spot exchange rate over the time 

interval. The profit of a carry position is the interest rate differential plus the change in the spot 

exchange rate over the time interval. The profit of a value position is the magnitude of the 

deviation from the fundamental exchange rate minus any cost of carry from holding the position. 

The probability that an agent will switch from one position type to another increases as the 

magnitude of the perceived profit differential increases. 

Second, we use those transitions to determine excess demand for the foreign currency, 

dependent upon the change in number of traders holding each type of position at the end of each 

time interval. As defined by our model, optimistic noise traders create excess demand for the 

foreign currency while pessimistic noise traders reduce excess demand for the foreign currency. 

Carry traders create or reduce excess demand for the foreign currency depending on the sign of 

the interest rate differential—when the foreign interest rate is greater than the domestic interest 

rate, carry traders create excess demand. When the domestic interest rate is higher, carry traders 

reduce excess demand. Similarly, value traders create or reduce excess demand for the foreign 

currency depending on whether the fundamental value of the exchange rate is higher or lower 

than the spot exchange rate. When the fundamental exchange rate is higher than the spot rate, 

value traders create excess demand. When the fundamental exchange rate is lower, value traders 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  The	  dynamics	  of	  the	  model	  are	  described	  mathematically	  later	  in	  this	  section.	  
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reduce excess demand. Therefore, the total amount of excess demand at any point in time is the 

sum of the excess demand generated by all trading positions.  

Finally, we define a process for determining the exchange rate given some level of excess 

demand. Over a given time interval, there is the probability of the exchange rate adjusting up or 

down to compensate for any given level of excess demand. That adjustment in the exchange rate 

then feeds back into the model by altering profit differentials in the next period, which lead to 

new expected profits and lead agents to change their positions.  

 Because our model is a partial equilibrium model focused on the exchange rate, we 

remain agnostic on the determinants of interest rates and the fundamental value. We estimate an 

autoregressive degree one (AR(1)) process for determining the foreign and domestic interest 

rates given by: 

 !! = !!!!! + !! (11) 

 

We then simulate the process twice: once for a complete history of the foreign interest rate and 

once for a complete history of the domestic interest rate. Similarly, we estimate an AR(1) 

process for the fundamental value of the exchange rate. The period-by-period innovations of all 

three processes are meant to account for macroeconomic variables and news events that 

influence interest rates and the fundamental value of the exchange rate but are not endogenous to 

our model. 

 We interpret the fundamental value of the exchange rate as the conditional expectation at 

time t of the exchange rate at time t+1. The expectation is conditioned on all information 

available at time t including any changes in the domestic and foreign interest rates. More 

generally, the fundamental value in our model can be understood as the aggregate expectation 

across the differing views of fundamental traders in the market. Therefore changes in the 

fundamental value are responses to changes in the information set, including changes in the 

domestic and foreign interest rates. As the information carried by the interest rate signal changes 

across economies or time, the change in the conditional expectation as a response to a change in 

the domestic or foreign interest rate will vary. Given that both the foreign and domestic interest 

rates and the fundamental value are defined by three independent AR(1) processes, our model 

does not define how the fundamental value updates according to changes in the interest rates. 

Even though it may well be impossible to capture the actual impact of the interest rate signal on 



Hogan	  and	  Myer,	  10	  
	  

 
 

the conditional expectation, we can attempt to replicate the observed empirical regularities of the 

beta coefficient – e.g. the difference between emerging and developed markets – by imposing a 

functional relationship between the fundamental value and interest rates that intuitively 

reproduces how investors perceive changes in interest rates.  

Mathematically, the model is defined as follows: 

(i) Variables and Initial Conditions 

	  

We denote: 

N = Total number of traders 

Nc = Number of carry traders 

Nv = Number of value traders 

No = Number of optimistic noise traders 

Np = Number of pessimistic noise traders 

St = The spot value of the exchange rate 

Sf = The fundamental value of the exchange rate 

(ii) Profits from the four trading strategies 

	  

Profit from the carry strategy is the interest rate differential plus any capital appreciation 

from the change in spot price: 

 !! = !! − !! +
!!!! − !!

!!
  

(12) 

 

Profit from the value strategy is the magnitude of the reversion to the fundamental value 

discounted at an appropriate rate d (due to the longer time horizon associated with reversions 

fundamental value) minus the cost of carry from interest rate differentials: 

 !! = !
!! − !!
!!

− !! − !!   

(13) 

 

Profits from optimistic and pessimistic noise strategies are simply the rate of capital appreciation 

or depreciation measured as the percent deviation from the starting price (pt): 
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 !! =
!!!! − !!

!!
  

(14) 

 

and 

 !! = −
!!!! − !!

!!
  

(15) 

 

(iii) Switches between optimistic and pessimistic noise strategies 

	  

The probabilities of switching between an optimistic and pessimistic noise strategy and 

vice versa in a time increment Δt are given by Δt·ψo,p and Δt·ψp,o, where: 

 !!,! = !!
!!
! !!!! 

 

(16) 

 

 
!!,! = !!

!!
! !!! 

 

(17) 

 

and 

 !! = !!! + !!
!!!! − !!

!!
  

(18) 

 

Where Vn is the average interval between changes in noise trading strategies, U1 is a forcing term 

for transitions between noise trading strategies, and the major influences are the price trend and 

market sentiment (X) as measured by the numbers of optimistic and pessimistic chartists: 

 
! =

!! − !!
!!

 
 

(19) 

 

αs is a parameter for an agent’s sensitivity to market sentiment and αp is a parameter for an 

agent’s sensitivity to price changes. 
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(iv) Switches between value and carry strategies 

	  

The probabilities of switching between value and carry strategies and vice versa in a time 

increment Δt are given by Δt·ψc,v and Δt·ψv,c, where: 

 !!,! = !!
!!
! !!! 

 

(20) 

 

 !!,! = !!
!!
! !!!! 

 

(21) 

and 

 !! = !! !! − !!  (22) 

 

Vs is the average interval between changes between value and carry strategies, U2 is a forcing 

term for transitions between value and carry strategies, and αr is a parameter for an agent’s 

sensitivity to profit differentials. 

(v) Switches from noise to value or carry strategies 

	  

The probabilities of switching from noise to value or carry strategies in a time increment 

Δt are given by Δt·ψo,c, Δt·ψo,v, Δt·ψp,c, and Δt·ψp,v where: 

 !!,! = !!
!!
! !!!,! 

 

(23) 

 

 
!!,! = !!

!!
! !!!,! 

 

(24) 

 

 !!,! = !!
!!
! !!!,! 

 

(25) 

and 

 
!!,! = !!

!!
! !!!,! 

 

(26) 
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The U terms are all forcing terms for transitions between noise and value or carry 

strategies given by: 

 !!,! = !! !! − !!  (27) 

 

 !!,! = !! !! − !!  (28) 

 

 !!,! = !! !! − !!  (29) 

 

and 

 !!,! = !! !! − !!  (30) 

 

(vi) Switches from value or carry to noise strategies  

	  

The probabilities of switching from value or carry to noise strategies in a time increment 

Δt are given by Δt·ψc,o, Δt·ψc,p, Δt·ψv,o, and Δt·ψv,p where: 

 !!,! = !!
!!
! !!!!,! 

 

(31) 

 

 !!,! = !!
!!
! !!!!,! 

 

(32) 

 

 !!,! = !!
!!
! !!!!,! 

 

(33) 

  

and 

 !!,! = !!
!!
! !!!!,! 

 

(34) 
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(vii) Excess Demand Specification 

	  

The total amount of excess demand (EDt) in the market at the end of each period is the 

sum of excess demand from optimistic traders (EDo), excess demand from pessimistic traders 

(EDp), excess demand from carry traders (EDc),  and excess demand from value traders (EDv), 

measured according to the number of traders switching strategy in each period and can be 

expressed as: 

 !"! = !!,!!! − !!,! !! − !!  (35) 

 

 
!"! = !!,!!! − !!,!

!! − !!
!!

 
 

(36) 

 

 !"! = (!!,!!! − !!,!)! (37) 

 

and 

 !"! = (!!,!!! − !!,!)! (38) 

 

Where η is the average trading volume of each agent while the level of excess demand in the two 

strategy groups is based on the magnitude of the expected profit. 

(viii) Price Determination 

	  

Price changes are modelled as endogenous responses by the market to imbalances 

between demand and supply. We translate excess demand in the market into price changes 

according to the equations: 

 ! = ! !"!  (39) 

 

and 

 !!!! = !! ± ! > ! , !~! 0,1  (40) 

 



Hogan	  and	  Myer,	  15	  
	  

 
 

where ρ represents the probability of a change in the spot rate and β is a measurement of the 

magnitude of the market reaction to one unit amount of excess demand in the market. 

IV. Typical Simulation6 

	  

 We begin a typical simulation by simulating the AR(1) processes for the interest rates and 

the fundamental value. Next, we randomly assign traders to each of the four trading strategies as 

draws from a normal distribution over an interval from 250 to 500. Finally, we define the starting 

value of the exchange rate. Once the initial conditions of our model are defined, we begin 

calculating profit differentials according to the equations outlined above. Those profit 

differentials are then used to compute the probability that a given trader will switch from his 

initial strategy to each of the three alternatives. We translate those probabilities into actual 

changes in trading strategy according to a Bernoulli random draw where the number trials is the 

number of traders in the strategy and the probability of success is the probability of switching 

from the current strategy to an alternative. The change of the number of traders in each group 

creates excess demand according to the equations above. The level of excess demand in the 

market then translates to a probability that the exchange rate adjusts up or down by a given 

amount. We specify two amounts by which the exchange rate can change. The smaller of the two 

amounts is used in ordinary periods; the larger of the two amounts is used in periods where there 

is a particularly high level of excess demand caused by high levels of switching. In the latter 

case, the excess demand is always greater than one, so the probability of a change in the 

exchange rate is one. Whether the exchange rate actually adjusts is determined by comparing the 

probability of a change to a random number between zero and one. If the probability is greater 

than the random number, the exchange rate adjusts by the specified tick size; otherwise the 

exchange rate remains constant. Once the change in the exchange rate has been determined, we 

calculate new profit differentials according to the updated exchange rate and the process repeats 

itself. 

 In simulations of our model, we divide each trading day into 500 equal periods of time. 

The interest rates and fundamental value update daily, and so remain constant across the 500 

periods within each day. In contrast, we allow traders to switch positions during each of the 500 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  The	  Matlab	  code	  for	  this	  simulation	  is	  attached	  in	  Appendix	  3.	  



Hogan	  and	  Myer,	  16	  
	  

 
 

intraday periods, so the exchange rate can change during each smaller interval of time. We 

believe this allows us to more accurately reproduce the dynamics of actual markets in which 

traders can adjust their positioning intraday. The introduction of the intraday periods also allows 

more flexibility in the model by allowing for a greater range of price movements in any given 

day.  

 The interest rates and the fundamental value are updated at the beginning of each day, so 

the first periods of the day typically are the most volatile. During these periods, the exchange rate 

typically adjusts up or down by the larger tick size to reflect the higher excess demand caused by 

traders updating their positions according to the new information. The probability that a given 

trader changes his strategy in any later intraday period is relatively small because only previous 

price changes influence his decisions. In any given period the number of traders changing 

positions is very small and the exchange rate typically adjust by the smaller tick size. This 

dynamic allows us to capture the diurnality typical of high frequency financial data. Nonetheless, 

over the course of the day these small changes in each period can lead to large changes in the 

exchange rate. This helps maintain stability in the model by preventing the exchange rate from 

moving faster than traders can adjust. 

 Figure 1 shows the sample path of exchange rates and returns from a typical simulation 

(the exchange rate has been artificially shifted up by one unit to better see the relationship):7	  

Figure 1 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  Appendix	  1	  shows	  further	  plots	  of	  inputs	  into	  the	  model	  and	  the	  resulting	  outputs.	  	  
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 As is obvious from Figure 1, the exchange rate very closely tracks the evolution of the 

fundamental value. This is derived from the constraints placed on our model. The domestic and 

foreign interest rates in our model are annualized daily rates. While the difference in annualized 

rates may be relatively large, the interest rate differential within any given intraday period is 

typically very small. Similarly, changes in the exchange rate within each intraday period are 

limited to a defined tick size, which limits the profit available to optimistic and pessimistic noise 

traders. The exchange rate must adjust in same direction several times sequentially before the 

profit of these strategies becomes large. In contrast, the profit from value trading is the percent 

deviation of the actual exchange rate from the fundamental value. Even very small deviations 

from the fundamental value produce a profit differential that is significantly larger than the other 

strategies. Therefore, while carry trading and optimistic or pessimistic noise trading can produce 

short-term fluctuations around the fundament value, eventually the deviations cause traders to 

switch back to value positions and the exchange rate to revert back to the fundamental value. 

The parameters of our model were chosen in order to reproduce the moments of the 

distributions of returns typical of currency markets. Figure 2 compares the sample statistics 

generated by our model to those of the Euro.8 

Figure 2 

Sample Statistics 

 Mean Median Max Min Kurtosis Skewness 

Model Output 0.0000 0.0000 0.0800 -0.0621 5.1174 -0.1894 

EUR/USD9 0.0071 0.0000 0.0460 -0.0350 5.5115 0.1714 

 

Similarly, the autoregressive parameters for the AR(1) processes were set at 0.9985 to simulate a 

near random walk in interest rates and the fundamental value. Given that the exchange rate 

closely tracks the fundamental value, the high autoregressive parameter in the fundamental value 

also imposes approximate martingale behavior in the exchange rate, consistent with empirical 

findings. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Our	  model	  is	  not	  designed	  to	  replicate	  the	  EUR/USD	  exchange	  rate	  per	  se.	  Rather,	  this	  comparison	  was	  
chosen	  due	  to	  the	  large	  amount	  of	  information	  available	  on	  that	  particular	  exchange	  rate.	  	  
9	  Insert	  Source	  
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V. Stylized Facts 

	  

Exchange rate returns are characterized by a number of statistical properties that prevail 

with surprising uniformity across currencies and are typically known as stylized facts of currency 

markets. First, the distribution of returns is non-normal, displaying excess kurtosis. For the 

sample above, the kurtosis of the distribution of daily returns is 5.12. Such excess kurtosis is 

consistent across trials. A Jarque-Bera test for the same returns rejects the null hypothesis of 

normality at the 95% level. The t-statistic for the test is 848.08 and the p-value is 0.00.10 Again, 

this rejection of the null is consistent across repeated trials. 

Our model also displays similar predictability in returns and volatility as empirical 

exchange rates. Andersen et al (2000) showed that there is no autocorrelation in raw returns, but 

squared returns and absolute returns showed some autocorrelation up to approximately the first 

20 lags. Figure 3 reports the results of Ljung-Box tests on raw, squared, and absolute returns 

from the sample simulation for various lag lengths. At each lag length, we reject the null of no 

autocorrelation for the squared and absolute returns, consistent with empirical findings. The 

serial correlation in squared returns is a good indicator of volatility clustering or ARCH effects 

in our returns. In our model, periods of high volatility tend to be driven by a high proportion of 

optimistic and pessimistic noise traders in the market, consistent with the results of Lux and 

Marchesi (1999).  

As opposed to empirical findings, we similarly reject the null of no autocorrelation for 

raw returns. However, the autocorrelation in raw returns is driven almost entirely by highly 

significant autocorrelation in the first and second lag, which differs from empirical findings.11 

Some amount of the observed autocorrelation in raw returns is also likely the result of using 

Bartlett’s standard errors for the Ljung-Box test, which assume normally distributed residuals, as 

opposed to Newey-West or White’s standard errors which are robust to heteroskedasticity in the 

residuals.  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	  This	  compares	  to	  a	  t-‐stat	  of	  740.8	  for	  the	  EUR/USD	  exchange	  rate.	  
11Appendix	  1	  also	  shows	  a	  graph	  of	  the	  sample	  ACF	  for	  raw,	  squared,	  and	  absolute	  returns	  and	  the	  95%	  
confidence	  intervals	  for	  the	  same	  series.	  	  
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Figure 3 

Ljung-Box Test 

  

Lags 

    5 10 15 20 25 

Raw 
t-stat 69.0635 75.5069 76.0972 78.8669 85.5336 

p-value 0.00 0.00 0.00 0.00 0.00 

       
Squared 

t-stat 308.918 414.381 475.57 579.416 685.051 

p-value 0.00 0.00 0.00 0.00 0.00 

       
Absolute 

t-stat 244.586 406.512 535.138 722.389 878.782 

p-value 0.00 0.00 0.00 0.00 0.00 

 

In regressions like equation (10), the R-squared values are typically very small – on the 

order of (10-3) – meaning the regressions explain very little of the observed variance of returns in 

currency markets. Burnside et al (2011) found that the ratio of the variance of monthly returns to 

the monthly forward premium is on the order of 100:1, explaining the limited predictive power 

of forward premiums. As can be seen in Figure 4, multiple simulations of our model replicate all 

of these findings.12 

Finally, in our model both carry and momentum trading strategies are profitable, 

consistent with empirical findings from Burnside (2013). The average, annualized monthly 

returns for carry and momentum trading taken from the sample simulation above are 7.45% and 

2.7% respectively.  

VI. Results 

	  

After simulating our model, we ran the regression in equation (10) on our simulated data, 

and found that our model yields both positive and negative estimates of beta across different 

trials. The left panel of Figure 4 reports the results of these regressions. Our model also 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12	  The	  scatter	  plots	  shows	  in	  Appendix	  2	  are	  good	  visualizations	  of	  these	  stylized	  facts.	  
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reproduces the same time-variability in rolling estimates of beta calculated from five-years’ 

worth of one month forwards as is seen empirically.13 

As explained in Section IV, the primary force driving price change in our model is the 

fundamental value. The majority of the magnitude and sign of the change in the exchange rate 

period by period consequently can be explained by changes in the fundamental value. Therefore, 

estimates of the beta parameter in equation (10) ought to be highly dependent on the relationship 

between the evolution of the fundamental value and interest rates. The right panel of Figure 4 

reports the results of a second regression of the forward premium on returns calculated using the 

fundamental value instead of the exchange rate.  

This second regression is designed to capture the impact of changing interest rate 

differentials on the evolution of the fundamental value. That is, this second regression is 

designed to capture how changes in the information set due to changes in the interest rate affect 

the conditional expectation of the exchange rate at time t+1. In every case, the sign of the beta 

coefficient is the same across both regressions. This implies that the beta coefficient in the 

regression test for UIP is really a proxy for the relationship between the fundamental value and 

interest rate differentials. In these first simulations of our model, we did not impose a functional 

relationship between interest rates and the evolution of the fundamental value. The two interest 

rates and the fundamental value were defined by entirely independent AR(1) processes, so the 

regressions reported in the left panel of Figure 4 capture purely spurious correlations between the 

two.  

Figure 4 

Estimated Regression Coefficients 

Trial 
Equation (10) Fundamental Value Returns 

α β R-Squared α β R-Squared 

1  0.0060  1.5961  0.0083 0.0060  1.5961  0.007 

 

(0.0057) (1.2449) 

 

(0.0057) (1.2449) 

 
             2  0.0000  2.1244  0.0203 0.0003  1.4852  0.0093 

 

(0.0042) (1.0507) 

 

(0.0044) (1.0932) 

 
             

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13	  See	  Appendix	  2	  for	  comparisons.	  	  
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3  0.0016 -0.7625 0.0024 0.0019 -1.4246 0.0077 

 

(0.0039) (1.1128) 

 

(0.0040) (1.1546) 

 
             4  0.0019 -0.1911 0.0002 0.0014 -0.8379 0.0044 

  (0.0050) (0.8816)   (0.0051) (0.8958)   

 

In contrast, we can impose very simple functional relationships between the evolution of 

the fundamental value and interest rates in order to test whether the interest rate signals outlined 

in Section III can account for the empirical dynamics of estimates of beta. This is not meant to 

represent any theoretical relationship between interest rates and exchange rates. Rather, it is 

simply mean to impose the type of relationship outlined in Section III. First, we compute a three 

month moving average of daily interest rates and the standard deviation of daily interest rates 

over that period. We then compute the number of standard deviations away from that moving 

average of the current domestic and foreign interest rate. The difference of those two measures 

for the two interest rates then captures the relative movements of the foreign and domestic 

interest rates away from their historical trends.14 If the measure is positive (negative) it implies 

the domestic (foreign) interest rate is increasing more rapidly than what would be expected. 

Using that measure, we can reproduce the interest rate signals discussed in Section III. 

For example, assume that the foreign economy is an emerging market and the foreign 

interest rate is higher than the domestic. The forward premium calculated under CIP will predict 

an appreciation (depreciation) of the domestic (foreign) currency in each period. If the foreign 

interest rate begins to increase rapidly relative to the domestic, investors should infer that the 

foreign economy is in a period of relatively high stress and expect depreciation of the foreign 

currency in the future. That expectation is reflected in a change in the fundamental value, 

understood as the conditional expectation of the exchange rate at time t+1. Specifically the 

fundamental value should rise. By subtracting our relative momentum measure, we can tie the 

returns each day to the increase or decrease in the predicted appreciation (depreciation) of the 

domestic (foreign) currency based on what the interest rates would predict. The value we are 

subtracting – the relative deviation of the foreign interest rate – is negative, so the net effect on 

the fundamental value is positive. As the fundamental value rises, the exchange rate also adjusts 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14	  We	  use	  a	  relative	  measure	  of	  momentum	  in	  order	  to	  avoid	  situations	  where	  global	  interest	  rates	  are	  rising	  
in	  tandem,	  which	  could	  be	  a	  different	  signal	  of	  future	  economic	  conditions.	  
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higher causing depreciation of the foreign currency as predicted by our signal. In this case, a 

regression test of UIP should fail to reject the null because the relationship between interest rates 

and exchange rates defined by UIP is the same as the relationship implied by the economic 

signal. We can impose this type of signal by subtracting the scaled relative momentum measure 

from our fundamental value. 

If we add instead of subtract the relative difference in deviations to the fundamental 

value, then we impose a negative correlation between the fundamental value and the interest rate 

differential leading to a negative beta estimate. This is consistent with the interest rate signal in 

developed markets, in which rising interest rates are signs of relative economic stability and 

often attract capital inflows. Figure 5 shows the beta estimates for several simulations under each 

imposed correlation.  

Figure 5 

Regression Coefficients with Imposed Correlations 

Trial 
Subtracting Deviations Adding Deviations 

α β R-Squared α β R-Squared 

1 0.0525 2.3397 0.017 -0.0443 -1.9151 0.0228 

  
(0.0276) (1.2692) 

 

(0.0209) (0.8930) 

               2 0.0839 3.9806 0.0287 -0.1128 -6.1224 0.0787 

  
(0.0345) (1.6487) 

 

(0.0283) (1.4921) 

               3 0.0233 1.0003 0.0134 -0.0952 -4.8 0.0491 

  
(0.0144) (0.6109) 

 

(0.0309) (1.5054) 

               4 0.0209 1.1198 0.0061 -0.0733 -3.8737 0.0245 

  
(0.0180) (1.0158) 

 

(0.0345) (1.7399) 

               5 0.0839 3.9806 0.0287 -0.0555 -2.395 0.0263 

    (0.0345) (1.6487)   (0.0248) (1.0375)   

 

 In the regressions reported in Figure 5, we divided the relative momentum measure by 15 

prior to adding or subtracting it from the fundamental value. The maximum change in the 

fundamental value due to the functional relationship with interest rates was approximately nine 

cents. Nonetheless, we can still easily predict the sign of the beta coefficient based on the type of 
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relationship we impose. Reducing the strength of that relationship by four does not change the 

result, implying that even a very weak relationship between interest rates and the fundamental 

value can determine whether or not UIP holds.  

VII. Conclusion 

	  

Our model can successfully replicate the forward premium anomaly, solely by specifying 

the interactions of agents. These specifications also allow us to replicate many of the stylized 

facts found in currency markets including excess kurtosis, non-normality of returns, and positive 

average profits for carry and momentum trading. This suggests that many of the statistical 

regularities observed in currency markets can be thought of as being derived from the 

interactions of heterogeneous agents in the market. The ability to account for both the dynamics 

of the forward premium anomaly and other stylized facts is one of the major strengths of our 

model. 

Empirical evidence shows that there are both positive and negative values of the estimate 

of the beta coefficient in a regression of change in spot price on the forward premium, and 

failures to reject UIP are more common in emerging markets than developed. Our model 

proposes an intuitive explanation for this relationship: The driving force behind the change in 

spot prices is what we call the fundamental value of the exchange rate. Because the change in the 

fundamental value drives the change in the spot price, the regression of change in spot price on 

the forward premium is really a proxy for the relationship between the changes in the 

fundamental value relative to the interest rate differential. Therefore, the time variability of 

rolling beta estimates and the difference in sign found across multiple regressions can be thought 

of as reflecting the changing nature of the relationship between the fundamental value and the 

evolution of interest rate differentials. Our model accounts for this by allowing the same signal, 

like a change in the foreign interest rate, to have a differing impact on the exchange rate 

depending on the context. For any given pair of currencies, that relationship may or may not 

conform to the relationship predicted by UIP. As reported in Figure 5, if we impose the 

relationships outlined in Section III on the fundamental value and interest rate differentials, we 

calculate beta estimates consistent with empirical findings, lending credence to our initial 
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hypothesis that the failure of UIP to hold in certain currency pairs is related to how traders 

interpret the signal of increasing interest rates. 

Given the relationship between carry trading and interest rates, intuitively one might 

expect carry trading to drive rejections of UIP. In order to capture the carry across two currencies 

a trader has to purchase the higher yielding currency, which should cause it to appreciate. 

Nonetheless, our model actually suggests that rejections of UIP are driven primarily by value 

trading. Within our model, carry traders play a much more limited role. They exploit existing 

conditions in the market – namely low volatility and high interest rate differentials – rather than 

directly contributing to the market dynamics that drive price changes. Given that carry trading is 

a relatively static buy and hold strategy designed to capture interest differentials rather than 

actual price changes, this may be somewhat unsurprising within the context of our model. 

However, changing the time horizons used to calculate profit differentials, the preferences of 

agents, or the values of parameters governing switching behavior could lead to a more prominent 

role for carry traders. 

One limitation of our model is our inability to produce a general equilibrium. However, 

for the purposes of our paper, that is somewhat ancillary. We are attempting to model the 

forward premium anomaly based on traders’ decisions. Since those decisions are not based on a 

general equilibrium, we expect these decisions to be independent of the macroeconomic forces 

shaping general equilibria. In theory, the rules governing agents’ decisions and the interrelations 

of model inputs could be further specified to arrive at and account for a general equilibrium, but 

for the purposes of this paper the simpler model is sufficient and we believe increases the 

reliability of our conclusions. There is likely some force that relates the exchange rate to the 

prices of goods across different economies, but that force lies outside the explanation of why the 

forward premium anomaly exists.  
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Appendix 1 – Input/Output of a Typical Simulation 
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Appendix 2 – Comparison to Empirical Beta Regularities 
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Appendix 3 – Matlab Code 
 

Model 
	  
%Set number of days for the simulation. 
T = 4400; 
  
%Preallocate daily variables. 
I = arima('Constant',0.0015,'AR',0.9985,'Variance',0.0003); 
I2 = arima('Constant',0.0045,'AR',0.9985,'Variance',0.0003); 
SF = arima('Constant',0.0015,'AR',0.9985,'Variance',0.0001); 
ISimD = simulate(I,T); 
ISimF = simulate(I2,T); 
IDiff = (ISimD-ISimF)*0.01; 
MAI = tsmovavg(ISimD,'s',60,1); 
MAI2 = tsmovavg(ISimF,'s',60,1); 
StdMAI = std(MAI(61:end)); 
StdMAI2 = std(MAI2(61:end)); 
XI = ISimD(61:end)-MAI(61:end); 
XI2 = ISimF(61:end)-MAI2(61:end); 
Zeros = zeros(1,60); 
Ones = ones(1,60); 
YI = padarray(XI/StdMAI,[60 0],1,'pre'); 
YI2 = padarray(XI2/StdMAI2,[60 0],1,'pre'); 
SFSim2 = simulate(SF,T); 
SFSim = SFSim2(1:end)+((YI-YI2)./15); 
  
Price = zeros(T,1); 
NCHist = zeros(T,1); 
NVHist = zeros(T,1); 
NPlusHist = zeros(T,1); 
NMinusHist = zeros(T,1); 
PiVHist = zeros(T,1); 
PiCHist = zeros(T,1); 
PiPlusHist = zeros(T,1); 
PiMinusHist = zeros(T,1); 
  
PHist = zeros(T,1); 
  
XHist = zeros(T,1); 
  
%Set number of microsteps within each day. 
N = 500; 
  
%Preallocate microstep variables. 
NV=zeros(N,1); 
NC=zeros(N,1); 
NMinus=zeros(N,1); 
NPlus=zeros(N,1); 
EDC=zeros(N,1); 
EDV=zeros(N,1); 
EDMinus=zeros(N,1); 
EDPlus=zeros(N,1); 
EDTot=zeros(N,1); 
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P=zeros(N,1); 
ST=zeros(N,1); 
X=zeros(N,1); 
Y=zeros(N,1); 
PiC=zeros(N,1); 
PiV=zeros(N,1); 
PiMinus=zeros(N,1); 
PiPlus=zeros(N,1); 
U1=zeros(N,1); 
U2=zeros(N,1); 
U31=zeros(N,1); 
U32=zeros(N,1); 
U41=zeros(N,1); 
U42=zeros(N,1); 
Psi1=zeros(N,1); 
Psi2=zeros(N,1); 
Psi3=zeros(N,1); 
Psi4=zeros(N,1); 
Psi5=zeros(N,1); 
Psi6=zeros(N,1); 
Psi7=zeros(N,1); 
Psi8=zeros(N,1); 
Psi9=zeros(N,1); 
Psi10=zeros(N,1); 
Psi11=zeros(N,1); 
Psi12=zeros(N,1); 
AA=zeros(N,1); 
BB=zeros(N,1); 
CC=zeros(N,1); 
DD=zeros(N,1); 
EE=zeros(N,1); 
FF=zeros(N,1); 
GG=zeros(N,1); 
HH=zeros(N,1); 
II=zeros(N,1); 
JJ=zeros(N,1); 
KK=zeros(N,1); 
LL=zeros(N,1); 
  
%Specify initial numbers of traders, drawn from a Gaussian distribution. 
NV(1)=250; 
NC(1)=250; 
NPlus(1)=250; 
NMinus(1)=250; 
%NV(1)=randi([250 500],1,1); 
%NC(1)=randi([250 500],1,1); 
%NMinus(1)=randi([250 500],1,1); 
%NPlus(1)=randi([250 500],1,1); 
NTot=(NC(1)+NV(1)+NMinus(1)+NPlus(1)); 
  
NCHist(1) = NC(1); 
NVHist(1) = NV(1); 
NPlusHist(1) = NPlus(1); 
NMinusHist(1) = NMinus(1); 
  
XHist(1) = ((NPlus(1)-NMinus(1))/(NPlus(1)+NMinus(1))); 
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%Specify parameter values. 
a=2; 
b=0.5; 
c=10; 
d=5/NTot; 
e=2; 
f=0.5; 
g=3; 
h=1; 
DR = 0.8; 
  
%Specify the initial value of the exchange rate. 
Price(1) = 1; 
  
%Begin the daily loop.         
for t = 2:T 
           
    %Begin the microstep loop. 
    for n = 1:N-1 
         
        %Set opening price for each microstep loop equal to the previous 
        %loop's closing price. 
        ST(1) = Price(t-1); 
         
        %Set initial values of all variables equal to the value at the end of 
        %the previous loop. 
        NC(1) = NCHist(t-1); 
        NV(1) = NVHist(t-1); 
        NPlus(1) = NPlusHist(t-1); 
        NMinus(1) = NMinusHist(t-1); 
        X(1) = XHist(t-1); 
         
        %Calculate the value of every variable at each microstep. 
        Y(n) = ((ST(n)-Price(t-1))./Price(t-1)); 
            if IDiff(t)>0 
                PiC(n) = ((abs((IDiff(t))))/a)*100; 
            else 
                PiC(n) = ((abs((IDiff(t))))/a)*100; 
            end 
            if SFSim(t)>ST(n) 
                PiV(n) = (abs(((DR*(SFSim(t)-
ST(n)))./ST(n))/a)+(IDiff(t)/a))*100; 
            else 
                PiV(n) = (abs(((DR*(SFSim(t)-ST(n)))./ST(n))/a)-
(IDiff(t)/a))*100; 
            end 
        PiMinus(n) = -((Y(n))./e)*100; 
        PiPlus(n) = ((Y(n))./e)*100; 
        U1(n) = (f*X(n))+(b*(Y(n)/e)); 
        U2(n) = (b*(PiC(n)-PiV(n))); 
        U31(n) = (b*(PiC(n)-PiPlus(n))); 
        U32(n) = (b*(PiC(n)-PiMinus(n))); 
        U41(n) = (b*(PiV(n)-PiPlus(n))); 
        U42(n) = (b*(PiV(n)-PiMinus(n))); 
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        Psi1(n) = (e.*(NMinus(n)/NTot).*exp(-U1(n)))/N; 
        Psi2(n) = (e.*(NPlus(n)/NTot).*exp(U1(n)))/N; 
        Psi3(n) = (a.*(NV(n)/NTot).*exp(U2(n)))/N; 
        Psi4(n) = (a*(NC(n)/NTot).*exp(-U2(n)))/N; 
        Psi5(n) = (e.*(NPlus(n)/NTot).*exp(U31(n)))/N; 
        Psi6(n) = (e.*(NMinus(n)/NTot).*exp(U32(n)))/N; 
        Psi7(n) = (e.*(NPlus(n)/NTot)*exp(U41(n)))/N; 
        Psi8(n) = (e.*(NMinus(n)/NTot)*exp(U42(n)))/N; 
        Psi9(n) = (a.*(NC(n)/NTot).*exp(-U31(n)))/N; 
        Psi10(n) = (a.*(NC(n)/NTot).*exp(-U32(n)))/N; 
        Psi11(n) = (a.*(NV(n)/NTot).*exp(-U41(n)))/N; 
        Psi12(n) = (a.*(NV(n)/NTot).*exp(-U42(n)))/N; 
        AA(n) = fastbin(NMinus(n),Psi1(n)); 
        BB(n) = fastbin(NPlus(n),Psi2(n)); 
        CC(n) = fastbin(NV(n),Psi3(n)); 
        DD(n) = fastbin(NC(n),Psi4(n)); 
        EE(n) = fastbin(NPlus(n),Psi5(n)); 
        FF(n) = fastbin(NMinus(n),Psi6(n)); 
        GG(n) = fastbin(NPlus(n),Psi7(n)); 
        HH(n) = fastbin(NMinus(n),Psi8(n)); 
        II(n) = fastbin(NC(n),Psi9(n)); 
        JJ(n) = fastbin(NC(n),Psi10(n)); 
        KK(n) = fastbin(NV(n),Psi11(n)); 
        LL(n) = fastbin(NV(n),Psi12(n)); 
        NPlus(n+1) = NPlus(n)+AA(n)+II(n)+KK(n)-BB(n)-EE(n)-GG(n); 
        NMinus(n+1) = NMinus(n)+BB(n)+JJ(n)+LL(n)-AA(n)-FF(n)-HH(n); 
        NV(n+1) = NV(n)+DD(n)+GG(n)+HH(n)-CC(n)-KK(n)-LL(n); 
        NC(n+1) = NC(n)+CC(n)+EE(n)+FF(n)-DD(n)-II(n)-JJ(n); 
        X(n+1) = ((NPlus(n)-NMinus(n))/(NPlus(n)+NMinus(n))); 
            if IDiff(t)>0 
                EDC(n) = -((NC(n+1)-NC(n))*(h*(abs(IDiff(t))))); 
            else 
                EDC(n) = (NC(n+1)-NC(n))*(h*(abs(IDiff(t)))); 
            end 
            if SFSim(t)>ST(n) 
                EDV(n) = (NV(n+1)-NV(n)).*(g*(abs(SFSim(t)-ST(n))./ST(n))); 
            else 
                EDV(n) = -(NV(n+1)-NV(n)).*(g*(abs(SFSim(t)-ST(n))./ST(n))); 
            end 
        EDMinus(n) = (-(NMinus(n+1)-NMinus(n))*d); 
        EDPlus(n) = ((NPlus(n+1)-NPlus(n))*d); 
        EDTot(n) = (EDC(n)+EDV(n)+EDMinus(n)+EDPlus(n)); 
        P(n) = ((c).*EDTot(n)); 
        if abs(P(n))<1 
            ST(n+1) = ST(n)+((sign(P(n)))*((abs(P(n)))>rand))/1500; 
        else 
            ST(n+1) = ST(n)+((sign(P(n)))*((abs(P(n)))>rand))/500; 
        end 
                             
    end 
     
    %Collect the daily spot price as the final value of the spot rate from 
    %each microstep loop. 
    Price(t) = ST(N); 
     
    %Compile final numbers of traders in each strategy. 
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    NCHist(t) = NC(N); 
    NVHist(t) = NV(N); 
    NPlusHist(t) = NPlus(N); 
    NMinusHist(t) = NMinus(N); 
     
    %Compile profits of each strategy. 
    PiVHist(t) = PiV(N-1); 
    PiCHist(t) = PiC(N-1)+((Price(t)-Price(t-1))/Price(t-1)); 
    PiPlusHist(t) = PiPlus(N-1); 
    PiMinusHist(t) = PiMinus(N-1); 
     
    PHist(t) = P(N-1); 
     
    XHist(t) = X(N-1); 
     
end 
  
%Compute continuously compounded returns. 
Return = log(Price(2:end))-log(Price(1:end-1)); 
  
%Calculate a rolling regression to find beta estimates. 
H = Price(1:22:end); 
  
SFS = SFSim(1:22:end-1); 
  
Return2 = (H(2:end)-H(1:end-1))./(H(1:end-1)); 
  
Return3 = (SFS(2:end)-H(1:end-1))./(SFS(1:end-1)); 
  
Fwd = 
H.*((((1+(ISimD(1:22:end))*0.01).^(1/252)).^264)./(((1+(ISimF(1:22:end))*0.01
).^(1/252)).^264)); 
  
FwdPts = (Fwd-H)./H; 
  
Fwd2 = 
SFS.*((((1+(ISimD(1:22:end))*0.01).^(1/252)).^264)./(((1+(ISimF(1:22:end))*0.
01).^(1/252)).^264)); 
  
FwdPts2 = (Fwd2-SFS)./SFS; 
  
FP = ([ones((T/22)-1,1) FwdPts(1:end-1)]); 
  
FP2 = ([ones((T/22)-1,1) FwdPts2(1:end-1)]); 
  
for p = 1:(T/22)-61 
     
B(p,1:2) = regress(Return2(p:(p+60)),FP(p:(p+60),1:2)); 
Coef(p) = B(p,2); 
  
end 
  
%Generate price and return plots. 
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figure(1) 
subplot(2,1,1) 
plot(Price+1) 
hold on 
plot(SFSim,'r') 
legend('Price','SF') 
title('Price') 
axis([0 T 0 3]) 
hold off 
subplot(2,1,2) 
plot(Return.*100) 
axis([0 T -8 8]) 
title('Return') 
  
%Plot historical data. 
figure(2) 
subplot(3,1,1) 
autocorr(Return.^2,100) 
ylabel('') 
xlabel('') 
title('ACF of Squared Returns') 
subplot(3,1,2) 
autocorr(abs(Return),100) 
xlabel('') 
title('ACF of Absolute Returns') 
subplot(3,1,3) 
autocorr(Return,100) 
ylabel('') 
title('ACF of Raw Returns') 
  
figure(3) 
plot(ISimD) 
hold on 
plot(ISimF,'r') 
legend('Domestic','Foreign') 
title('Interest Rates') 
hold off 
  
figure(4) 
plot(Coef) 
title('Estimated Beta Coefficient') 
  
figure(5) 
subplot(2,1,1) 
plot(FwdPts) 
title('Forward Points') 
subplot(2,1,2) 
plot(Return2,'r') 
title('Appreciation of Foreign Currency') 
  
disp('Ratio of Variances') 
disp(var(Return2)/var(FwdPts)) 
  
disp('Kurtosis') 
disp(kurtosis(Return)) 
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disp('Skewness') 
disp(skewness(Return)) 
  
disp('JBTest') 
disp(jbtest(Return)) 
  
disp('Parameter Estimates') 
[b,bint,r,rint,stats] = regress(Return2,FP); 
[b2,bint2,r2,rint2,stats2] = regress(Return3,FP2); 
stats3 = regstats(Return2, FwdPts(1:end-1)); 
stats4 = regstats(Return3, FwdPts2(1:end-1)); 
disp(b) 
disp(sqrt(diag(stats3.covb))) 
disp(b2) 
disp(sqrt(diag(stats4.covb))) 
  
figure(6) 
scatter(FwdPts(1:end-1)*100,Return2*100,'.') 
hold on 
int = b(1); 
slope = b(2); 
line = @(x) int + slope*x; 
ezplotline = ezplot(line, [-7 7]); 
set(ezplotline,'Color','r') 
plot(ezplotline) 
axis([-15 15 -15 15]) 
title('Equation (5) Regression') 
xlabel('Forward Premium') 
ylabel('Monthly Returns') 
hold off 
  
disp('R^2') 
disp(stats(1)) 
disp(stats2(1)) 
  
[P1,P2] = 
profits(Price(1:22:end),(((1+(ISimD(1:22:end))*0.01).^(1/252)).^264),(((1+(IS
imF(1:22:end))*0.01).^(1/252)).^264)); 
  
disp('Momentum Profit') 
disp(P1) 
  
disp('Carry Profit') 
disp(P2) 
 

Fastbin Algorithm 
 
function k = fastbin(n,p) 
  
%Step 1 
q = 1-p; 
s = p/q; 
a = (n+1)*s; 
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r = q^n; 
  
%Step 2 
u = rand; 
k = 0; 
  
%Step 3&4 
while u > r 
    u = u - r; 
    k = k + 1; 
    r = ((a/k)-s)*r; 
end 
	  

	   Profit Calculations 
	  
function [P1, P2] = profits(X,I1,I2) 
  
for n = (2:length(X)-1) 
     
if ((X(n)-X(n-1))/X(n-1))>0 
    Y1(n+1) =  ((X(n+1)-X(n))/X(n)); 
else 
    Y1(n+1) =  -((X(n+1)-X(n))/X(n)); 
end 
  
if (I1(n)-I2(n))>0 
    Y2(n) = (-((X(n)-X(n-1))/X(n-1)))+abs((I1(n)-I2(n))); 
else 
    Y2(n) = (((X(n)-X(n-1))/X(n-1)))+abs((I1(n)-I2(n))); 
end 
  
P1 = (1+mean(Y1))^12-1; 
  
P2 = (1+mean(Y2))^12-1; 
end 

 


