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Abstract 

 Empirical research on the impact of natural disasters on economic growth has provided 

contradictory results and few studies have focused on the United States. In this thesis, I bridge 

the gap by examining the merits of existing claims on the relationship between natural disasters 

and growth at the states and county level in the U.S. I find that climatological and geophysical 

disasters have a small and negative impact on growth rates at the state level, but that this impact 

disappears over time. At the county level, I find that tornados have a slight but negative impact 

on per capita GDP levels and growth rates over a five year period across three states that 

experience this natural phenomenon. Controlling for FEMA aid, I find that there may be upward 

omitted variable bias in regressions that do not include the amount of aid as a variable. I find 

evidence that FEMA aid has a small but positive impact on growth and per capita GDP levels at 

both the county and state level.  

JEL Classification:  O11, O40, Q58 
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Introduction 

Natural disasters are not new. Our understanding of the ancient world points to evidence 

of many encounters between civilizations and volcanic explosions, earthquakes, floods, and 

plagues. Though humans have fallen victim to such events for over millennia, they continue to 

perplex policy makers, as evidenced in recent years by recovery debacle of Hurricane Katrina. 

Even in the United States, policy makers are unsure as to how to appropriately respond to these 

events of natural calamity. They have also received very little guidance from academia, which 

has mostly taken a piecemeal approach to the issue from a wide variety of disciplines 

(Alexander, 2000).  

I pause here for a moment to examine some definitions for natural disasters most 

frequently seen in contemporary literature. Natural disasters are derived from natural hazards, 

which are geophysical events characterized by a significant departure from climatic norms or 

trends e.g. floods would signify significant departures from average rainfall levels for an area. 

These hazards might be predictable and follow seasonal and geographic patterns, as in the case 

of hurricanes and typhoons, or they may be highly irregular in terms of their reoccurrence as in 

the case of floods and droughts. Natural hazards are distinct from technological hazards 

(explosions, releases of toxic materials, structural collapses etc.) and social hazards (e.g. terrorist 

attacks) in that they originate in the biosphere, lithosphere, hydrosphere or atmosphere 

(Alexander, 2000). Alexander defines a natural disaster as “some rapid, instantaneous or 

profound impact of the natural environment upon the socio-economic system.”
1
 Furthermore, he 

stresses that these impacts are concentrated as to distinguish them from common malaise across 

the world such as disease or childhood malnutrition. 

 

                                                           
1
 Alexander 2000 (p.4) 
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Empirical evidence on the causal relationship between natural disasters and growth for 

the U.S. is scarce. There are some case studies that suggest that disaster may have a positive 

impact on the economy. For example, a study of the Earthquake in Alaska in 1964 shows that 

government aid provided economic windfalls that benefitted the Alaskan by providing 

opportunities to upgrade and modernize public infrastructure and other capital (Kunreuther and 

Fiore, 1966). It is also argued that the 1994 Northridge earthquake helped transition the area 

from a dying aerospace industry, to newer fields of green manufacturing and bioscience that 

created opportunities for growth (International Economic Development Council, 2010). 

According to Rozario (2010), the fire of Boston 1676 created the space for better and safer 

infrastructure that was especially well-suited for the commercial expansion of the 19th century. 

He also credits the Great Chicago Fire of 1871 for transforming Chicago into the fastest growing 

city in the Western Hemisphere.  

These examples suggest that infrastructural improvements and the adopt of better 

technologies in the wake of a disaster are the sources of improvements in the economy of the 

affected area. However, focusing on discrete events that lend themselves well to being a poster 

child for disaster recovery may paint an overly rosy picture of the impact of natural disasters. 

Alexander (2000) points out that “a rigorous approach to natural disasters requires that we look 

for the common regularities in each event”
2
 and this may require understanding that may only be 

gleaned from a more broad based approach.  

When approaches are attempted, however, they yield contradictory results, with some 

literature suggesting positive effects, and others suggesting negative or no effects on the 

economy in the long run. Taken together, the literature seems to only agree that disaster impacts 

vary depending on type of disaster, time frame, and location of the event. This provides very 

                                                           
2
 Alexander (2000) p.3 
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little guidance for policy makers on how they should structure their responses to best mitigate the 

effects of disasters, as what may be an appropriate action for one event does not necessarily 

translate to another. There is also an apparent tension in the scope of experiments in this field—

how to be broad enough to capture Alexander’s “common regularities” across disasters without 

being so broad as to lose the effect of the disaster in a sea of noise altogether.  

In this paper, I will seek to bring clarity to some of these questions by focusing 

specifically on the United States. As some previous researchers have noted, disaster impacts on 

the economy are very much a function of its current state and types of institutions that govern it. 

Thus focusing on only one country would control for some factors that are unique to the country 

itself while maintaining enough variation across regions to be able to shed some useful light for 

policy makers. The homogeneity of states and counties relative to countries may reduce omitted 

variable bias. Looking across time in the U.S. may also give clues on how advancements in 

protection and forecasting technologies have altered the impact of disasters. There is also not 

very much regional research, and what does exist is mainly interested in developing countries, 

and such findings may not be applicable to U.S. My work will attempt to address these particular 

atrophies in the literature.  

Conducting such an experiment in the U.S. is feasible because the country is fairly large 

and geographically and climatologically varied, experiencing several types of natural disasters 

every year. These disasters are also not a trivial matter. Chart 1 and Chart 2 show the top ten 

states in the U.S. in terms of damage sustained and number of people killed and affected for the 

thirty year period from 1970-2000. The states of California [$38.8 billion], Florida [$28 billion], 

and Texas [$18.3 billion] top the chart for damage in current dollars, while Florida [1 million], 

New York [0.71 million], and Pennsylvania [0.47 million] are at the top for persons killed and 
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affected. During this period there were a total of 1,356 climatological, geophysical, hydrological, 

and meteorological
3
 events according to EM-DAT

4
. Breakdowns of these events by disaster 

category can be found in Chart 3. In general, the most frequent type of disaster during this period 

is meteorological storms.   

According to the Federal Emergency Management Agency (FEMA), there were 99 major 

disaster declarations made in 2011. Disaster declarations are made when the scope of the 

recovery in the aftermath of a disaster exceed the capabilities of the local government, so it can 

be expected that many more minor disasters occur in the U.S. that do not require FEMA 

attention. With a rising trend in both the level of disaster damage and frequency of disasters in 

the U.S. [Graph 1], it is important to identify the impact these disasters and FEMA aid have had 

on U.S. economies.  

There is also some evidence these shocks have been increasing in frequency globally, 

with more major disasters predicted in the coming years. According to Huppert and Sparks, we 

live “in times of increasing vulnerability to extreme natural hazards.”
5
 Insurance company 

Munich Re recorded 960 natural hazards in 2010, the most notable of which are wildfires in 

Russia, devastating floods in Pakistan, and major earthquakes in Chile, China, New Zealand, 

Haiti, and Japan. Lying at the source of these disasters may be a combination of global climate 

change and vulnerabilities created by the people who inhabit these areas and the institutions that 

govern them.  It is unclear, however, how much of this increase may be simply the result of 

                                                           
3
 Climatological (extreme temperature, drought, and wildfire), geophysical (earthquake, volcano, and dry mass 

movement), meteorological (storm, tornado), and hydrological (flood, and wet mass movement) disasters all fall 

under the umbrella of natural disasters. 
4
 EM-DAT is a database maintained by the Centre for Research on the Epidemiology of Disasters (CRED) which 

collects data from various sources including UN agencies, non-governmental agencies, research institutions, the 

press, and insurance companies. EM-DAT includes data on events from across the world from 1900-present day. For 

an event to be recorded in EM-DAT, it must meet one of the following criteria: 1) 10 or more people were killed 2) 

100 or more people were affected 3) there was a declaration of state of emergency or 4) there was a call for 

international assistance. 
5
 Huppert and Sparks (2006) p.1875 
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better measurement instruments and disaster reporting.  Nonetheless, it is surprising that 

considering their frequency, dire impacts on the lives and well-being of so many people and the 

speed of development, there is relatively little literature on their effects on the economy, 

especially with regards to growth. My goal with this paper is to add the current discussion and 

bring it closer to understanding the full narrative of the natural disaster.  

In this thesis, I examine the merits of previous claims concerning the impact of disasters 

on economic growth and output in the long run. I will also address the question of how disaster 

relief may have changed the impact of these disasters, and challenge some of the effects the 

current literature is describing. 
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Literature Review 

The book Economics of Natural Disasters: Implications for Federal Policy by Dacy and 

Kunreuther (1969) is one of the first works of economic research on natural disasters. However, 

the earliest empirical work on the topic was not conducted until much later by Albala-Bertrand 

(1993). Comparing before and after data from 26 countries and 28 disasters, Albala-Bertrand 

finds that on average, GDP growth rates are higher in the year immediately following a natural 

disaster (by 0.4%; 0.7% higher if only third world countries are included). He finds that there is 

no impact on GDP levels and the impact on growth rates disappears after one to two years. These 

findings are contrary to the perceived view at the time that disasters have a negative effect on 

GDP in the short run (Albala-Bertrand, 1993). There are many limitations to this initial study, 

including the small sample size and its bias towards developing countries. Since then, 

researchers have appropriated more sophisticated tools and larger dataset in their empirical 

works, but there remains a lack of consensuses as to the appropriate approach and technique to 

this question, as well as the subsequent results.  

The body of literature on the topic generally follows two directions of research. The first 

examines the short run impact of disasters and include Albala-Bertrand (1993), Kahn (2005), 

Raddatz (2007), Strobl (2008), Noy (2009), Rodriguez-Orregia et al. (2009), Leiter et al. (2009), 

Mechler (2009),  and Hochrainer (2009). The second line of research examines the medium and 

long run impacts of disasters and include Skidmore and Toya (2002), Skidmore and Toya(2007), 

Noy and Nualsri (2007), Loayza et al. (2009), and Raddatz (2009).  

Skidmore and Toya (2002) was the first major paper to look at the long run impacts of 

natural disasters. Their counterintuitive result has sparked much of the subsequent research. 
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Using a cross sectional regression, they find a positive relationship between the frequency of 

climatic disasters and average per capita GDP growth rates across 30 years. 

Skidmore and Toya (2002) rely on a modified version of Schumpeterian “creative 

destruction” process to explain their findings. They suggest that the physical capital destroyed 

during a disaster is frequently replaced with more productive capital during reconstruction. 

Furthermore, disasters can reduce the expected return to physical capital, creating a substitution 

effect towards human capital, benefitting growth in the long run. These theories are supported  

with the finding that disaster frequency is positively correlated the average growth rate of a 

country’s total factor productivity (TFP) and human capital accumulation (Skidmore and Toya, 

2002). On the other hand, they find no effect of geologic disasters on GDP growth and suggest 

that the greater loss of life in these situations counteracts any positive effects disasters may have. 

There are several drawbacks to their study, however, and subsequent research has been 

aimed at addressing these shortcomings. First, they use the cross-sectional average for GDP 

growth rates across 30 years from 1960-1990, so any correlations they find would describe a 

loose relationship at best. Moreover, by looking only at frequency, they lose a lot of important 

information regarding the intensity and timing of the disasters measured. 

Noy and Nualsri (2007) attempt to improve upon some of the weaknesses of Skidmore 

and Toya (2002) in their study and acquire contrary results. By using the dollar amount of 

property damage and number of deaths instead of frequency, they are able to capture an 

additional measure of magnitude in their disaster variables. Using panel data with fixed-effects, 

they are also able to reduce time invariant omitted variables that may have affected Skidmore 

and Toya (2002) and produced spurious results. Using the same baseline as Skidmore and Toya 

(2002), they find that shocks to physical capital have no effect on growth, but shocks human 
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capital have a significant, negative effect on the 5 year growth rates of Non-OECD countries. 

There no significant effects on the growth rates of OECD countries. This suggests the identities 

of countries included in a sample may have an impact on the results.  

Loayza et al (2009) offer a further consideration when they argue that “different types of 

disasters can have diverse (even opposite) effects on growth”
6
.  They propose the disaggregation 

of variables to single out effects that may be lost in aggregation. Focusing on medium-term 

economic growth in 5-year periods (in accordance with Noy and Nualsri (2007)), they observe 

the intensity (proportion of population affected) of storms, earthquakes, droughts, and floods on 

the growth of three different sectors (agriculture, manufacturing, and service). They find that 

droughts have a negative impact in both agriculture and manufacturing sectors, decreasing the 

overall GDP growth rate by and average of 0.6 percentage points per year, and moderate floods 

have a positive impact on both sectors (agriculture and manufacturing), increasing GDP growth 

rate by around 1 percentage point a year.  They suggest that the benefit of floods (and detriment 

of droughts) may be derived from their impact on the water supply which affects agriculture and 

electricity generation (hydropower) and subsequently the agricultural and industrial sectors. 

There are no statistically significant results from storms and earthquakes. Finally, they find that 

all severe disasters have a strong negative effect on growth. They hypothesize this is because 

large disasters completely destroy the mechanisms (e.g. infrastructure) through which positive 

effects have traveled.  

Beyond modifying the measures of variables, some researchers have moved to change the 

methodology of the research. Raddatz (2009) argues that previous studies have relied on some 

controversial identification assumptions, i.e. the predeterminedness of variables, and uses a 

different empirical approach from his predecessors. By applying a Vector auto-regression (VAR) 

                                                           
6
 Loayza et al. (2009) p.3 
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model, Raddatz estimates the per capita GDP levels of countries in the years after a natural 

disaster. He finds that a single climatic disaster has a moderate impact on output, reducing real 

per-capita GDP by 0.6% by the 10th year after the event, with 0.5 of the 0.6% reduction 

occurring in the first year after the disaster. Geological disasters have no statistically significant 

impact on per-capital GDP and all other disasters create a 2% decrease in per capita GDP.  

Along a similar vein, Cavallo et al. (2010) use a comparative event study approach, 

constructing counterfactuals of a country’s GDP level across time with a synthetic control group 

and comparing it with the observed GDP trajectory. They also refine their research to individual 

buckets of medium, large, and very large disasters. Using empirical growth rates of similar 

countries that did not experience the catastrophic disaster (for up to 10 years past the disaster 

date), they construct mathematical estimates for the path the country’s GDP should have taken, 

had it not experienced the event. They argue that this empirical method is a better alternative to 

using longitudinal data with fixed effects, because it allows some degree of control over country 

specific characteristics and allows these characteristics to vary across time. While analyzing the 

merits of such an approach is beyond the scope of this paper, their findings are consistent with 

those of Raddaz (2009). They findd a negative impact of disasters on GDP levels, but only for 

the largest disasters. Specifically, real GDP per capita is almost 10% lower than its initial level 

10 years after a disaster (the GDP of its synthetic control countries had risen 18%, suggesting a 

cumulative loss of 28%). However, for disasters that didn’t fall into the category of the largest of 

the large, they found no significant impact on GDP levels. When they controlled for cases where 

disasters triggered radical political revolution, they found that there were no effects at all even 

among the largest of the large disasters. However, their sample of disasters is heavily biased 

towards third world countries which may also explain their findings.  
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Finally, though most of the literature on natural disasters and economic growth is 

concerned with impacts at the country level, a couple of studies look at smaller economic areas, 

notably Rodriguez-Oreggia (2008) who observed Mexican municipalities and Strobl (2008) who 

looked at U.S. counties. Both observed negative impacts in the short run. To my knowledge there 

is no research that looks at long or medium run impacts at the regional level.  

In summary, research on the impacts of natural disasters has generally provided 

contradictory results. This paper will supplement current research by examining more closely 

disaster impacts in the U.S. In particular, I will observe disasters at both the state and county 

level from the years 1970-2010. Furthermore, I will include the level of FEMA obligations as a 

variable to explore the question of whether or not the absence of aid from previous studies may 

have biased findings in the past.    
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Theory 

Because much of the existing literature focuses on the impacts of different types of events 

(e.g. large disasters versus small, climatic versus geologic, disasters in OECD countries versus 

non OECD), it suggests that there are many channels through which disasters may affect GDP 

growth and output in the long run. Here, I will suggest three situations that lead to three very 

different outcomes 

First, I assume that there is an initial negative shock to GDP after a disaster, due to the 

immediate decrease in the original capital stock and the partial/full shut down of the economy. 

After this initial shock, an area may grow at a faster or slower rate, or at the same rate. If an area 

experiences these negative shocks to GDP very frequently, what we may observe in the long run 

is no change in GDP or a negative change in GDP because the country has not had a chance to 

capitalize on any positive effects (if there are any) of rebuilding before the next disaster.   

In a second case, there may be adoption of the newest technologies during the 

reconstruction period that increases the productivity of the capital stock. Prior to the disaster, 

these improvements may have been delayed because of decisions of companies to hold off 

making new investments due to particular constraints. This could cause some regions to grow 

faster for a period after a disaster. This type of productivity growth, however, is limited by the 

existing technological frontier of the country.   

Finally, the disaster may result in the adoption of government policy that expands the 

technological frontier of the country by increasing investments in research and development. 

This may produce larger more sustained impacts on regional growth rates.  

  To better explain these situations, I begin with the classic production function with 

human and physical capital: 
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               [1]  

 

where Y = output; A = measure of productivity; K = quantity of physical capital; L = 

number of workers; h = quantity of human capital per worker. Dividing by L will put everything 

into per worker terms, and I am left with: 

            [2]  

  

 Taking the natural log of both sides of equation [2] and differentiating with respect to 

time, I obtain the Solow growth model:   

  ̂   ̂    ̂        ̂ [3]  

  

 In the first case, where natural disasters present a negative shock to the economy, we 

expect to see an immediate fall in the capital stock leading to a fall in output in the short run. 

However, if these shocks become very frequent, it could potentially lower the investment in k, 

leading to a lower growth rate and levels of output in the future.  

The second case describes one in which the reconstruction after a natural disaster will 

improve the productivity of capital. Most endogenous growth models use investment in research 

and development to explain gains in real GPD per capita growth rates in the long run. I choose to 

focus on endogenous technological change because it is a likely venue through which natural 

disasters may impact long run economic growth. Since growth is driven by two main forces, 

factor accumulation and productivity, and there is a finite limit to the amount of capital that can 

be accumulated, the key component for sustained, long run economic growth is productivity. But 

why would the replacement of damaged capital stock result in greater productivity? 

I base my hypothesis on the idea that not all R&D leads to products that are easily put 

onto the market for use immediately. For example, though the knowledge might exist on how to 
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engineer better and build safer cities, it is very hard to knock down existing infrastructure and 

convince people that it is good for them (the classic “if it ain’t broke why fix it?” conundrum). 

Literature on embodied technical change seems to suggest the possible positive effects of 

shortening the average life of capital (Hulton, 1992). Hulton finds that best practice technology 

in manufacturing is 23% more efficient than the average technology of its day. At the same time, 

he also finds empirically that a 1 percentage point increase in the growth rate capital formation 

only induces a small 0.127 percentage point increase in real output growth, with a direct effect of 

0.103 percentage points and an indirect embodiment effect of only 0.024 percentage points. This 

seems to suggest that the speed of capital formation alone is not enough to have a significant 

impact on output. However, the reconstruction that occurs after a disaster event may be of a very 

different nature than the average investment patterns for manufacturing plants. Natural disasters 

have the power to justify the need for new capital investment in those areas that firms would not 

normally consider investing in, e.g. infrastructure changes. 

There are economic models describing this irregular investment pattern in firms, 

incorporating the idea that firms are not able to invest in the newest technology immediately. 

This is based on the assumption that capital investment has some inherent rigidities.  There is 

evidence of this behavior in real life. Doms and Dunne (1993) looked at investment patterns in 

12,000 plants in US manufacturing over the 17 year period from 1972-89. They construct a 

series on the proportion of the total equipment investment of the establishment made in each 

year. They find that on average, the largest investment episode accounted for more than 25% of 

the 17 year investment of an establishment, and was often followed by a second large investment 

spike that combine to form on average almost 40% of the total investment of the average firm. 

This concept is known as microeconomic lumpiness, and it is expected that this lumpiness will 
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disappear once data for all of the firms are aggregated. Caballero (1997) argues, however, that 

aggregated microeconomic lumpiness shows up on macroeconomic data as well. Relying on his 

model which incorporates rigidities with respect to investment, I suggest that the frequent 

occurrence of natural disasters can reduce the amount of time between adjustments.  

 Caballero defines a measure of capital “imbalance” for each individual firm as: 

 
  

 

  
 [4]  

Where K is the level of the firm’s capital stock and K* is the desired level of capital stock. To 

model the infrequency of investment actions, the cost of adjusting the stock of capital must 

increase sharply around the point of no adjustment, which Caballero defines as C. Furthermore, 

the size of this cost is expected to be proportional to the size of the adjustment, but to keep the 

equation simple, it has been excluded from the aggregate model. Under these conditions, 

Caballero then defines the variable x as a capital imbalance index centered around zero. This 

index is a logarithmic function of the ratio between the capital imbalance and the cost of 

investment, equation 5.  

 
      

 

 
  

 

[5]  

Here, the probability of adjustment rises with the absolute value of x. Letting Ʌ(x) 

symbolize the function describing the probability of adjustment given x, the expected investment 

made by the individual firm can then be modeled in equation 6: 

                                  
[6]  

The aggregate is then defined as the behavior of the average, and the average investment rate for 

all firms with an imbalance index of x then becomes: 
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(
  
  
)
 

        
[7]  

Averaging across all capital imbalance indexes x at time t becomes: 

 
(
  
  
)
 

  ∫              

 

[8]  

Where        is the cross sectional density of establishment’s capital imbalances before 

investment takes place.  

 I propose that natural disasters increase the capital imbalance, Z, increasing x and 

increasing the probability of adjustment, described by Ʌ(x). Since the natural disasters I choose 

will be large enough to impact more than just one firm, averaging across all x should increase the 

investment to capital ratio  (
  

  
)
 

.   

If it is the case that natural disasters speed up capital investment, and the type of capital 

invested in after a natural disaster incorporates technologies that improve productivity for the 

economy, then there is an improvement in the technology scalar of the production function (A), 

leading to an increase in Y. This also leads to an increase in the growth rate of A, resulting in an 

increase in the growth rate of output in the long run.  

The idea may not be as farfetched as it may seem, because there is evidence of such 

behavior in other events of economic shock. Caballero (1997) points to the fact that obsolescence 

and scrapping are driven by both slowly moving technological trends and sudden changes in the 

economic environment. In particular he cites the impact of oil shocks on the scrapping of old and 

fuel-inefficient planes documented by Goolsbee (1995).  

It is important to note, however, that this improvement is limited by the technological 

frontier of the country. The improvement in technology observed in this case would be one of 
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copying and installing existing technology, and not of inventing new technology on their own. 

Since this is also a viable possibility, it will be observed exclusively in the third case. For now, I 

will rely on a model of technological transfer to explain an increase in long run growth rates at 

the state and county level. I will refer to the two country model for technological imitation as 

described by Weil (2005).  

Consider two economies where economy 1 is technology leader and economy 2 is the 

technology follower and the economy of interest with respect to the impact of natural disasters. 

Prior to the event, the technology follower is at a lower level of technology and constrained by 

rigidities in capital investment. However, the natural disaster breaks the rigidities and allows the 

technology follower to “copy” or implement the latest technology available, moving it to the 

same level of technology as the technology leader.  

According to Weil’s model, the growth rate of technology in country 1is: 

 
  ̂  

    
  

  
[9]  

Where γA,1 is the fraction of workers in economy 1 doing R&D, A1  is its level of technology, and 

μi is its cost of invention, and L is the size of the labor force. 

Assuming that the labor forces of the two countries are the same, the growth rate of 

technology in country 2 is then defined as: 

 
  ̂  

    
  

  [10]  

Where γA,2 is the fraction doing R&D in economy 2, Ais its level of technology and μc is its cost 

of copying the technology from economy 1, equal to some function that describes the 

relationship between the ratio of technologies.  

 μc = c(A1/A2) [11]  
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The growth rate of technology in economy 2 is then seen as growing towards a steady state, 

where we expect to see a convergence to some ratio of A1/A2 where two economies will grow at 

the same rate. At this point, we expect that: 

 
  ̂  

    
  

    ̂  
    
  

  
[12]  

Here, I predict that μc is increased by some rigidities inherent in capital investment, and 

that natural disasters reduce these rigidities and thus the cost of copying. By lowering μc, we then 

expect to see an increase in the growth rate of technology in economy 2 towards the steady state. 

Since the growth rate of technology increases, we will then predict an increase in the growth rate 

of output in the long run. 

However, it may well be that the reconstruction that occurs after a natural disaster is just 

to replace capital with the same capital that was destroyed, because producers have strong 

incentives to replace damaged capital with the same capital in order to rebuild more quickly. It 

could also divert important resources away from research and development in the rebuilding 

process.  In their work, Hallegatte and Dumas (2007) examine embodied technical change in the 

context of reconstruction after natural disasters using a modified Solow growth model with price 

and wage rigidities. Through their purely theoretical framework, they find that strong negative 

shocks like natural disasters have no real impact on long run economic growth, even under the 

strongest assumptions of full incorporation of the most recent capital during reconstruction. They 

admit to some limitations of their model including their assumption that the productivity of most 

recent capital grows at a constant rate. This cannot take into account production of technological 

change through education, learning and doing, and research and development. However, if this is 

the case, then the capital after reconstruction will have the same productivity and we will expect 

no effect or a negative effect on the long run growth rate, after incorporating the negative shock 



21 
 

to the economy and resource diversion away from R&D. In sum, the theoretical impact of natural 

disasters on the productivity of capital in investments during reconstruction is ambiguous.  

Finally, policies instituted in the wake of a natural disaster may alter the rate of 

innovation. Here, they may alter the growth in A, which is a function of research and 

development, human capital, and A of the previous period. Policies may encourage or discourage 

investments in R&D. If the disaster even leads to a decrease in R&D from the private and/or 

public sector, we will see a fall in the change of A. Furthermore, if the natural disaster results in 

a declination to adopt new technologies, we may also see the change in A fall, which may have a 

negative effect on the growth rate of output.  

Natural disasters may have a negative impact on R&D because some natural events can 

also trigger a chemical disaster like the damages incurred by the Japanese Nuclear power plants 

after the Earthquake and Tsunami of 2011. This may evoke a fear effect that will stymie 

investment in nuclear power plants and new R&D in that industry. For example, no new nuclear 

power plants have been built in the US since the Three Mile Island accident in 1979.  

Because the benefits of improvements in environmental technologies accrue mostly to the 

public and are a social good, there is usually little incentive for the private sector to invest in 

them. Thus environmental technology R&D is mostly funded by the government and other 

public funds (Popp et al. 2009). Subsequently, public opinion has great sway over policy and 

regulation of these industries in the US, and when a natural disaster results in bad press about 

these technologies, further developments in productivity in these industries may be hindered 

through the irrational fears of the public in the aftermath of a disaster.   

 However, these events may also increase interest in investing in safer, better technology 

(e.g. forecasting instruments etc.) or in R&D, in which case we might expect to see a positive 
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change in A leading to a positive impact on the growth rate of output. As in the second case, the 

impact of a natural disaster here is also ambiguous.  

 In all, I have delineated three channels of impact on the economy from a natural disaster, 

the last two of which have, theoretically, ambiguous impacts on long run GDP growth rates. 

Thus, depending on which effects dominate, it is possible to have a positive, negative, or no 

relationship between disasters and the regional economy in the long run. Furthermore, the 

impacts may differ by type of natural disaster, size, or region of observation, or a combination of 

all three.  
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Data 

 Following other studies on long-run growth, I use panel data where observations are 

made over time for each geographic area. The data include observations from 50 States in the 

U.S. from the years 1970-2000. Data on natural disasters were obtained from the EM-DAT 

database maintained by the Centre for Research on the Epidemiology of Disasters (CRED). The 

data are collected from various sources including UN agencies, non-governmental agencies, 

research institutions, the press, and insurance companies. EM-DAT includes data on events from 

across the world from 1900 to present day. For an event to be recorded in EM-DAT
7
, it must 

meet one of the following criteria: 1) 10 or more people were killed 2) 100 or more people were 

affected 3) there was a declaration of state of emergency or 4) there was a call for international 

assistance. EM-DAT includes basic information on the location, start and end date, and name of 

disaster (if applicable). Furthermore, EM-DAT includes estimated damages and number of 

people killed and number of people affected for each event. EM-DAT collects information at the 

level of the event, so for the purposes of my analysis, it was necessary to create estimates of 

damages and number of people killed and affected at the state level.  

 Economic losses for events that occurred in more than one state are weighted by each 

state’s relative GDP to create an estimate of each state’s share of the total damage. The resulting 

estimates for are divided by the state population to create a per capita value, and summed by 

disaster subtype over a period of five years to create the economic loss variables used in the 

regression as shown in equation 13: 

 

                                                           
7
 Loayza et al. (2009) has pointed to some downfalls of using EM-DAT on estimated damages including lack of a 

standard procedure and missing data. However, economic damages are an important measure of the magnitude of a 

disaster, especially in the U.S. where we do not expect the level of human death toll that can arise from disasters in 

developing countries, and may provide channels through which improvements in productivity can arise.  
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       ∑

                      

             
 

 
[13]  

Where j indexes the number of events that took place within the five year period t, and i 

is the state the event took place. This allows the HIT variable to capture the impact of both the 

magnitude and frequency of a natural disaster.  

The variable measuring human loss is similarly created. Total impacts on the population 

for each event are weighted by the relative size of the state’s population for all states involved. 

Population impacts are measured as the sum of the number of people killed and affected
8
. This 

value is divided by the population size of the state at that time and summed by disaster subtype 

over the period of five years according to equation 14: 

 
       ∑

                              

                   
 

 
[14]  

EM-DAT categorizes events by subtype, four of which I have included in my regressions. 

They are climatological (extreme temperature, drought, and wildfire), geophysical (earthquake, 

volcano, and dry mass movement), meteorological (storm, tornado), and hydrological (flood, and 

wet mass movement). A more detailed description can be found in Appendix Table D. Graph 4 

and Graph 5 present breakdowns of disaster damage by these subtypes. Generally, 

Meteorological disasters are the greatest source of economic damage and persons killed and 

affected by natural disasters in the U.S. in this time period.  

The dependent variable is per capita GDP and per capita GDP growth rates over 5 years. 

The data are observed from the period 1970-2000 and are obtained from the Bureau of Economic 

Analysis (BEA). State level capital stock is included as an explanatory variable and data is 
                                                           
8 According to EM-DAT, the category “killed” includes persons confirmed as dead and persons missing and 

presumed dead. The category “affected” includes people requiring immediate assistance and displaced or evacuated 

people. 
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obtained from Yamarik (2011). A measure of human capital stock is also included as an 

explanatory variable and obtained from the U.S. Census Bureau. I measure human capital by the 

percentage of the population 25 years or older with a bachelor’s degree or higher. Summary 

statistics can be found in Appendix Table A and Appendix Table C.  

Data on total obligations from the Federal Emergency Management Agency (FEMA) at 

the state level are provided by Thomas Garrett from the paper Garrett and Sobel (2002). 

Summary statistics are provided in Appendix Table A and C. The data are obtained for the years 

1989-1999. Graph 9 presents the average real per capita FEMA obligations for this decade. The 

general trend across time is upward.  

When examining disaster impacts at the county level, I obtain tornado, hail and wind 

damage data from Severe Weather Database maintained by National Oceanic and Atmospheric 

Administration. This database is accessible online at http://www.spc.noaa.gov. Like the EM-

DAT database, the Severe Weather Database collects data by event, so damage for events that 

occurred in more than one county were weighted by that county’s GDP as a fraction of the total 

GDP of the all the counties involved. As I’ve done before, the total damage is summed up for 

each county by year and divided by the size of the county’s population. This changes the value to 

per capita terms. The resulting estimate is summed up over the period of five years to create 

disaster variables for tornado and hail and wind damage. I observe all 257 counties from 

Arkansas, Kansas, and Oklahoma. The data are collected for the years 1999-2009.  

The dependent variables for the county level regressions are measures of the per capita 

GDP and per capita GDP growth rates over five years. The observations are made for the years 

1999-2009 and are obtained from the BEA. Capital stock measures for this period are included as 



26 
 

explanatory variables and are calculated by the perpetual inventory method according to the 

equation: 

 
 ̇      

     
    

 
[15]  

 Where g is the average annual growth rate of real capital investment by manufacturing 

establishments, δ is a depreciation rate of 5% chosen as the average of statewide depreciation 

from Yamarik’s (2011) state level estimates. The initial level of capital for K in 1950 is also 

estimated from the Yamarik’s (2011) state level figures. The level of capital for each county is 

calculated by their output relative to the state output. Manufacturing investment data for the 

period from 1999-2009 are obtained from the U.S. Census Economic Survey which is collected 

for the years 1997, 2002, and 2007. A proxy for human capital for this period is also included as 

an explanatory variable and is measured as the proportion of the population 25 years and older 

with a bachelor’s degree or higher. Inter-period estimates are interpolated where measured data 

are not available. Summary estimates are presented in Appendix Table B and C. 

   FEMA data for the Public Assistance program is obtained from the data.gov for the years 

1999-2009. The Public Aid assistance program provides aid for projects for public areas such as 

schools and roads and non-profits in the aftermath of a disaster (e.g. repair, debris removal and 

hazard mitigation). There is a separate FEMA program that provides aid to individuals and 

private businesses, but I was not able to obtain these data on the county level. On average, public 

assistance comprised around 53.2 percent of the total aid disbursed for the previous decade 

(1989-1999) according to Garrett and Sobel’s (2002) state level data. All dollar values are real 

2005 dollar values.  

  

 



27 
 

Methodology 

I use a fixed effects model for both state and county regressions because it removes the 

effects of time invariant characteristics of each geographic area.  I start with the following  

regression found in most growth literature.  

                            [16]  

Where      is the real GDP per capita growth rate across the five year period and      are 

the control variables included in the regression.  

I include variables measuring the magnitude and frequency of natural disasters by time 

period and state as described in the previous section. I also control for per capita FEMA aid over 

the five years where data is available. This leaves me with the following four possible equations. 

                                   
[17]  

                                           [18]  

                                   [19]  

                                           [20]  

 

       and        are the magnitudes of economic and human damages as calculated by 

equation 13 and equation 14 for each sub-type of disaster: climatic, geologic, hydrological, and 

meteorological.         is the level of per capita FEMA obligations over the five year period t. 

I follow a similar methodology for the county regressions, replacing the        and        

variables with per capita tornado damage        and hail and wind damage       over the five 

year period.  This results in the following equations where         is included as the level of 

per capita FEMA Public Aid over the five year period.   
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                                         [21]  

                                                 [22]  

 

I weight the observations of each county by that county’s average population, under the 

assumption that the behavior of more populous counties are likely to be more representative of 

the whole.  
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Results 

 Table 1 presents the results for the fixed effects level regression. The dependent variable 

is real per capita GDP for the state and the relevant time period for the regression are the years 

from 1970 to 2000. The magnitude of economic loss is measured as the real dollar value over the 

size of the state population. Total economic loss is broken down into climatological, geophysical, 

hydrological, and meteorological subgroups. All variables are in natural logs. The coefficients on 

both the physical and human capital explanatory variables have the expected sign and are 

statistically significant. To address any issues of endogeneity, a panel instrumental variable 

regression is run using lagged variables for human and physical capital. The results are very 

similar. The main difference is a slightly higher coefficient for human capital [0.0265] and lower 

coefficient for physical capital [0.501] and a higher R
2
 (0.928). 

 None of the variables that measure economic losses from disasters are statistically 

significant. This is contrary to Raddaz (2009) who finds that a single climatic disaster decreases 

GDP per capita on average by 0.6 percent. Raddaz defines climatic disasters as climatological, 

hydrological, and meteorological disasters combined. Consistent with Raddaz, I find that 

geological disasters have no impact on GDP per capita. Two reasons for these contradictory 

results may have already been suggested by existing literature. First, there is evidence that 

disasters have significantly less economic impact on middle and high income countries 

Raddaz(2009). This is because a country’s level of development can impact its response to a 

disaster. According to Kellenberg and Mobarak (2011), “only when levels of development have 

reached a certain point can nations successfully address weak institutions, create better insurance 

markets, require more stringent building standards, reduce corruption, and instate more advanced 
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warning and emergency response systems.”
9
 Cavallo (2010) also finds that there is only a 

significant impact of natural disasters on GDP levels in cases of catastrophic disasters. Perhaps 

the disasters in my dataset are simply not large enough to affect a lasting impact on a state 

economy.  

Columns (5) through (6) run the same regressions while attempting to control for the 

effects of FEMA through a FEMA dummy variable which represents the years when FEMA is in 

existence (1979). Consideration of disaster aid is something that not many empirical works in the 

field have attempted. An exception is Yang (2008) who looks specifically at financial flows, 

including official development assistance (ODA) in the aftermath of hurricanes. He finds that 

when ODA was granted, (usually to poorer countries) it was enough to replace almost 80% of 

the damage. In my regressions, the dummy variable is negative and statistically significant, but 

cannot be interpreted as a FEMA effect because it also captures many other time specific effects.  

 Table 2 presents the fixed effects level regression run for the same years and states as 

Table 1. The measure in these regressions for disaster loss is the proportion of people in the 

population who are killed and affected (affected is defined as the people requiring immediate 

assistance during the emergency, including displaced or evacuated people). Again, the 

coefficients on the capital stock and human capital variables have the expected sign and are 

statistically significant. Again, my coefficients for my disaster variables are not statistically 

significant and inclusion of the FEMA dummy variable (columns 5 through 8) is negative and 

statistically significant, but cannot be interpreted.  

                                                           
9
 Kellenberg and Mobarak (2011) p.304 
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From my regressions, it appears that disasters in the U.S. do not have a significant impact 

on output levels of the states. This holds whether we consider disasters through their human 

capital shock, physical capital shock, or by subcategory. 

 In Table 3, I turn to the question of the impact of disasters on economic growth rates. 

Table 3 presents results for my growth regressions for all states at five year periods from the 

years 1970 to 2000 according to equation 17. The dependent variable is the per capita GDP 

growth rate over five years and the disaster variables are the same as those presented in Table 1. 

Year dummies were included to control for the presence of FEMA. For brevity, their coefficient 

estimates are not included. All disaster variables are in natural logs. The coefficients for the 

growth of capital stock and human capital have the expected sign and are statistically significant. 

The coefficients for the variables measuring economic loss for climatological (extreme 

temperatures, droughts, wildfires) and geophysical disasters (earthquake, volcano) are negative 

and statistically significant, though small. They are [-0.000741] and [-0.000715] for 

climatological and geophysical disasters respectively. The median amount of climatological and 

geophysical disaster damage over five years would decrease the average GDP growth rate by 

0.00245 and 0.00269 percentage points respectively over that same period. Hydrological and 

meteorological disasters appear to have no effect on statewide output growth rates. At first 

glance, this result may be concurrent with Loayza et al. (2009) who find that droughts have the 

most negative, statistically significant impact on growth rates (0.6 percentage points a year) at 

the country level. However, as Graph 3 show and Chart 3 show, droughts only comprise 12.8 

percent of climatological disasters in my dataset, so it is unclear whether the impact comes 

through droughts, wildfires, or extreme temperature. Further analysis would be needed. Loayza 

et al. (2009) also have findings of no significance on earthquakes and a positive impact of floods 
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on growth rates. The only concurrence is that meteorological disasters (storms in Loayza et al.) 

do not have a significant impact on growth.  

My finding that geophysical disasters have a negative impact on growth rates is contrary 

to most existing literature which finds no statistically significant effect, though some (Skidmore 

and Toya, 2002) have found a negative coefficient. This may suggest that the impacts of 

geophysical disasters are more localized and have more of an impact on a smaller region than for 

the entire country.  

 Table 4 presents the results for equation 19 with the variables that measure human losses. 

The coefficients for the growth of human and physical capital stock are statistically significant 

and consistent with Table 3. I find a negative and statistically significant coefficient [-1.267] for 

climatological disasters. For the median amount of disaster damage in terms of human loss over 

five years, there would be a 0.000016 drop in the average growth rate for the state. This is much 

smaller effect than the one for the impact of climatological disasters measured by economic loss 

in Table 3. The coefficient for geophysical disasters is not statistically significant and the 

coefficients for hydrological and meteorological variables are also insignificant. At least for the 

U.S., there seems to be a greater, negative impact on the growth rates through economic loss than 

through human impacts at the state level, though the elasticity for the human loss variable is 

much higher.   

 In summary, Table 1 through Table 8 show that climatological and geophysical disasters 

have a negative effect on the growth rates of states from 1970-2000. For climatological disasters, 

elasticity of the human loss variable is much higher. However, given the median amount of loss, 

economic damage seems to have a much greater effect. For geological disasters, damage to the 
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human variable has no effect on growth rates, though economic damage has a small negative 

effect. No significant effects on growth were found for hydrological and meteorological disasters 

at the state level, and no effects were found for any type of disaster on the level of output of the 

state.  

Inclusion of the level of FEMA obligations 

As I mention before, it is not likely that inclusion of a dummy variable for the years that 

FEMA existed as an organization can adequately capture the effect of aid in my regressions. 

Table 5 presents the results for the level regressions that include variables that measure total per 

capita FEMA obligations at the state level for each subtype of disaster. Because I was only able 

to obtain total FEMA obligation data at the state level for the years 1989 to 1999, I run my 

regression for all states during this time period. All variables are in natural logs. The coefficients 

for human and physical capital stock are of the expected sign and statistically significant. 

Instrument physical and human capital stock with lagged variables produces very similar results. 

The coefficient for per capita physical capital is slightly higher [0.419], the coefficient for human 

capital is slightly lower [0.110] and the R
2
 value is slightly lower [0.951]. In columns (1) through 

(4), I run the same regression as in Table 1 for the new time period 1989-1999.  

Again, I find no statistically significant impacts on the state level of output for any 

variables that measure economic loss. In columns (5) through (8) I control for the level of total 

per capita FEMA obligation for the disaster subtype. I find a negative, statistically significant 

coefficient [-0.0310] for the geophysical economic loss variable and a positive, statistically 

significant coefficient [0.0402] for the geophysical FEMA obligation variable. This suggests that 

measuring disaster impacts without controlling for the level of aid provided in the aftermath can 
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lead to upward bias of the estimates. Specifically, a 10 percent increase in the per capita 

economic loss from geological disasters over five years would have led to a 0.3 percent decrease 

in the state’s per capita level of output, all else equal. A 10 percent increase in the per capita 

FEMA aid over five years for geological disasters would have led to about a 0.4 percent increase 

in the state’s per capita output, all else equal. It is interesting that this negative effect of disasters 

and positive effect of aid on output is only observed for geophysical disasters. As shown in 

Graph 6 and Graph 7, the breakdown of FEMA aid by disaster subtype follows pretty well the 

breakdown of total economic damage during this period. This supports again the idea that the 

type of disaster matters in making claims for the effects on the economy of both the economic 

loss and governmental aid in a disaster situation.
10

 

In columns (1) through (4) of Table 6, I present the results for the equation 18, run for the 

years 1989-1999.  The dependent variable is the five year per capita GDP growth rate. All 

disaster variables are in natural logs and I use rolling 5 year windows. The coefficients for the 

growth of physical capital and human capital are of the expected sign and statistically significant. 

The small, negative effect on state growth rates from climatological and geophysical disasters 

found in Table 3 are not present in this new time period. It may be that states are better equipped 

to mitigate the negative effects of disasters on their growth in these later years, whether through 

experience and/or development. Likewise, there are no statistically significant coefficients for 

                                                           
10

 The regressions from Table 5 are run with the variables that measure human loss, but produce no statistically 

significant coefficients for the disaster and aid variables. This may be because FEMA aid more closely follows a 

measure of economic loss than a measure of proportion of population killed and affected (Graph 6, Graph 7, and 

Graph 8). These results are not included for brevity.    
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disaster and aid measures, when FEMA obligations are controlled for in columns (5) through 

(8).
11

  

Smaller Economic Areas 

From my results, I find that excluding variables for aid may result in upward omitted 

variable bias in disaster regressions and that natural disasters do not seem to have as much of an 

impact on state GDP in more recent years. This may be because states have become more adept 

at handling disasters and stemming their negative impacts on the economy as a whole. The 

question remains if this still holds when we move into even smaller geographic areas. According 

to Raddatz (2009), “it is often claimed that small states have a harder time dealing with natural 

disasters because of their inability to diversify geographically”
12

. Thus, we may see a larger 

impact of disasters on output at the county level than at the state level, and we may be able to 

observe impacts that may be subsumed at the state level.  

Table 7 presents results for the fixed effects regressions at the county level. The 

dependent variable is the per capita GDP of 257 counties from Arkansas, Kansas, and Oklahoma 

and the period of observation is from 1999-2009.  I look specifically at per capita tornado 

damage and per capita hail and wind damage. These are all considered types of storm damage 

and would be included under meteorological damage, for which I found no statistically 

significant effects on the economy at the state level. Finally, I control for per capita amount of 

FEMA aid provided through the FEMA Public Assistance program
13

 for these damages to help 

                                                           
11

 I run the same regressions for the proportion of population killed and affected in Table 6 and there are no 

significant effects to report. The results were not included for brevity. 
12

 P.12 
13

 The Public Aid assistance program provides aid for projects for public areas such as schools and roads and non-

profits in the aftermath of a disaster (e.g. repair, debris removal and hazard mitigation). There is a separate FEMA 

program that provides aid to individuals and private businesses, but I was not able to obtain data on the county level 

for the amount of aid disbursed through this program. 
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address some omitted variable bias. All variables are in natural logs. The coefficients of the 

physical capital stock and human capital stock variables are of the expected sign and are 

statistically significant. In column (1) where aid is excluded, the coefficient on tornado damage 

is negative and statistically significant, suggesting that tornados have a negative impact on the 

level of county irrespective of any positive effects that may come from aid. When FEMA public 

aid is controlled for the coefficient for per capita tornado damage is even more negative 

[-0.0290], implying that 10 percent increase in per capita economic loss from tornados over five 

years would have led to around a 0.29 percent drop in the level of per capita output in the county, 

all else equal. The coefficient for the FEMA aid variable is [0.00877] implying that a 10 percent 

increase in  per capita aid over five years would have led to a 0.088 percent increase in the level 

of output, all else equal. The coefficient for the per capita hail and wind damage is not 

statistically significant, even when FEMA public aid is controlled for. The damage from hail and 

wind may not be severe enough to have lasting impacts at the county or the coefficient may still 

suffer from upward omitted variable bias because FEMA private aid is not accounted for in this 

regression.  

Table 8 presents the fixed effects growth regressions at the county level following 

equations 21 and 22. The dependent variable is the five year per capita GDP growth rate. All 

disaster variables are in natural logs and I use rolling 5 year windows. The coefficients for the 

growth of physical capital and human capital are of the expected sign and statistically significant. 

The coefficient for tornado damage per capita is negative and statistically significant, even when 

FEMA aid is not controlled for, suggesting that tornado damage has a negative impact on county 

level growth rates. When FEMA public aid is controlled for, the coefficient on the tornado 

variable is even more negative [-0.00347]. For the median amount tornado damage over five 
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years this implies a 0.000137 percentage point drop in average five year growth rates, all else 

equal. The coefficient for public FEMA aid is [0.000455]. For the median amount of FEMA 

public aid over five years (when granted) this suggests a 0.00022 percentage point increase in 

average five year growth rates. The coefficient for per capita hail and wind damage is 

statistically insignificant. It is unclear whether there is no lasting effect or if the coefficient still 

suffers from upward bias due to the omission of a measure of FEMA private aid. 

The results show that disasters can still have a negative impact (albeit very small) on the 

economy at the county level across five year periods, even in the most recent years for the U.S. 

This effect may only hold or be most pronounced for the extreme and damaging types of 

disasters. Tornados, wind, and hail all belong to the category of storms, but only the tornado 

damage variable has a statistically significant on GDP levels and growth, even when the full 

amount of FEMA aid is not controlled for. Consistent with state level findings on government 

aid, the FEMA Public Aid assistance program spending for tornado, hail, and wind damage is 

capable of having a positive impact on the county economy in terms of both output levels and 

growth rates.  

The state level regressions may not reflect this negative impact of tornado damage 

because the state is has greater geographic diversification and can take advantage of their 

productive capacity in areas not impacted by tornados. The impact of tornado damage may also 

be lost in the aggregation of all types of storms into the category of meteorological disaster. 
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Conclusion 

 Examining the county and state level impacts of natural disasters on economic growth 

and output in the U.S. has led to some interesting insights. Consistent with some literature on the 

country level, I find a negative impact or no impact of natural disasters on state and county and 

county economies dependent on the type of disaster. In general, I do not find evidence to support 

the theories for natural disasters being beneficial to growth suggested in the literature review and 

theory sections of the paper.   

Specifically, at the state level, there are no medium run impacts on the level of output 

from disasters when FEMA obligations are not controlled for. When the level of FEMA 

obligations are included as a variable, there is a negative, statistically significant impact on 

output from damage from geophysical disasters and a positive, statistically significant impact 

from FEMA obligations for these disasters. This suggests that there may be upward omitted 

variable bias with the exclusion of aid variables in regressions that look at disaster damage and 

GDP. Specifically, I find that a 10 percent increase in the per capita damage and FEMA aid for 

geophysical disaster over five years would have led to a 0.3 percent decrease and a 0.4 increase 

on GDP per capita respectively, all else equal. In general, the effect of disasters on state output in 

the medium run for the U.S. is fairly small. Compare this result to Raddatz (2009) who finds that 

climatic events, on average, decrease GDP per capita by 2% at the country level, though 

geological impacts were not statistically significant.  

When looking at effects on growth from natural disasters at the state level, I find that for 

the period from 1970-2000, climatological and geophysical disasters have a small, negative 

effect on the average five year growth rate, even when the level of FEMA aid was not controlled 
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for. This negative effect seems to disappear in the later years (1989-1999), and the coefficients 

for the disaster variable remain statistically insignificant, even when FEMA aid is controlled for. 

This may be due to developments in disaster mitigation that have made economies better 

equipped recovery, but further research on the topic is needed. In general, the shocks to physical 

capital from disasters seem to have a greater impact on growth rates than shocks to population in 

the medium term.  

 There is also evidence that natural disasters may have a greater impact on the per capita 

GDP of smaller areas. When looking at tornado damage at the county level, I find a negative and 

statistically significant effect on both output levels and growth rates over five years, even for the 

most recent years 1999-2009. The effect is small, however, and negative. Specifically, a 10 

percent increase in per capita economic loss from tornados over five years would have led to a 

0.29 percent drop in the per capita GDP of the county, all else equal. The median amount of 

tornado damage over five years would have led to a small, 0.000137 percentage point drop in the 

average GDP growth rate, all else equal. Compare this with Strobl (2008) who find that counties 

in the U.S. that are struck by hurricanes will see a 0.8 percentage point drop in growth rate in the 

year of the event. FEMA Public Aid has a small, positive effect on both output and growth rate. 

A 10 percent increase in per capita aid over five years would have led to a 0.083 percent increase 

in output, all else equal and the median amount of aid (when granted) would have led to a 

0.00022 percentage point increase in the growth rate over five years. The county level results 

also support the idea that different disasters have different effects on the economy. 

Consequently, information may be lost in aggregation. Tornados are categorized under the 

umbrella of meteorological disasters, which do not have an impact on GDP at the state level. 

Graph 10 shows that the average amount of per capita tornado damage is increasing from the 
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years 1999-2009, but remains fairly steady. In contrast, annual damage attributable to hail and 

wind is much more erratic. This suggests a certain regularity to tornados that could contribute to 

their negative economic impact by discouraging investment or adoption of expensive new 

technology during reconstruction. Furthermore, damage from tornados is generally greater than 

damage from hail and wind. However, much more research would be needed to make these 

claims, and it would provide an interesting area to explore for further research.   
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Table 1. Fixed Effects Level Regressions with Economic Loss, 1970-2000 

Notes: Robust t-statistics in brackets. All variables are in natural logs.  

*** p<0.01, ** p<0.05, * p<0.1 

Dependent Variable Ln of Real Per Capita GDP 

 Without FEMA Dummy Variable  With FEMA Dummy Variable 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

Per Capita Capital Stock 0.585*** 0.582*** 0.590*** 0.585***  0.684*** 0.681*** 0.690*** 0.685*** 

 [6.916] [6.867] [6.937] [6.926]  [6.479] [6.420] [6.496] [6.505] 

 

Human Capital Variable 0.0243*** 0.0246*** 0.0242*** 0.0245***  0.0295*** 0.0297*** 0.0292*** 0.0296*** 

(Percent of Bachelor’s Degrees or Higher 

in Population 25 years or older) 

[7.283] [7.224] [7.076] [7.230]  [7.111] [7.044] [6.856] [7.064] 

 

 

HIT variable for Climatological 0.00284     0.00131    

(Previous 5 years) [1.237]     [0.796]    

 

HIT variable for Geophysical  -0.00410     -0.00396   

(Previous 5 years)  [-1.103]     [-1.628]   

 

HIT variable for Hydrological   65.68     58.01  

(Pervious 5 years)   [0.892]     [0.915]  

 

HIT variable for Meteorological     -5.309     -5.872 

(Previous 5 years)    [-0.274]     [-0.481] 

 

Dummy Variable for FEMA      -0.0663*** -0.0663*** -0.0655*** -0.0667*** 

(1980 or Later)      [-6.672] [-6.793] [-6.701] [-6.821] 

 

Constant 3.824*** 3.842*** 3.773*** 3.818***  2.767*** 2.796*** 2.708*** 2.757*** 

 [4.777] [4.788] [4.690] [4.779]  [2.760] [2.779] [2.688] [2.759] 

          

Observations 1,632 1,632 1,632 1,632  1,632 1,632 1,632 1,632 

R-squared 0.924 0.924 0.924 0.924  0.922 0.922 0.922 0.922 
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Table 2. Fixed Effects Level Regressions with Human Loss, 1970-2000 

 

Dependent Variable Ln of Real Per Capita GDP 

 Without FEMA Dummy Variable  With FEMA Dummy Variable 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

Per Capita Capital Stock 0.531*** 0.533*** 0.523*** 0.517***  0.599*** 0.598*** 0.593*** 0.593*** 

 [8.239] [7.534] [7.835] [7.580]  [7.405] [6.993] [7.193] [6.968] 

 

Human Capital Variable 0.0244*** 0.0243*** 0.0247*** 0.0248***  0.0298*** 0.0299*** 0.0301*** 0.0301*** 

(Percent of Bachelor’s Degrees or 

Higher in Population 25 years or 

older) 

[8.672] [7.641] [8.363] [8.584]  [9.323] [8.398] [9.124] [9.056] 

 

 

AFF variable for Climatological 19.30*     11.53*    

(Previous 5 years) [1.918]     [1.983] 

 

   

AFF variable for Geophysical  22.24     8.569   

(Previous 5 years)  [1.080]     [0.600] 

 

  

AFF variable for Hydrological   1.503*     0.505  

(Previous 5 years)   [1.847]     [0.710] 

 

 

AFF variable for Meteorological     0.648     0.0641 

(Previous 5 years)    [1.277]     [0.140] 

 

Dummy Variable for FEMA      -0.0614*** -0.0619*** -0.0617*** -0.0618*** 

(1980 or Later)      [-5.691] [-5.678] [-5.704] [-5.897] 

 

Constant 4.372*** 4.358*** 4.455*** 4.512***  3.623*** 3.631*** 3.682*** 3.684*** 

 [7.143] [6.518] [7.047] [6.968]  [4.647] [4.424] [4.642] [4.505] 

          

Observations 1,632 1,632 1,632 1,632  1,632 1,632 1,632 1,632 

R-squared 0.935 0.935 0.935 0.935  0.933 0.933 0.933 0.933 
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 3. Fixed Effects Growth Regressions with Economic Losses, 1970-2000 

 

Dependent Variable Per Capita GDP Growth Rate 

 (1) (2) (3) (4) 

     

Growth of Capital Stock 0.809*** 0.803*** 0.813*** 0.813*** 

 [15.27] [14.58] [14.28] [14.35] 

Growth of Human Capital 0.0109*** 0.0112*** 0.0116*** 0.0118*** 

 [3.175] [3.105] [3.580] [3.683] 

HIT variable for Climatological Disasters (5 years) -0.000741***    

 [-5.884]    

HIT variable for Geophysical Disasters (5 years)  -0.000715***   

  [-4.020]   

HIT variable for Hydrological Disasters (5 years)   7.998  

   [1.575]  

HIT variable for Meteorological Disasters(5 years)    -0.875 

    [-0.338] 

Constant -0.0292*** -0.0296*** -0.0309*** -0.0312*** 

 [-4.290] [-4.142] [-4.760] [-4.878] 

     

Observations 357 357 357 357 

R-squared 0.606 0.600 0.597 0.595 
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

Year dummies are included as fixed effects to control for the presence of FEMA but are not reported.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Fixed Effects Growth Regressions with Human Losses, 1970-2000 

 

Dependent Variable Per Capita GDP Growth Rate 

 (1) (2) (3) (4) 

     

Growth of Capital Stock 0.811*** 0.808*** 0.810*** 0.814*** 

 [14.33] [14.27] [14.42] [14.10] 

Growth of Human Capital 0.0119*** 0.0123*** 0.0118*** 0.0119*** 

 [3.741] [3.650] [3.665] [3.613] 

AFF variable for Climatological Disasters (5 years) -1.267**    

 [-2.443]    

AFF variable for Geophysical Disasters (5 years)  2.774   

  [1.076]   

AFF variable for Hydrological Disasters (5 years)   0.237  

   [0.971]  

AFF variable for Meteorological Disasters(5 years)    0.0736 

    [1.134] 

Constant -0.0314*** -0.0323*** -0.0312*** -0.0314*** 

 [-4.965] [-4.748] [-4.818] [-4.800] 

     

Observations 357 357 357 357 

R-squared 0.598 0.596 0.597 0.597 
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

Year dummies are included as fixed effects to control for the presence of FEMA but are not reported.  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 5. Fixed Effects Level Regression with FEMA Obligations and Economic Loss, 1989-1999 

 

Dependent Variable Ln of Real Per Capita GDP 

 Without FEMA Obligations Variable  With FEMA Obligations Variable 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

Per Capita Capital Stock 0.335*** 0.346*** 0.344*** 0.326***  0.311** 0.271*** 0.353*** 0.326*** 

 [2.700] [2.689] [2.702] [2.948]  [2.243] [2.800] [2.851] [2.980] 

Human Capital Variable 0.129*** 0.131*** 0.131*** 0.131***  0.130*** 0.135*** 0.131*** 0.131*** 

     (Percent of Bachelor’s Degrees or Higher in      

     Population 25 years or older) 

[17.99] [18.21] [17.75] [18.90]  [16.88] [24.08] [17.93] [18.85] 

 

HIT variable for Climatological 0.00355     0.00436*    

     (Previous 5 years) [1.491]     [1.754]    

Per Capita Climatological FEMA Aid      -0.00435    

     (Previous 5 years)      [-0.810]    

HIT variable for Geophysical   0.00319     -0.0310***   

     (Previous 5 years)  [0.633]     [-5.571]   

Per Capita Geophysical FEMA Aid       0.0402***   

     (Previous 5 years)       [5.447]   

HIT variable for Hydrological Disasters   -0.00220     -0.00172  

     (Previous 5 years)   [-0.347]     [-0.271]  

Per Capita Hydrological FEMA Aid        0.00201  

     (Previous 5 years)        [1.071]  

HIT variable for Meteorological Disasters    0.00165     0.00134 

     (Previous 5 years)    [0.689]     [0.637] 

Per Capita Meteorological FEMA Aid         0.00105 

     (Previous 5 years)         [0.376] 

 

Constant 4.040*** 3.892*** 3.921*** 4.098***  4.264*** 4.581*** 3.828*** 4.104*** 

 [3.563] [3.296] [3.373] [4.067]  [3.348] [5.157] [3.394] [4.118] 

          

Observations 357 357 357 357  357 357 357 357 

R-squared 0.967 0.967 0.967 0.967  0.968 0.970 0.967 0.967 
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

Year dummies are included as fixed effects but are not reported. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6. Fixed Effects Growth Regression with FEMA Obligations and Economic Loss, 1989-1999 
 

Dependent Variable Per Capita GDP Growth Rate 

 Without FEMA Obligations Variable  With FEMA Obligations Variable 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

Growth of Capital Stock 0.670*** 0.678*** 0.664*** 0.677***  0.698*** 0.640*** 0.685*** 0.672*** 

 [3.702] [3.622] [3.518] [3.701]  [4.276] [3.283] [3.752] [3.655] 

Growth of Human Capital 0.0227*** 0.0226*** 0.0227*** 0.0231***  0.0226*** 0.0230*** 0.0227*** 0.0232*** 

 [11.87] [12.68] [11.69] [12.59]  [12.26] [12.37] [11.87] [12.11] 

HIT variable for Climatological -0.000140     -0.000419    

     (5 years) [-0.228]     [-0.673]    

Per Capita Climatological FEMA Aid      0.00156    

     (5 years)      [0.717]    

HIT variable for Geophysical   0.000855     -0.00362   

     (5 years)  [0.638]     [-1.507]   

Per Capita Geophysical FEMA Aid       0.00525*   

     (5 years)       [1.952]   

HIT variable for Hydrological Disasters   0.000658     0.000852  

     (5 years)   [0.376]     [0.474]  

Per Capita Hydrological FEMA Aid        0.000912  

     (5 years)        [1.130]  

HIT variable for Meteorological Disasters    -0.000767     -0.000662 

     (5 years)    [-1.530]     [-1.223] 

Per Capita Meteorological FEMA Aid         -0.000352 

     (5 years)         [-0.591] 

Constant -0.382*** -0.381*** -0.382*** -0.385***  -0.380*** -0.387*** -0.383*** -0.387*** 

 [-11.69] [-12.45] [-11.40] [-12.39]  [-12.06] [-12.16] [-11.52] [-12.00] 

          

Observations 357 357 357 357  357 357 357 357 

R-squared 0.888 0.888 0.888 0.890  0.888 0.890 0.889 0.890 
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

Year dummies are included as fixed effects but are not reported. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 7. County-Level Fixed Effects Level Regression and Economic Loss, 1999-2009 

 

Dependent Variable Ln of Real Per Capita GDP 

 (1) (2) 

   

Capital Stock per capita 0.989*** 0.996*** 

 [89.17] [93.19] 

 

Human Capital Variable 0.00635*** 0.00524*** 

(Percent of Bachelor’s Degrees or Higher in Population 25 years or older) [4.293] [3.750] 

 

 

Dollars of Tornado Damage per capita -0.0220** -0.0290*** 

(Previous 5 years) [-2.430] [-3.644] 

 

Dollars of Hail and Wind Damage per capita 0.00310* 0.00300* 

(Previous 5 years) [1.787] [1.904] 

 

Dollars of FEMA Public Aid per capita  0.00877*** 

(Previous 5 years)  [9.000] 

 

Constant -0.204* -0.273** 

 [-1.793] [-2.494] 

   

Observations 1,799 1,799 

R-squared 0.931 0.936 

   
Notes: Robust t-statistics in brackets. All variables are in natural logs. 

Year dummies are included as fixed effects but are not reported. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8. County-Level Fixed Effects Growth Regression and Economic Loss, 1999-2009 

 

Dependent Variable GDP Growth Rate 

 (1) (2) 

   

Growth of Capital Stock 0.699*** 0.698*** 

 [58.93] [57.97] 

 

Growth of Human Capital 0.0644** 0.0679** 

 [2.471] [2.323] 

 

Dollars of Tornado Damage per capita -0.00364*** -0.00347*** 

(5 year total) [-7.539] [-6.024] 

 

Dollars of Hail and Wind  Damage per capita 0.000305* 0.000290* 

(5 year total) [1.742] [1.724] 

 

Dollars of FEMA Public Aid per capita  0.000455*** 

(5 year total)  [2.652] 

 

Constant 0.0277*** 0.0190*** 

 [7.588] [5.651] 

   

Observations 1,799 1,799 

R-squared 0.914 0.915 

   
Notes: Robust t-statistics in brackets. All variables are in natural logs.  

Year dummies are included as fixed effects but are not reported. 

*** p<0.01, ** p<0.05, * p<0.1 
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Charts and Graphs 

Chart 1. Top 10 States in Total Economic Loss in Current Dollars (1970-2000) from EM-DAT 

State Total Breakdown 

  Climatological Geophysical Hydrological Meteorological 

California $38,755,606,034 $2,659,554,483 $31,150,200,000 $2,505,930,642 $2,439,920,909 

Florida $28,020,089,511 $1,762,979,476 $0 $0 $26,257,110,035 

Texas $18,282,400,750 $2,392,301,365 $0 $1,666,008,904 $14,224,090,481 

Louisiana $10,903,060,837 $580,053,368 $0 $0 $10,323,007,469 

South Carolina $8,288,824,613 $302,457,220 $0 $0 $7,986,367,393 

Illinois $6,212,520,572 $116,081,757 $0 $4,306,167,825 $1,790,270,990 

New York $5,668,125,143 $171,064,879 $0 $395,419,940 $5,101,640,325 

Pennsylvania $4,462,110,639 $659,826,865 $0 $421,224,739 $3,381,059,035 

Missouri $3,864,857,187 $1,218,851,025 $0 $1,703,657,844 $942,348,318 

Virginia $3,832,954,349 $637,503,443 $0 $41,740,459 $3,153,710,447 

 

Chart 2. Top 10 States in Total Number of Killed and Affected Persons (1970-2000)  EM-DAT 

State Total  Breakdown 

   Climatological Geophysical Hydrological Meteorological 

Florida 1,010,042  40,944 0 0 969,099 

New York 713,020  334 0 41,336 671,351 

Pennsylvania 472,809  24 0 30,024 442,761 

North Carolina 321,890  13 0 3 321,875 

New Jersey 306,929  0 0 22,907 284,022 

California 300,004  4,336 57,699 226,730 11,239 

Virginia 249,813  12 0 12,482 237,319 

Michigan 232,866  19 0 1,253 231,595 

Massachusetts 232,732  0 0 13,325 219,407 

Maryland 179,500  18 0 9,662 169,820 

 

Chart 3. Total Incidents Breakdown (1970-2000) 

Climatological 
 

 Geophysical 
 

 Hydrological 
 

 Meteorological  

Drought 16  Earthquake 15  Mass movement wet 2  Storm 964 

Extreme Temperature 58  Volcano 1  Flood 249    

Wildfire 51          

Total 125  
 

16  
 

251  
 

964 
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Chart 4. Breakdown of Killed and Affected by Disaster Subtype (1970-2000) 

 Killed Affected Total Proportion Killed 

Climatological 16239 106867 123106 0.131911 

Geophysical 237 63067 63304 0.003744 

Hydrological 3585 4706761 4710346 0.000761 

Meteorological 24316 49426744 49451060 0.000492 
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Graph 1.  Damage Amounts and Number of Events in the U.S. 1980-2011 

 

Source: www.ncdc.noaa.gov 
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Graph 1. Total Number of Disasters and Ln(Average Per Capita GDP) from 1970-2000 

 

Total Disasters 1970-2000 

 

Graph 2. Total Incidents with Climatological Breakdown (1970-2000) 
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Graph 3. Total Economic Damage Breakdown in Current Dollars (1970-2000) 

 

 

Graph 4. Total Persons Killed and Affected Breakdown (1970-2000) 
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Graph 5. Breakdown of Total FEMA Obligations (1989-1999) 

 

Graph 6. Total Economic Damage Breakdown in Current Dollars (1989-1999) 

 

Graph 7. Total Persons Killed and Affected Breakdown (1989-1999) 
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Graph 8. Average State Per Capita FEMA Total Obligations (1989-1999)  

 

Note: Values are in 2005 dollars 

Graph 9. Average County Per Capita Damage and FEMA Public Aid (1999-2009)  

 

Note: Values are in 2005 dollars 
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Appendix 

Appendix Table A. Summary Statistics 

Variable Obs Mean Std. Dev. Min Max 

      

State Per Capita GDP 1836 27312.82 10898.67 11000.24 114814 

State Per Capita Capital Stock 1836 25602.37 7831.58 10336.33 69116.49 

State Human Capital Variable 

(Percent of Bachelor’s Degrees or Higher in Population 25 years or older) 

1728 16.29595 5.645582 4.65 33.19 

 

State Per Capita Economic Loss (over 5 years) 

   

 

Climatological 

 

1632 

 

8.032687 

 

46.7076 

 

0 

 

985.8272 

Geophysical 1632 5.408908 65.6989 0 1069.839 

Hydrological 1632 1.02E-05 0.000053 0 0.000577 

Meteorological  1632 67.88058 278.3001 0 2962.343 

 

State Proportion of Population Killed or Affected (over 5 years) 

 

 

Climatological 

 

1632 

 

1.88E-05 

 

0.000392 

 

0 

 

0.014663 

Geophysical 1632 8.59E-06 7.81E-05 0 0.000879 

Hydrological 1632 0.000562 0.005385 0 0.094035 

Meteorological  1632 0.001472 0.005959 0 0.038982 

      

State Per Capita FEMA Obligations (over 5 years)      

Climatological 357 1.269349 5.196441 0 44.74274 
Geophysical 357 4.186398 32.71135 0 277.9459 
Hydrological 357 19.52499 80.00825 0 933.5169 
Meteorological  357 25.83937 44.56667 0 292.6099 
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Appendix Table B. Summary Statistics 

Variable Obs Mean Std. Dev. Min Max 

      

County Per Capita GDP 2827 16272.36 6298.672 4384.53 70291.98 

County Per Capita Capital Stock 2827 21572.06 9250.408 5330.777 94108.2 

County Human Capital Variable 

(Percent of Bachelor’s Degrees or Higher in Population 

25 years or older) 

2827 16.45815 5.776185 6.02222 51.525 

 

County Per Capita Tornado Damage (over 5 years) 1799 24.64877 133.5703 0 1732.816 

County Per Capita Hail and Wind Damage (over 5 years) 1799 19.78589 119.4179 0 2816.951 

County Per Capita FEMA Public Aid (over 5 years) 1799 2.630958 6.024143 0 81.56701 
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Appendix Table C. Median Statistics (all values are natural logs) 

Time Period Median Values (for non-zero observations) 

 HIT Variable   AFF Variable   Per Capita FEMA Obligations  

1970-2000 Climatological 3.31  Climatological 1.27e-5    

 Geological 3.76  Geological 6.1e-5    

 Hydrological 3.12  Hydrological 2.42e-4    

 Meteorological 4.99  Meteorological 6.69e-5    

         

1989-1999 Climatological 2.23  Climatological 1.57e-5  Climatological 0.74 

 Geological 1.42  Geological 8.59e-4  Geological 2.83 

 Hydrological 1.69  Hydrological 2.24e-4  Hydrological 2.24 

 Meteorological 4.33  Meteorological 3.9e-5  Meteorological 2.71 

         

1999-2000 Damage Per Capita      FEMA Public Aid Per Capita  

 Tornado 0.0394     Tornado, Hail, and Wind 0.4836 

 Hail and Wind 5.26e-5       
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Appendix Table D. Detailed EM-DAT Disaster Subgroups 

Disaster 

Subgroup 
Definition Disaster 

Geophysical  
Events originating from solid earth Earthquake, 

Volcano, 

Mass Movement 

(dry) 

Meteorological  
Events caused by short-lived/small to meso scale atmospheric processes (in the spectrum 

from minutes to days) 

Storm, Tornado 

Hydrological  
Events caused by deviations in the normal water cycle and/or overflow of bodies of water 

caused by wind set-up 

Flood, 

Mass Movement 

(wet) 

Climatological  
Events caused by long-lived/meso to macro scale processes (in the spectrum from intra-

seasonal to multi-decadal climate variability) 

Extreme 

Temperature, 

Drought, 

Wildfire 

 

 

 

 

 

 

 

 

http://www.emdat.be/glossary/9#term81
http://www.emdat.be/classification#Geophysical
http://www.emdat.be/glossary/9#term84
http://www.emdat.be/glossary/9#term137
http://www.emdat.be/classification#Meteorological
http://www.emdat.be/classification#Hydrological
http://www.emdat.be/glossary/9#term93
http://www.emdat.be/classification#Climatological
http://www.emdat.be/glossary/9#term83
http://www.emdat.be/glossary/9#term133
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Appendix Table E. Correlation Matrix for State Level Damage and Total FEMA Obligations 

 Economic Loss 

 
Climatological Geophysical Hydrological Meteorological 

FEMA Obligation for Disaster 0.1057 0.9955 0.0001 0.8035 

 

 

Appendix Table F. Correlation Matrix for County Level Damage and FEMA Public Aid 

 Tornado Damage Hail and Wind Damage FEMA Public Aid  

for Tornado, Hail,  

and Wind Damage 

    

Tornado Damage 1   

Hail and Wind Damage 0.0219 1  

FEMA Public Aid for Tornado,  

Hail, and Wind Damage 

0.1513 0.0011 1 
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