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0. Abstract 

Essentially all US recessions have been preceded by oil price shocks and 

subsequently tighter monetary policies. (Bernanke, Gertler and Watson, 1997). 

Whereas some scholars, including Herrera and Hamilton (2001) claimed that such 

oil price shocks contributed to the recession that followed, others, including, 

Bernanke et al. (1997), believed that the Fed‘s endogenous reaction to the 

monetary policy, rather than oil price per se, led to the contraction of the economy. 

Which had a greater influence on gross domestic product (GDP) — oil price shocks 

or a change in monetary policy—has been debated for years. One of the most 

prominent debates is between Bernanke et al. (1997), and Herrera and Hamilton 

(2001). In the debate, Bernanke et al. and Herrera and Hamilton used the same 

model but with different lag lengths and came to different conclusions. In the 

current study, we contribute to the resolution of this issue by using a new 

methodology to examine the effects of monetary policy to the economy in response 

to oil price shocks. Specifically, we determine the contemporaneous causal order 

empirically in structural vector-autoregression (SVAR).  We then examine the 

economic responses in counterfactual schemes where the Fed does not respond to 

the oil price shocks. Contrary to Bernanke et al.‘s finding, in which the economy 

would have done better had the Fed not held its interest rate constant during an oil 

price shock, we found that the Fed‘s response generates higher output but a less 

steady price level. This suggests that the results are dependent upon prior 

assumptions of the model specifications.  
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1. Introduction 

1.1 Oil price, GDP and federal funds rate 

Historical data show that, every major increase in oil price was 

followed by a recession (Hamilton, 1983). It has also been observed that the 

Federal Reserve tightens monetary policy in response to oil price shocks 

(Bernanke, Gertler and Watson, 1997). Figure 1 shows the historical data of 

oil prices, corresponding federal funds rate, and the level of industrial 

production. We document four major oil price shocks recorded by Blanchard 

and Gali (2007), as shown in the shaded time periods in Figure 1: 1973:3-

1974:1; 1979:1-1980:2, 1999:1-2000:4 and 2002:1-2007:3. Each shaded 

region corresponds to a slowdown in the industrial production and a rise in 

the federal funds rate.  

Oil prices have been believed to be recessionary to the economy 

through two channels. One is through the supply-side: oil prices increase the 

cost of production. The other is through the demand side: increases in oil 

prices reduce the real purchasing power of households.  In addition, as the 

majority of the oil in the United States comes from overseas, the rise in oil 

price increases the nominal value of imports and decreases net exports. This 

subsequently decreases aggregate demand. Kilian (2009) argued that while 

theoretically a rise in oil prices unambiguously decreases output, the effect on 

the price level could be inflationary or deflationary, depending on whether 

supply or demand shocks dominate.  
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Figure1: Nominal oil prices, federal funds rate and industrial production from 1959 to 2007   

Although the oil price shocks could be either inflationary or deflationary, 

Bernanke et al. (1997) claimed that the Fed has typically raised its interest rate in 

response to an oil price shock – a counter inflationary policy. As a matter of policy, 

the goal was to ensure price stability by counteracting an overall increase in prices 

originating with the rise in oil prices. However, the ambiguous effect that oil price 

shocks have on price levels raises the question of whether the Fed‘s response was 

correct. If the dominant effect of an oil price shock is on the supply side, creating 
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an inflationary and recessionary effect, then the Fed‘s tighter monetary policy 

would serve its purpose – it could reduce inflation. However, if the dominant effect 

of an oil price shock is on the demand side, then its effect on the economy would 

be recessionary and deflationary. As a result, the Fed‘s tighter monetary policy 

would be counterproductive. Moreover, tighter monetary policy puts downward 

pressure on GDP by discouraging investment and lending. Therefore, it is possible 

that the GDP slump originates from the tighter monetary policy in conjunction with 

oil prices. 

Since the slump in GDP comes from two possible channels, directly, 

through a hike in the oil price, or indirectly, through tighter monetary policy, we 

aim to assess whether the Fed responded wisely to the oil price shocks. Specifically, 

we ask the following questions:  

 Does the Federal Reserve really respond to oil shocks?  

 What is the effect of an oil price shock on production and the 

price level?  

 Did the monetary response reorient the economy in a helpful 

way? Specifically, did it successfully ensure price and output 

stability?  
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1.2 A prominent debate: Bernanke versus Hamilton 

The question of how oil price shocks affect the economy and how effective 

a tighter monetary policy is in ensuring price and output stability during an oil price 

shock is still debated and no consensus has emerged. On the one hand, Hamilton 

(1983, 1996) pinpointed oil as the main cause for recession.  On the other hand, a 

number of economists suggested that something else was going on that contributed 

to the recession. Barsky and Kilian (2002) showed that exogenous changes in 

monetary expansions in the United States coincided with the rise in oil prices. Bohi 

(1991) examined data in Germany, Japan, the United Kingdom and the United 

States and argued that tighter monetary responses to rises in oil prices, rather the oil 

prices per se, may have contributed to subsequent recessions. Bernanke et al. (1997) 

also pointed to a tighter monetary policy as the prime culprit for the recessions.  

Bernanke et al. (1997) argued that declines in output and employment in the 

1970s were the result of the rise in interest rates – the Fed‘s endogenous response 

to the higher inflation induced by oil shocks. Bernanke conducted counterfactual 

simulations wherein the Fed did not react to the oil price shocks, and the results 

showed that the slump in GDP could have been completely avoided had the Fed not 

tightened monetary policy. In their view, it was not the oil price per se, but the 

resulting monetary tightening that contributed to the recession.  

Herrera and Hamilton (2001) challenged Bernanke et al.‘s  (1997) result 

and argued that these results were a statistical artifact of specifying too short a lag 

length in the VAR. First, Bernanke et al‘s empirical result could be undermined if 
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additional lags are adopted. With longer lags, the counterfactual simulation would 

still show a decrease in GDP in response to an oil price shock even without the 

monetary policy tightening. Secondly, Herrera and Hamilton argued that Bernanke 

et al‘s proposed response, wherein the Fed adopted a constant federal funds rate 

policy, was not credible in light of Lucas critique, which claimed that such a policy 

would require consistently setting the federal funds rate lower than predicted for 

three months in succession. Because rational expectations theory states that the 

forecast errors should be white noise, the probability of such policy happening is 

extremely low, namely, one in 100 billion. The second argument is later 

acknowledged by Bernanke et al. (2004).   

The debate between Bernanke et al. (1997) and Herrera and Hamilton (2001) 

suggested that few agreements emerged on the actual effect of oil prices on the 

economy. We believe a neutral and innovative revisit to the question will shed 

some light to the long-held debate. First, we attempt to improve an issue pertaining 

to the methodology proposed by Bernanke et al.(1997): the contemporaneous 

causal structure used in SVAR was arbitrarily determined. To resolve this issue, we 

aim to avoid a priori assumptions on SVAR made by Bernanke et al.(1997) that 

federal funds rates do not directly affect output and prices, that macroeconomic 

variables are Wold-causally prior to interest rates, and that federal funds rates are 

Wold-causally prior to other interest rates. Unlike Bernanke et al.‘s model 

specification, we include lagged values of all variables in our regression, and we 

use a graph-theoretical causal search algorithm (the PC algorithm) to empirically 

identify the contemporaneous causal order of the SVAR. Graph-theoretic search 
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algorithms originated in the work of philosophers and computer scientists (Spirtes, 

Glymour, and Scheines, 2001; Pearl, 2000). They were introduced to SVAR 

analysis by Swanson and Granger (1997). Demiralp, Hoover and Perez (2008) offer 

a bootstrap method for accessing the reliability of causal orders selected by using 

the PC algorithm.  

1.3 Structural vector-autoregression and Cholesky ordering 

Suppose we have a vector of n of variables at period t Yt=[y1,t, y2,t…,yn,t]’. 

The SVAR can be written as  

A0Yt=A(L)Yt-1+Et                                                                        (1)                                                                             

A0 is the n x n matrix with ones on the main diagonal and non-zero at some 

off-diagonal entries. A(L) is the lag operator, and Et is an n x 1 diagonal matrix 

with error terms. The covariance matrix ∑=E(EE’) is diagonal. This diagonal 

matrix allows practitioners to assign shocks individually. A0 defines Wold-causal 

order of contemporaneous variables. A0  is just-identified if  
𝑛 𝑛−1 

2
 restrictions are 

imposed on the matrix; over-identified if more than 
𝑛 𝑛−1 

2
 restrictions are imposed 

on the matrix.   

If we premultiply equation (1) by A0
-1

, then equation (1) becomes reduced-

form or vector autoregression (VAR) :  

Yt=A0
-1

A(L)Yt-1+A0
-1

Et=B(L)Yt-1+Ut                              (2) 
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Equation (2) could be easily estimated using OLS, yet, the error term, Ut, in 

general, will have a covariance matrix Ω=E(UU’) not diagonal. This non-diagonal 

matrix hinders practitioners from evaluating effects from a shock of a single 

variable, because the shock of one variable also triggers the change of other 

variables through correlations among the variables. To evaluate a single, 

uncorrelated shock therefore requires estimation of SVAR, which requires that we 

know the A0 matrix. Typically, A0 has simply been imposed a priori on the basis of 

loose and informal reasoning.  

The selection of the A0 aims to satisfy one primary goal: to ensure that the 

covariance matrix ∑ is diagonal. There exists a large number of matrices P that 

∑=E(P
-1

U(P
-1

U)’) is diagonal. Typically, practitioners adopt Cholesky 

decomposition in choosing A0. Cholesky orderings select an A0 that is lower 

triangular. Since there are no zeros on or below the main diagonal and all zeros are 

above the main diagonal, Cholesky orderings impose 
𝑛 𝑛−1 

2
  restrictions, and are 

just identified. The variables of interest are ordered based on the assumptions of 

how the economy functions. The order assumes that variables higher in the order 

have no contemporary effects on the variable lower in the order, but the lower-

ordered variable is assumed to be affected by the variables at the upper order. In a 

system of n variables, the number of feasible Cholesky orderings are n permutation, 

or n! orderings. Demiralp, Hoover and Perez (2008) showed that in an SVAR 

model, different Cholesky orders in the model could change the impulse response 

functions (IRF) dramatically, and therefore, a justifiable identification of A0  matrix 

is especially important when conducting SVAR analysis.  
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1.4 Identifying causal structure using PC algorithm 

Unfortunately, in most literature, the assumption of Cholesky order used in 

SVAR was left casually justified. The same problem also existed in the debate 

between Bernanke et al.(1997)  and Herrera and Hamilton (2001) , where the 

selection of the Cholesky ordering was rather arbitrary.
1
 We call into question 

whether this particular Cholesky order would correctly identify the actual response 

of the economy. To answer this, we first need a justified A0 matrix.  The innovation 

is that we use a relatively recent method of empirical identification of the A0 matrix 

that was adopted from the graph-theoretic causal search literature to the SVAR by 

Swanson and Granger (1997), and developed by a variety of economists, including 

Demiralp, Hoover and Perez (2008). The exposition in the next few paragraphs 

closely follows Hoover (2005) and Demiralp, Hoover and Perez (2008).  

The method uses graph theory to relate causal order to relations of 

probabilistic dependence and independence among the data. There is a connection 

between each contemporaneous causal order and the A0 matrix. Each 

contemporaneous causal order can be represented as a system of equations with 

contemporaneous terms and the lagged terms. The system of equations could be 

transformed to an SVAR wherein the contemporaneous terms are characterized by 

a unique A0 matrix. For example, suppose A→B→C, where A, B and C have no 

time dependence. We can represent the system of equations as:  

                                                           
1
 Bernanke et al. and Herrera and Hamilton chose [real GDP, GDP deflator, commodity price, oil 

price federal funds rate 3-month T-bill rate, 10-year T-bond rate] as their Cholesky ordering with 

exclusion restrictions on the lagged terms of Federal funds rate to other macro variables (real GDP, 

GDP deflator, commodity price and oil price). They assume the federal funds rate only affect macro 

variables through its impacts on short and long interest rates. For details see Bernanke et al. (1997) 

and Herrera and Hamilton (2001).    
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A=εA                                                                   (3) 

            B=βA+εB                                                            (4) 

             C=γB+εc                                                             (5) 

where εi, i=A,B,C are error terms with mean value 0. The parameters β,γ are 

the contemporaneous effects of A to B and B to C, respectively. Written in the 

matrix form, the equation becomes  

 
1 0 0
−β 1 0
0 −γ 1

       
𝐴
𝐵
𝐶
 =  

εA

εB

εC

                                          (6) 

or                                             A0Y= E 

To fix ideas, consider variables with no time dependence. We let arrows 

represent one-way causes, and edges represent the existence of a one-way cause 

(arrow) but with unidentified directionality. For example, suppose A→B, it means 

A causes B, and suppose A−B, it means there is a causal connection between A and 

B, either A causes B (A→B) or B causes A (B→A).  Suppose A→B→C, then A 

and C are probabilistically dependent, but they are independent conditional on B. In 

this case, B is said to screen A from C. Suppose that A←B→C, then B is said to 

common cause A and C. In this case, A and C will also be dependent, but 

conditional on B, they will be independent. Lastly, if A→B←C, then B is called 

the unshielded collider on the path ABC.
2
 In this case, A and C are unconditionally 

independent; yet, conditional on B, A and C are conditionally dependent (Hoover 

2005). A well-known example of starting a car elicits this relationship: suppose A 

                                                           
2
 On the other hand, if there is a causal edge between A and C, in addition to A→B←C, then B is 

called a shielded collider, in which case A and C are not unconditionally dependent.   
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is the status of a battery (charged/uncharged), B is whether the car starts or not, and 

C is the status of a car switch (on/off). The status of a car battery is independent 

from the status of a car switch, but the start of a car requires both the switch to be 

on and the battery to be charged. Conditional on the car starting, knowledge that 

the switch is on conveys the information that the battery is charged. This shows a 

conditional  dependence relationship. 

Causal search algorithms use these relationships and facts about conditional 

dependence and independence relations in the data to work backwards to infer 

possible causal structures. In practice, the independence is determined through 

measuring the conditional correlations among variables. Causal search algorithms 

use these statistical measures, and the basic graphical patterns that can generate 

them to work backward from these measures to infer the class of graphs compatible 

with the data. We summarize the fundamental ideas of the causal search algorithm 

in the following paragraphs, and a detailed description of the algorithm is 

documented in Hoover (2005), and Demiralp, Hoover and Perez (2008).  

The PC algorithm is the most common causal-search algorithm (Spirtes et 

al., 2001; Pearl, 2000) and has been widely used to determine the causal structure. 

This algorithm is built upon two assumptions: first, it assumes that the causal order 

is acyclical, meaning that there is no simultaneous causation or causal loop 

between variables, such as A→B→A, A↔B, or A→B→C→A; second, it assumes 

causal sufficiency, which claims that selected variables include all that explain the 

economic phenomenon of our interest, and that no variables that have causal links 

to more than one of the selected variables are left out. Though these two are strong 
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assumptions, they are not stronger than a typical assumption of SVAR with 

Cholesky ordering.  

PC algorithm is composed of three stages: first, statistically eliminating 

edges; second, orienting edges statistically; and third, orienting edges logically. At 

the first stage, the graph-searching process begins with an assumption that each 

variable is connected by an undirected causal edge to all other variables. It then 

tests for the unconditional independence between each pair of variables, and 

eliminates the edges that are statistically insignificant. Next, the third variable is 

tested again for conditional independence, as are pairs, triples and so on, until all 

unconditionally and conditionally independent edges are eliminated to the greatest 

extent.  

The second stage tries to identify unshielded colliders from the existing 

edges. In practice, it identifies a pair of conditionally uncorrelated variables that are 

connected through a third variable (such as the case of A, C in an A−B−C link), 

and tests whether the pair would be correlated conditional on the connecting 

variable, C. If so, we orient the edges from A−B−C to A→B←C to make the link 

an unshielded collider.  

The last stage involves logical reasoning based on two assumptions: first, 

that the structure is acyclical, and second, that no unidentified unshielded colliders 

exist in the graph. Specifically, if an order of A→B−C is identified, then we orient 

it to B→C since the other possibility A→B←C contradicts our second assumption.  

Similarly, when there is a pair of variables A, B connected by an undirected edge 
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and a directed path, from A through other variable(s) to B, then we orient the link 

as A→B since the other alternative will contradict the assumption of acyclicality.  

One caveat of this algorithm is that, in some cases, not all the directionality 

of edges can be recovered uniquely (Hoover, 2005). The skeleton of a graph is the 

causal linkages between variables ignoring the directionality. The observational 

equivalence theorem (Pearl, 2000) states that graphs with the same skeletons and 

unshielded colliders have the same probability in representing the actual causal 

order.
3
 For example, A→B←C→D and A→B←C←D are observationally 

equivalent, because they have one unshielded collider and the same skeleton. As a 

result, according to the observational equivalence theorem, the PC algorithm is not 

able to recover Cholesky ordering because all Cholesky orderings have the same 

skeleton and no unshielded colliders. 

Swanson and Granger (1997) argued that conditional on the lagged 

variables in a VAR, the residual matrix reflects the contemporaneous 

characteristics of variables. They used the residual terms from the VAR model to 

identify the contemporaneous ordering by testing the unconditional and conditional 

relations between variables for which lagged dynamics have been filtered out. This 

suggests that it is possible to apply PC algorithm to the residual matrix to analyze 

the contemporaneous causal order of variables.  

Demiralp, Hoover and Perez, (2008) developed a bootstrap procedure to 

give an assessment of the reliability of the PC algorithm applied to the 

                                                           
3
 Pearl, 2000, P.19, Theorem 1.2.8 



16 

 

identification of A0 matrix of an actual SVAR.
4
 The procedure works as follows: it 

takes the matrix of residuals estimated from the original VAR, forms a ―resampled‖ 

residual matrix by drawing columns from the residual matrix with replacement, 

constructs a new set of data using the original VAR coefficients and the ―resampled‖ 

residual matrix, runs VAR again using new data, and records the new residual 

matrix. The program draws columns in order to preserve the contemporaneous 

covariance structure among variables. PC algorithm identifies the causal structure 

based on the new residual matrix. After a number of repeated simulations, this 

procedure will generate the distribution of edge orientations identified by the PC 

algorithm. This serves as a tool in judging our confidence in the orientations 

selected by the PC algorithm as well as in orienting the undirected edge in the PC 

algorithm. Here, we use the PC algorithm with bootstrap procedure to evaluate the 

causal structure for SVAR purposes. 

 

2. Data 

Data consist of seven monthly variables: federal funds rate (FFR), 3-

month Treasury bill rate (T3M), 10-year Treasury bond rate (T10M) and the 

logarithmic values of commodity price index (COM), industrial production 

(IND), consumer price index (CPI) and nominal oil prices (OIL). The time 

span is from 1959M02 to 2007M11. Consumer price index and industrial 

production are seasonally adjusted, while oil prices are non-seasonally 

                                                           
4
 The program is called BootGraph, and can be downloaded from 

http://econ.duke.edu/~kdh9/Software and Data.html. We run the program using Ox version 6.10 

(Doornik, 2007)  

http://econ.duke.edu/~kdh9/Software%20and%20Data.html
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adjusted. Detailed information and sources of the data can be found in 

Appendix I.  

 

3. Model Specification   

3.1 Overview 

The investigation is composed of two parts: first, we estimate and 

simulate an SVAR and compute the responses of federal funds rate (FFR), 

industrial production (IND) and the consumer price index (CPI) to a positive, 

one-standard-error oil price shock. Second, we conduct a counterfactual 

experiment and analyze how the variables of interest would have behaved if 1) 

the federal funds rates had not been allowed to respond to the oil price shocks, 

but instead remained constant and 2) the federal funds rates had not 

responded to the oil prices directly but had responded to other 

macroeconomic variables.  

The first part of the investigation has been addressed by numerous 

researchers, but the Cholesky order of those SVAR done previously was 

rather arbitrary. As we believe different Cholesky orderings could generate 

different impulse response functions, and such Cholesky ordering could not 

be tested in the real world, it was difficult to draw a conclusion. It could have 

been another contemporary ordering that accounts for the actual economy. 

Therefore, this reexamination adds value to previous discussions because we 

use an empirically-based search methodology to specify the contemporary 
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causal order of variables. In other words, we specify an A0 matrix that is the 

most relevant to what the empirical data suggest.  

We also split the data into two periods, with the division of time point 

corresponding to the Volcker period. It is widely agreed that there is a 

structural change in the monetary policy regime before and after the Volcker 

period (Bai and Perron, 1998), and therefore, separating the time span into 

two periods generates a more realistic picture of the economy in both periods. 

The first period was from February 1959 to September 1979, and the second 

period was from January 1984 to November 2007. We intentionally avoided 

the Volcker monetarist period from September 1979 to December 1982
5
.  

 

3.2 Selection of lag lengths 

A modified-Akaike Information Criterion has been proven to be 

effective in correctly identifying lag lengths or VARs (Hurwich and Tsai, 

1991). This method suggests a lag length of 2 in both periods. On the other 

hand, in the debate between Bernanke et al.(1997) and Herrera and Hamilton 

(2001), there was a focus on the selection of lag lengths, with Bernanke et al. 

selecting a lag length of 7 and Herrera and Hamilton selecting a lag length of 

12. Therefore, we conduct an exclusion restriction test to see whether the lag 

length of 2 is a feasible restriction condition on lag lengths of 7 and 12. We 

                                                           
5
 Since there is not a widely agreed date that marked the end of Volcker monetarist period, we pick 

1984/1 to ensure the confidence that the Volcker monetarist period is not included in the regression.   



19 

 

also test whether the lag length of 12 could be reasonably restricted to the lag 

length of 7.  

Using the likelihood ratio test below:  

LR=2[ln(Lu
max

)- ln(LR
max

)]~χq
2
                                   (7) 

where q is the number of restrictions, ln(Lu
max 

) is the log-likelihood 

of unrestricted lag length, and ln(LR
max

) is the log-likelihood of restricted lag 

length. The results favor a lag length of 12, since for the two alternative lag 

lengths we chose (2 and 7) we reject the hypothesis that each lag length is a 

reasonable restriction of the lag length 12 at 1% critical value. Therefore, we 

pick lag length 12 for our analysis. The selection is reasonable since the lag 

length of 2 and 7 are nested in lag length of 12. 

Table 1: Likelihood ratio test for Period 1 and Period 2 

Lag length test  Period 1 Period 2 

2 against 7   (q=245) p<0.01  p<0.01  

2 against 12 (q=490) p<0.01 p<0.01 

7 against 12 (q=245) p<0.01 p<0.01 

 

 

3.3 Contemporaneous Causal Order 

Period 1: 1959M02-1979M09 

An over-identified diagonal A0 matrix is rejected with p < 0.001, 

suggesting that the contemporary causal matrix plays a role in SVAR. We 

identify the contemporary causal order between variables using the 

BootGraph program by Demiralp, Hoover, and Perez (2008). We set the size 
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of the PC algorithm at 0.10.
6
 The results of the Bootstrap method for period 1 

and period 2 are shown in Table 2 and Table 3, respectively.   

Table 2: Bootstrap Evaluation of the initial Causal Graph, 1959M02-1979M09 

Causal Order Selected by the 

PC Algorithm 

Edge Identification  

(Percent of bootstrap realizations) 
Summary Statistics 

   − ← No edge → ↔ Exists Directed Net  Direction 

CPI → IND 60 7 0 30 2 100 40 23 

T3M − T10M 46 33 0 18 4 100 54 -15 

FFR ← T3M 29 47 0 9 15 100 71 -38 

T10M → CPI 33 16 27 20 5 73 55 4 

CPI → OIL 37 10 28 22 4 72 49 12 

FFR ↔ CPI 0 23 50 1 26 51 99 -21 

T3M − COM 14 8 58 14 6 43 67 5 

T10M → OIL 9 10 64 8 10 36 75 -2 

COM No edge IND 6 19 68 3 5 32 83 -16 

FFR No edge IND 0 7 86 0 7 14 100 -7 

T10M No edge COM 4 6 86 3 2 14 75 -3 

IND No edge OIL 5 1 87 6 1 13 61 5 

FFR No edge COM 3 3 91 2 1 9 65 -1 

T3M No edge OIL 0 3 92 0 6 9 99 -3 

CPI No edge COM 1 1 96 1 1 4 71 0 

COM No edge OIL 1 1 96 2 1 4 88 1 

T10M No edge IND 2 1 97 1 0 3 52 0 

T3M No edge IND 0 1 98 0 1 2 100 -1 

FFR No edge OIL 0 0 99 0 1 1 91 0 

FFR No edge T10M 0 0 100 0 0 1 40 0 

T3M No edge CPI 0 0 100 0 0 0 100 0 

Exists: The percentage that there is a causal edge between two variables 

Directed: Out of the samples that have edges, the percentage of those that are directed  

Net direction: The differences between the edges oriented to the right and to the left  

 

As an example of how to interpret Table 1, the first row shows that the 

PC algorithm suggests CPI causes IND. The BootGraph program shows that 

out of 10,000 replications, PC algorithm identifies this causal relation to be 

undirected with probability 60%, left-causal (CPI←IND) with probability 7%, 

no edge with probability 0%, right-causal with probability 30% and bidirected 

with probability 2%, respectively. The last three cells on the right show the 

                                                           
6
 In the BootGraph specification, we let α=0.025, β=0.10 with 10,000 replications. β is the size of 

the tests of conditional correlation in the PC algorithm and set to 0.10. We do not use the more 

common 0.05 as we are more concerned with falsely omitting edges (type II error) than with falsely 

including edges (type I error). α=0.025, is necessary in replicating a 0.10 size in the PC algorithm. 

For details please see Demiralp, Hoover, and Perez (2008).  
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summary of BootGraph identification: All 100% of replications are identified 

with a causal link; out of the ones that have causal links, 40% are directed, 

and the right arrow outnumbers the left arrow by 23%. In this case, the 

BootGraph favors the right arrow (CPI→IND), conforming to PC algorithm.    

The PC algorithm selects the existence of the first eight edges 

(CPI→IND, T3M−T10M, FFR←T3M, T10M→CPI, CPI→OIL, FFR↔CPI, 

T3M−COM and T10M→OIL), and the Bootgraph program shows that 

CPI→IND, T3M−T10M, FFR←T3M are the most robust causal links with 

100% confidence of existence. The least robust edge among the eight is 

T10M→OIL, with 36% of confidence by the BootGraph method. Out of the 

eight edges, five are directed and three are either undirected or with bidirected 

edges. This method provides a suggestive causal order, and we test over-

identifying restrictions to reinforce the confidence of the BootGraph 

program‘s selection. To satisfy our assumption of an acyclical order, we need 

to both direct the bi-directed edge and put edges on non-directed edges. To 

orient those three edges, we used the likelihood ratio test against the just-

identified model (p-value). Since there are three edges and each edge has two 

directions, there are 2
3
=8 possible combinations to orient those edges. We test 

all eight combinations and pick the combination that passes the over-

identifying restrictions test with the highest p-value. Out of eight possible 

combinations, three combinations have the highest p-value of 0.354, above 

our critical value of 0.10.
7
 Since BootGraph program also makes suggestions 

                                                           
7
 Those three combinations form an equivalence class 
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on the directionality of edges (realized through net direction, which suggests 

the percentage the PC algorithm would prefer the right arrow over the left 

one), we pick the one that maximizes the suggestions made by BootGraph. A 

detailed description of p-value tests is in Appendix II.  

 
Figure 2: Contemporary causal link between 

variables. The thin arrows represent the edges 

identified by the PC algorithm, and the bold arrows 

represent the edges identified manually through 

log-likelihood test. 

Having identified the causal graph, we can identify the A0 matrix, 

which is used for SVAR, and is shown as follows.  

Yt=

 
 
 
 
 
 
 
𝐹𝐹𝑅𝑡

𝑇3𝑀𝑡

𝑇10𝑀𝑡

𝑂𝐼𝐿𝑡

𝐶𝑂𝑀𝑡

𝐼𝑁𝐷𝑡

𝐶𝑃𝐼𝑡

 

 
 
 
 
 
 
 

                                                (8) 

A0= 

 
 
 
 
 
 
 
1 𝛼 0 0 0 0 𝜔
0 1 𝛽 0 0 0 0
0 0 1 0 0 0 0
0 0 𝛿 1 0 0 𝛾
0 𝜂 0 0 1 0 0
0 0 0 0 0 1 𝜌
0 0 𝜎 0 0 0 1 

 
 
 
 
 
 

                              (9) 
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Period 2: 1984M01-2007M11 

An over-identified diagonal A0 matrix is rejected with p value <0.001, 

suggesting that the contemporary causal matrix plays a role in SVAR. We 

first use the BootGraph to identify the existence of edges, as shown in Table 3. 

The PC algorithm selects the existence of seven edges (CPI↔OIL, 

T3M−T10M, FFR←T3M, T10M−COM, FFR↔OIL, COM→OIL, and 

CPI←IND), and the Bootgraph program shows that CPI↔OIL, T3M−T10M, 

FFR←T3M are the most robust causal links with 100% confidence of 

existence. The least robust edge among the eight is CPI←IND, with 41% of 

confidence by the BootGraph method. There are four edges that need to be 

oriented manually
8
, thus we test 2

4
=16 possible combinations. Using the same 

identification methodology as period 1, we determine the contemporaneous 

causal order as shown on Figure 3. Detailed test results are shown in 

Appendix II. 

 

 

 

 

 

 

                                                           
8
 CPI↔OIL, T3M−T10M, T10M−COM and FFR↔OIL  
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Table 3 : Bootstrap Evaluation of the initial Causal Graph, 1984M01- 2007M11 
Causal Order Selected by the 

PC Algorithm 

Edge Identification 

(Percent of bootstrap realizations) 
Summary Statistics (%) 

   − ←   No edge → ↔ Exists Directed Net direction 

CPI ↔ OIL 12 13 0 44 32 100 88 31 

T3M − T10M 24 4 0 69 4 100 77 65 

FFR ← T3M 54 37 0 6 3 100 46 -31 

T10M − COM 10 38 9 16 28 91 89 -22 

FFR ↔ OIL 1 2 53 10 34 47 99 9 

COM → OIL 2 3 55 11 29 45 96 8 

CPI ← IND 1 26 59 0 15 41 98 -26 

T10M No edge IND 0 12 78 0 10 22 99 -12 

COM No edge IND 2 8 81 3 6 19 88 -5 

T10M No edge OIL 0 1 87 0 12 13 100 -1 

IND No edge OIL 1 0 92 4 3 8 94 4 

FFR No edge IND 1 2 93 1 3 7 92 -1 

T3M No edge CPI 0 0 95 0 5 5 100 0 

FFR No edge T10M 0 0 95 4 1 5 96 4 

CPI No edge COM 0 0 97 1 2 3 93 1 

FFR No edge COM 0 0 98 2 0 3 92 2 

T3M No edge IND 0 1 98 0 1 2 96 -1 

T3M No edge COM 1 0 98 1 0 2 62 0 

FFR No edge CPI 0 1 99 0 0 1 91 -1 

T10M No edge CPI 0 0 99 0 1 1 100 0 

T3M No edge OIL 0 0 100 0 0 0 0   0             

Exists: The percentage that there is n causal edge between two variables 

Directed: Out of the samples that have edges, the percentage of those that are directed 

Net direction: The differences between the edges oriented to the right and to the left 

 

Figure 3: Contemporary causal link between 

variables. The thin arrows  represent the edges 

identified by the PC algorithm, and the bold arrows 

represent the edges identified manually through 

log-likelihood test. 

Consequently, the A0 matrix for period 2, shown as follows, will be 

used for SVAR in period 2.  



25 

 

Yt=

 
 
 
 
 
 
 
𝐹𝐹𝑅𝑡

𝑇3𝑀𝑡

𝑇10𝑀𝑡

𝑂𝐼𝐿𝑡

𝐶𝑂𝑀𝑡

𝐼𝑁𝐷𝑡

𝐶𝑃𝐼𝑡

 

 
 
 
 
 
 
 

                                           (10) 

A0= 

 
 
 
 
 
 
 
1 𝛼 0 𝛽 0 0 0
0 1 0 0 0 0 0
0 𝛾 1 0 0 0 0
0 0 0 1 𝜂 0 0
0 0 𝛿 0 1 0 0
0 0 0 0 0 1 0
0 0 0 𝜎 0 𝜅 1 

 
 
 
 
 
 

                           (11) 

 

4. Impulse Responses and Counterfactual Simulations  

4.1 IRF of an oil price shock  

We use the A0 matrices found in both periods to find out impulse 

response functions for variables of our interest to an oil price shock. We 

impose a positive, one-standard error oil price shock on other variables and 

record their impulse response functions. In the following sections we present 

the SVAR responses of federal funds rates, industrial production, and 

consumer price index. In addition, a complete IRF of all variables in response 

to an oil price shock is detailed in Appendix III. 
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Federal Funds Rate 

Obtaining the impulse response functions of the first period 

(1959M02-1979M09) and the second period (1984M01-2007M11), we see 

whether the federal funds rates respond to oil price shocks. In our 

documentation, during major oil price shocks the federal funds rates tend to 

increase. Our SVAR shows such a behavior, but within a very limited time 

span, as Figures 4 and 5 show. Dash lines correspond to one standard error 

bands. In the first period, the federal funds rates increase by a slight 5 basis 

points 6 months after the oil price shock, but decrease gradually until the 15
th

 

month, reaching negative 19 basis points and then finally recover from the 

15
th

 month, as Figure 4 shows. In period 2, the federal funds rates increase in 

the first period, then continuously decrease for 35 consecutive months, and 

recover after that, as Figure 5 shows. In summary, though the Fed did 

increase its federal funds rate slightly in the beginning of the oil price shock, 

after that slight increase, the rates decreased more profoundly. This suggests 

that the Fed may only use tighter monetary policy when oil prices shocks are 

above a certain level. In other words, the Fed could possibly respond to 

extreme oil price shocks in a way that is different from its usual behavior and 

thus cannot be captured through a normal VAR, which assumes a linear 

response function of the Federal Reserve to oil price shocks.  
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Figure 4: Federal funds rates (FFR) in the first 

period increase slightly in   the first 6 months, and 

then drop until the 15
th

 period, and then recover 

afterwards. 

 

Figure 5: Federal funds rates (FFR) in the second 

period increase 0.02% in the first period, then drop 

continuously for 35 months, and then recover 

onward.   

 



28 

 

Industrial Production  

The industrial production, on the other hand, shows a similar pattern 

in both periods –an unambiguous decrease in response to oil prices shocks at 

first, and then recovery, as Figures 6 and 7 show. The effect of an oil price 

increase on the economy is swifter: the industrial production reaches its 

trough faster and also recovers faster than the second period. It reaches its 

trough in the 15
th

 month and then recovers from the 16
th

 month, whereas in 

the second period, the industrial production declines more gradually but has a 

more pronounced adverse effect. It reaches its trough in the 30
th

 period with a 

monthly drop of 0.3% (annualized drop of 5%), compared with a monthly 

drop of 0.4% (annualized drop of 3%) in the first period.  

 

Figure 6: Industrial production (IND) in the first 

period posts a slump from the 9
th

 month to the 14
th

 

month, and recovers after the 15
th

 month.   
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Figure 7: Industrial production in the second period 

posts a continuous drop through the 30
th

 month, 

after which it recovers.  

 

Consumer Price Index  

 Lastly, we look at the price level in response to the oil price shocks. 

Whereas an oil price shock has a deflationary effect in period 1, it has an 

inflationary effect in period 2. In the first period, the CPI remains relatively 

stable until the 10
th

 month after which the CPI starts to decrease, reaching the 

bottom at the 30
th

 period, with a monthly inflation rate of -0.2% (annualized 

rate of -2.7%), as Figure 8 shows. Conversely, in the second period, oil prices 

report an inflationary effect as the price level increases in period 2, hovering 

around a monthly rate of 0.2% (annualized rate of 2.4%), as shown in Figure 

9.  
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Figure 8: Consumer Price Index (CPI) in the first 

period remains relatively stable until the 10
th

  

month after which the CPI starts to decrease, 

reaching the bottom at the 30th period with an 

annualized inflate rate of -2.73%. 

 

Figure 9: Consumer Price Index in the second 

period increases in period 2, hovering around an 

annualized rate of 2.43%. 
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4.2 Counterfactual Experiment 

To answer the question of whether the monetary policy actually 

worsened the economy, we conduct two cases of counterfactual experiments:  

Case I: the federal funds rates had not been allowed to respond to the 

oil price shocks, but instead remained constant  

Case II: the federal funds rates had not responded to the oil prices but 

had responded to other macroeconomic variables.  

In practice, in Case I, we restrict the coefficients of six other variables 

on the federal funds rate to 0, in both contemporaneous and lagged terms; in 

Case II, we restrict the coefficients of oil on the federal funds rate to 0 in both 

contemporaneous and lagged terms. We then impose a positive, one-standard 

error oil price shock in both cases and record the IRF.
9
 

Case I: A Constant Federal Funds Rate  

We set the federal funds rates to be a constant, with oil prices still 

affecting the economy through other channels. Figures 10 and 11 show the 

response of industrial production with and without the response of the federal 

funds rate in periods 1 and 2, respectively. Without the responses of the 

Federal Reserve, production has an inferior performance in period 1, as 

Figure 10 shows. The change is significant and reaches out of the one-

standard error band of the normal case from the 17
th

 month onward. 

                                                           
9
 We obtained IRF from STATA and Eviews, and conducted counterfactual IRF in Matlab. The 

STATA and Matlab codes are available upon request.  
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Comparing this with the federal funds rate schedule, we notice that the time 

point when two simulations diverge is approximately when the Fed has the 

lowest federal funds rate, as shown on Figure 4. In the 17
th

 month after the oil 

price shock, the federal funds rate reaches its trough by 20 basis points. It is 

clearly shown that such a decrease in the federal funds rate is necessary for a 

faster economic recovery, since without such a reduction in the federal funds 

rate (the counterfactual case), the industrial production falls below the normal 

case.  

In the second period, after restricting the federal funds rate, the 

economy becomes highly unstable. The industrial production plummets and 

does not come back to the normal stage, as Figure 11 shows.
10 From the 23

rd
 

period onwards, the counterfactual response reaches out of range of y-axis, 

unilaterally decreases and then never recovers. This suggests that the Federal 

Reserve‘s response is necessary in achieving economic stability. In both 

periods, without the Federal Reserve‘s response, the economy would feel a 

more profound and adverse effect than with its response.  

                                                           
10

 The IRF shows that other variables (IND, CPI, T3M, T10M, COM, OIL) would unilaterally 

decline.  
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Figure 10: The IRFs of industrial production in 

period 1 in response to an oil price shock. The 

dashed line is the normal SVAR and the solid line 

is the counterfactual simulation, where the federal 

funds rates are fixed throughout the shock. Had the 

federal funds rate been fixed, the economy would 

have worsened without recovery.   

 

 

Figure 11: The IRFs of industrial production in 

period 2 in response to an oil price shock. The 

dashed line is the normal SVAR and the solid line 

is the counterfactual simulation with fixed federal 

funds rates. In the counterfactual scenario, the 

industrial production response becomes highly 

unstable and plummets.  
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We then look at the response of the price level. In period 1, the price 

level responses in the counterfactual and normal scenarios are steady and lie 

within the one- standard error band. Yet, the price level would be steadier and 

undergo less deflation if the Fed did not fix the federal funds rates, as shown 

in Figure 12. It is reasonable to infer that the Fed makes slight compromise on 

the price level in order to pave the road for recovery in industrial production.  

In the second period, the economy becomes unstable if the federal 

funds rates remain constant, as shown in Figure 13. From the 18
th

 period 

onward, the counterfactual impulse response reaches out of bound, 

unilaterally decreases and then never recovers. This suggests that without the 

response of the Federal Reserve, the economy would become highly unstable 

in period 2. This is consistent with our aforementioned observation about 

industrial production. A complete Case I IRF of all variables in response to an 

oil price shock can be found in Appendix IV. 
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Figure 12: The IRFs of Consumer Price index in 

response to an oil price shock in period 1. The 

dashed line is the normal SVAR and the solid line is 

the counterfactual simulation where the federal 

funds rates are fixed throughout the oil price shock. 

Without the Fed‘s response the price level is 

steadier.  

 

 
 

Figure 13: The IRFs of Consumer Price index in 

response to an oil price shock in period 2. The 

dashed line is the normal SVAR and the solid line is 

the counterfactual simulation with fixed federal 

funds rates. Without the Fed‘s response the price 

level becomes highly unstable and plummets.  
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Case II: Federal Funds Rate Not Directly Responding to Oil 

We also examine how the economy would behave if the Federal 

Reserve was not allowed to respond to oil prices directly. Figures 14 and 15 

plot the industrial production in periods 1 and 2, respectively, and Figures16 

and 17 show the price level in periods 1 and 2, respectively. The results are 

not statistically different from the normal case since their response functions 

are in the one-standard error band of the normal case and lie closely with it. 

This suggests that whether the Federal Reserve directly responds to the oil 

prices or not does not alter the economy in a significant way. Yet, we observe 

that the industrial production performs better in the normal scenario than it 

does in the counterfactual scenario in both periods, as shown in Figures 14 

and 15. On the other hand, the price levels are steadier in the counterfactual 

scenario since they are less volatile and closer to a zero inflation target. These 

two patterns are in keeping with our observation in Case I. A complete Case 

II IRF of all variables in response to an oil price shock is in Appendix V.  
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Figure 14: The IRFs of industrial production in 

period 1 in response to an oil price shock. The 

dashed line is the normal SVAR and the solid line 

is the counterfactual simulation, where the federal 

funds rate does not respond to oil prices directly. 

The two scenarios are not statistically different, but 

the counterfactual scenario performs a bit worse 

than the normal scenario.  

 

Figure 15: The IRFs of industrial production in 

period 2. The dashed line is the normal SVAR and 

the solid line is the counterfactual simulation, 

where the federal funds rates do not respond to oil 

prices directly. The two scenarios are not 

statistically different, but the industrial production 

in the counterfactual scenario performs worse than 

the normal scenario.  
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Figure 16: The IRFs of CPI in period 1. The dashed 

line is the normal SVAR and the solid line is the 

counterfactual simulation, where the federal funds 

rates do not respond directly to the oil price. The 

two scenarios are not statistically different, but the 

price level in the counterfactual scenario is steadier 

than the normal scenario.  

 

 

Figure 17: The IRFs of CPI in period 2 in response 

to an oil price shock. The dashed line is the normal 

SVAR and the solid line is the counterfactual 

simulation where the federal funds rates do not 

respond directly to the oil price. The two scenarios 

are not statistically different, but similar to period 1, 

the price level in the counterfactual scenario is 

steadier than the normal scenario. 
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5. Discussions  

5.1 Oil price shock and monetary policy 

Our results show several intriguing observations. The oil price shock 

has an adverse effect on industrial production pre- and post-Volcker periods, 

but it has the opposite effects on the price level in these two periods. An oil 

price shock is deflationary in period 1, suggesting a dominant demand shock 

that characterizes the oil price shocks in the pre-Volcker period. But in period 

2, it is inflationary, suggesting a dominant supply shock in the post-Volcker 

period.  

In examining whether the Federal Reserve responds to oil price 

shocks, we show that the Fed does respond to oil price shocks in an optimal 

way when compared with other counterfactual scenarios. Yet it is difficult to 

offer SVAR evidence that the Fed responds to oil price shocks directly, since 

the economy behaves in much the same way when we shut down the Fed‘s 

direct response to oil. This suggests that even though the Fed does not 

respond to the oil price shocks directly, it indirectly responds through the oil 

price shocks‘ effects on other variables, such as price level and industrial 

production.  

The monetary response not only ensures economic stability but also 

paves the way for economic recovery. Without the monetary response, 

industrial production declines more, and the price level becomes steadier than 

with the monetary policy response. In Case I, with a constant federal funds 



40 

 

rate during an oil price shock, the industrial production would not be able to 

recover and grow on its own, but the price level would undergo less deflation. 

This is also consistent with Case II where the federal funds rate does not 

respond to oil directly in both contemporaneous terms and lagged terms, and 

only responds to the oil price shock through oil‘s impact on other variables. 

Though the results are statistically insignificant, the observation of Case II is 

consistent with Case I in that the counterfactual case generates higher price 

stability but inferior output performance. This suggests that the Federal 

Reserve is reasonably compensating for a mild deflation with a higher 

industrial production during recovery. 

 

5.2 Revisiting Bernanke and Hamilton 

We also attempt to add a new perspective to the long-held debate 

between Bernanke et al .and Herrera and Hamilton. To ease the comparison 

of our results with theirs, we include the results of counterfactual experiments 

that Bernanke et al. and Herrera and Hamilton conducted in Appendix VI and 

VII, respectively. In our results, the industrial production does not show a 

superior performance with fixed federal funds rates. This contrasts the 

commonly held observation of Bernanke et al. and Herrera and Hamilton.  

Yet our responses to the price level conform to observations by both groups 

of scholars, in that the price levels stay higher in the counterfactual scenario 
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than the normal scenario, although the magnitude of the difference varies due 

to differences in the model.  

The disparity in the results could be attributable to two things: 1) data 

and period selection and 2) causal structure of the economy, in both 

contemporaneous and lagged terms. Our model differs with their model in the 

SVAR structure, data, the selection of time periods, and the exclusion 

restrictions on the lagged variables. Rather than interpolating GDP into 

monthly data, we use industrial production as our proxy for output; we use 

consumer price index rather than GDP deflator to proxy the price level; and 

we use the nominal price of oil rather than the Hamilton oil price series. Also, 

contrary to Bernanke et al. and Herrera and Hamilton‘s one period model 

with a time span from 1965-1995, we enclose longer time spans and separate 

the model into two periods so as to circumvent the Volcker period.
11

 This 

separation, with a break on the Volcker period, has been proposed and 

commonly practiced (Bai and Perron, 1998). 

Secondly, rather than determining the SVAR structure with arbitrary 

Cholesky orderings, we empirically determine the contemporaneous causal 

structure. Furthermore, our model imposes no exclusion restrictions on lagged 

terms, whereas their model imposes exclusion restrictions on the lagged terms 

of the federal funds rate to macro variables such as GDP, price deflator, 

commodity price and oil price.  

                                                           
11

 Period 1: 1959M02-1979M09; Period 2:1984M01-2007M11  
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If the data and time periods are robust to different selections, it means 

that the effects of an oil price shock are highly dependent on the presumed 

causal structure of the economy. We attempt, to the best of our ability, to 

avoid arbitrary assumptions, and we believe that we provide a fair assessment 

of the economy without being biased towards certain assumptions. 

  

5.3 Future directions  

One limitation of our research is that our model assumes that the 

economy responds to oil prices linearly. Yet, in reality, the Fed could respond 

to rising oil prices more aggressively than to dropping prices – an asymmetric 

response of the federal funds rates. The Fed could also respond to oil prices 

shocks in a nonconventional way when oil prices rise above certain 

thresholds – a nonlinear response of the federal funds rates. Further research 

could entail transformation of nominal oil prices to nonlinear or asymmetric 

oil prices so as to examine the robustness of our result.   
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Appendix I: Data 

The data are all monthly and cover 1959M02 to 2007M11. Consumer 

price index and industrial production are seasonally adjusted, and oil prices 

are non-seasonally adjusted. All data are available on the website as shown in 

Table A.1. 

Table A.1: Data, details and sources 

Data Details and Sources 

Federal Funds Rate (FFR) Units: percent per year  

Source: Federal Reserve, Division of Monetary 

Affairs, Reserve Analysis Division 

(www.federalreserve.gov) 

3-month Treasury Bill Rate 

(T3M) 

Description: Treasury bills (secondary market), 3 

months 

Units: percent per year  

Source: Board of Governors of the Federal Reserve 

Statistical Release H.15 Selected Interest Rates 

(www.federalreserve.gov/releases/H15/data.htm) 

10-year Treasury Bond Rate 

(T10M) 

Description: Treasuries constant maturities, Nominal, 

10 year 

Units: percent per year 

Source: Board of Governors of the Federal Reserve 

Statistical Release H.15 Selected Interest Rates 

(www.federalreserve.gov/releases/H15/data.htm) 

Consumer Price Index (CPI) Description: Consumer price index, all urban 

consumers (CPIU), US. All Items (SA) 

Units: index number, 1982-84=100 

Source: U.S. Bureau of Labor Statistics 

(www.bls.gov) 

Commodity Price Index (COM) Units: index number, 1967=100 

Source: U.S. Bureau of Economic Analysis 

(www.crbtrader.com/crbindex/) 

Industrial Production (IND) Description: Industrial production, total index (SA) 

Units: index number, 2002 = 100 

Source: Federal Reserve Statistical Release G.17 

Industrial Production and Capacity Utilization 

(www.federalreserve.gov/releases/g17/download.htm) 

Oil Price (OIL) Description: Prices of West Texas Intermediate 

Crude, Monthly (NSA) 

Units: dollar per barrel 

(www.economagic.com) 

 

http://www.bls.gov/
http://www.crbtrader.com/crbindex/
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Appendix II: Identifying Contemporaneous Causal Order 

Period 1: 1959M02-1979M09 

The three edges that we are to orient are T3M−T10M, FFR↔CPI, and 

T3M−COM. To simplify our notation, we represent each combination as a 

coordinate (i,j,k), where i,j,k=1,2 and represent the directionality of those 

three edges. The BootGraph program recommended (2,1,1). The coordinate 

system can be translated to the causal order by Table A.2.  

Table A.2: Notations of i,j,k 

 1 2 

i T10M←T3M T10M→T3M 

j FFR←CPI FFR→CPI 

k T3M→COM T3M←COM 

Table A.3 shows the p-value for each possible combinations. (2,1,1), 

as suggested by the BootGraph program, also maximizes the p-value. We thus 

select this causal order for SVAR simulation.  

TableA.3: Over-identifying tests for each possible combinations  

Directionality  p-value 

(1,1,1) 0.354 

(1,1,2) 0.354 

(1,2,1) 0.233 

(1,2,2) 0.233 

(2,1,1)* 0.354* 

(2,1,2) 0.221 

(2,2,1) 0.233 

(2,2,2) 0.138 

 

Period 2: 1984M01-2007M11 

With a similar methodology in period 1, we orient four edges 

(CPI↔OIL, T3M−T10M, T10M−COM and FFR↔OIL). We also represent 

each possible combination with a coordinate system (i,j,k,l) where i,j,k,l=1, 2. 
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The BootGraph program selects the order of (2,1,1,1). We again picked the 

combination that has the highest p-value and maximizes the suggestions made 

by the BootGraph program. The coordination system can also be translated to 

the causal order in Table A.4.  

Table A.4: Notations of i,j,k,l 

 1 2 

i  T3M←T10M T3M→T10M 

j  T10M←COM T10M→COM 

k  OIL←CPI OIL→CPI 

l  OIL←FFR OIL→FFR 

 

Table A.5: Over-identifying tests for each possible combinations 

Directionality  p-value 

(1,1,1,1) 0.067 

(1,1,1,2) 0.095 

(1,1,2,1) 0.167 

(1,1,2,2) 0.214 

(1,2,1,1) 0.067 

(1,2,1,2) 0.095 

(1,2,2,1) 0.167 

(1,2,2,2) 0.214 

(2,1,1,1) 0.007 

(2,1,1,2) 0.010 

(2,1,2,1) 0.020 

(2,1,2,2) 0.028 

(2,2,1,1) 0.067 

(2,2,1,2) 0.095 

(2,2,2,1) 0.167 

(2,2,2,2)* 0.214* 
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Appendix III: IRF under Normal SVAR 

Period 1: 1959M02-1979M09 

 

Figure A.1: Impulse response functions of 12 lags 

in period 1. Dotted lines represent one-standard 

error band. 
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Period 2: 1984M01-2007M11 

 

Figure A.2: Impulse response functions of 12 lags 

in period 2. Dotted lines represent one-standard 

error band. 
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Appendix IV: IRF under Normal and Case I Counterfactual SVAR 

Period 1: 1959M02-1979M09 

 

Figure A.3: Impulse response functions of 12 lags 

in period 1. Dashed lines represent the 

counterfactual experiment where the federal funds 

rate is constant during an oil price shock.  
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Period 2: 1984M01-2007M11 

 

Figure A.4: Impulse response functions of 12 lags 

in period 2. Dashed lines represent the 

counterfactual experiment where the federal funds 

rate is constant during an oil price shock.  
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Appendix V: IRF under Normal and Case II Counterfactual SVAR 

Period 1: 1959M02-1979M09 

 

Figure A.5: Impulse response functions of 12 lags 

in period 1. Dashed lines represent the 

counterfactual experiment where the federal funds 

rate responds to the oil price shock indirectly 

through oil‘s effect on other variables.  
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Period 2: 1984M01-2007M11 

 

Figure A.6: Impulse response functions of 12 lags 

in period 2. Dashed lines represent the 

counterfactual experiment where the federal funds 

rate responds to the oil price shock indirectly 

through oil‘s effect on other variables.  
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Appendix VI: Bernanke et al.: IRF Counterfactual SVAR 

 

Figure A.7: Impulse response functions of 7 lags by 

Bernanke et al.‘s model specifications. Dashed 

lines represent the counterfactual experiment where 

the federal funds rate is constant. The figure is 

extracted from Herrera and Hamilton (2001), page 

268.  
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Appendix VII: Herrera and Hamilton: IRF Counterfactual SVAR  

 

Figure A.8: Impulse response functions of 12 lags 

by Herrera and Hamilton‘s model specifications. 

Dashed lines represent the counterfactual 

experiment where the federal funds rate is constant. 

The figure is extracted from Herrera and Hamilton 

(2001), page 282.  


