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Abstract 

There is evidence that the conventional, continuous underlying function model of 

financial asset pricing can be improved by adding a discontinuous jump component.  

Barndorff-Nielsen and Shephard (2004) propose a method of detecting these jumps that 

compares different estimators of quadratic variation.  This paper applies that detection 

method to the common stock of Altria Group, Inc. and attempts to link detected jumps 

with news events, variance and trading volume, jumps in other assets, and previous 

jumps.  The detected jumps are stochastic, at least to the best of our knowledge.  These 

results imply potential advantages to modeling jumps and continuous variance 

independently. 
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1. Introduction 

 The assumption that financial asset prices arise from a continuous, or smooth, 

underlying price function is prevalent in modern finance theory.  While this assumption 

may be mathematically convenient, an empirical survey, even a fleeting one, observing 

the drastic price movements inherent in many financial asset prices begs the question of 

whether a price model that assumes a continuous sample path is a reasonable 

approximation of the observed data.  A possible adaptation of the continuous price model 

that has been considered for the last quarter-century is the use of a primarily continuous 

price model with the addition of a discontinuous component.  This new model would 

imply that asset prices follow a typically smooth path with infrequent but large price 

“jumps” scattered stochastically over time. 

 If these price jumps do indeed exist, there is great interest in being able to detect 

when and why they occur.  Soon after Black and Scholes introduced their revolutionary 

option pricing model, Robert Murton, (1976) realizing the potentially dramatic effect of 

underlying asset price jumps on option prices, reworked the Black-Scholes model to 

allow for discontinuous jump processes.  More recently, the adverse effect of jump risk 

on delta hedging1 (derived directly from its effect on option pricing) has been addressed 

in Cont and Voltchkova (2005).  In short, the presence of jumps makes perfect delta 

hedging impossible even in a continuously modified portfolio, and so the risk-minimizing 

portfolio allocation must take into account both the general market risk and the jump risk.  

                                                 
1 “Delta” in this context refers to the sensitivity of a portfolio to price changes in a particular asset.  In 
short, delta hedging is the practice of creating a portfolio containing that particular asset and derivatives 
thereof such that the portfolio’s delta is zero, which implies that the portfolio value is independent of the 
particular asset price.  
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Creating such an optimized portfolio would naturally require some quantifiable 

description of this jump risk.   

Jumps appear to be stochastic in both frequency and magnitude and so are 

inherently unpredictable.  However, if one were to remove the jump component of 

variance, one would expect the remaining continuous portion of the variance to be more 

predictable than the overall variance containing jumps.  The capacity to better predict the 

future variance of assets is vital to pricing many financial assets, (particularly options and 

other derivatives) but this approach also requires that financial engineers estimate new 

parameters, such as the price of jump risk.   

Of course, these price jumps need only be considered if they make up a 

significant portion of overall price variance.  It has been observed in Huang and Tauchen 

(2006) that discontinuous jumps account for approximately seven percent of the variance 

of the S&P 500 index.  One might also expect that assets with less trading volume and 

diversification than the S&P 500 index would display even larger portions of 

discontinuous variance.  In fact, while a formal test is not presented in this paper, 

evidence does indeed support this expectation.  These findings should provide significant 

incentive to analyze and properly model these jumps. 

The increased availability of high frequency financial data over the past twenty 

years and the computational power to analyze them is a vital factor in our capacity to 

analyze jump characteristics, as these characteristics are often most apparent and relevant 

at the intraday level.  Figure 1 shows two days for which the daily price change of the 

common stock of Altria Group, Inc. (Ticker: MO) was approximately +5%.  The first of 

these price changes is due to a discontinuous jump and the second is due to a smooth, 
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continuous increase.  At the daily level, these days appear virtually identical, but, when 

observed at a higher frequency, the disparity is readily apparent.   

 Recently, Barndorff-Nielsen and Shephard (2004) developed the first practical 

approach to detecting jumps, and it employs two intraday measures of variance, namely 

realized variation and bi-power variation.  Put simply, realized variation contains the 

effects of discontinuous jumps while bi-power variation does not, and so the difference 

between the two variance measures is a measure of the portion of variance due to jumps.  

A simple statistical test may be constructed to determine whether or not this difference is 

significant and, thus, whether a statistically significant jump has occurred.  It is important 

to note that this detection is performed purely in hindsight and offers no direct method of 

forecasting. 

 While there is great interest in improving jump detection methods, these methods 

are only useful if their results tell us something about these jumps.  This paper will 

employ the variance discrepancy detection method of Barndorff-Nielsen and Shephard to 

detect likely jump days, but will then focus on analyzing these results rather than 

considering the quality of the detection method.  This analysis will begin by emulating 

the approach of Andersen, Bollerslev, and Diebold, (2006) in addressing the validity of 

the jump diffusion model, considering the connection between jumps and news 

announcements, and constructing forecasting models in an effort to predict future 

variance.  Where Andersen, Bollerslev, and Diebold consider market-wide assets such as 

the S&P 500 index and currency futures, however, this paper considers individual 

common stock, in particular the common stock of Altria Group, Inc.  This application to 

common stock has thus far not been presented in the literature. 
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Furthermore, this paper extends the above analyses and proposes new ones in an 

effort to learn more about the nature, cause, and future predictability of these jumps.  This 

paper will examine news events connected to discontinuous jumps, but will also consider 

news events connected to large, smooth price changes and look for similarities and 

differences between the two groups.  Forecasting models will be modified to predict 

separately the continuous and discontinuous portions of variance.  A new concept of 

proximity effects of jumps on local price behavior will be presented and tested.  A cross-

asset comparison will search for correlation between jumps in indices and jumps in 

underlying assets, which could not be performed without the jump characteristics of the 

underlying assets first presented in this paper.  Finally, it is a goal of this paper to begin 

to consider trading volume and its relation to the intraday variance and jump 

characteristics, as this topic has not yet been thoroughly addressed in the literature.  

Trading volume will be discussed and utilized in many of the aforementioned analyses 

and will also be compared with different estimators of variance.   

The format of the rest of this paper is as follows.  Section 2 sets forth the 

theoretical framework of the jump detection tests.  Section 3 discusses the data and the 

necessary filtering techniques associated therewith.  Section 4 provides the basic jump 

characteristics results and the implications of their distributions.  Section 5 presents case 

studies of possible real-world causes of jumps and large, smooth changes in Altria 

Group’s stock price.  Section 6 analyzes the effects of jumps on variance and trading 

volume in the near vicinity.  Section 7 considers the possibility of a correlation of jump 

characteristics across assets, or in particular, correlation between specific companies’ 

stock prices and the S&P 500 futures index.  Section 8 analyzes the relationship between 
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volume and the various measures of price variance.  Section 9 constructs forecasting 

models for the different variance components.  Section 10 offers conclusions and possible 

avenues for future research. 

 

2. Theoretical Framework 

2.1 Price Model 

The standard continuous time stochastic volatility model can be expressed as a 

differential equation of the form: 

        )()()()( tdWtdtttdp σμ +=     (1) 

where p(t) is the logarithmic asset price, μ(t) is the price drift process, σ(t) is a strictly 

positive, stochastic, standard deviation process, and W(t) is a standard Brownian motion 

process.  Thus, in this model, the time rate of change of an asset’s price at any instant is a 

random variable with mean μ(t) and variance σ2(t). 

The above equation implies that the price function is continuous in time.  If this 

assumption is modified, however, to allow for a discontinuous jump component, the asset 

price model takes the form:  

)()()()()()( tdqttdWtdtttdp κσμ ++=      (2) 

where q(t) is a binary variable indicating whether or not a jump has occurred, and κ(t) 

describes the magnitude of those jumps.  The intuition behind this model is that, if one 

were to draw the price function as it changes through time, the continuous process could 

be drawn without lifting the pencil off the paper, while the discontinuous jumps require 

picking up the pencil and continuing on from a different price.  The notation employed 

above emphasizes the fact that the new model, though vastly different in its implications, 
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is essentially a modification of the classic, continuous price diffusion model rather than 

an entirely new approach.  This notation will also facilitate the separation of the 

continuous and jump components of variation that is central to the forthcoming statistical 

analysis.  

2.2 Variation Estimators 

 The key insight of this statistical approach to jump detection is derived from 

comparing different estimators of the quadratic variation (QV) of returns.  These 

estimators will be calculated daily, so between time t-1 and t is one trading day, and QVt 

refers to the quadratic variation on day t.   

The quadratic variation is defined as the sum of squared returns calculated over 

infinitesimally small time periods, expressed symbolically as:  

              (3) ∑
=

∞→
=

M

i
iM

rQV
1

2lim

where ri is the logarithmic return and M is the number of time periods.  When applied to 

the continuous time model of equation (1) over the time period from t-1 to t, the quadratic 

variation becomes: 

∫∑ →=
=
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2
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where σ is the stochastic, standard deviation process from above and the integrated term 

is called the integrated volatility (IV).  When applied to the continuous-time jump 

diffusion process described in equation (2), the quadratic variation over the same time 

period is known to be: 

∫ ∑
≤<
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t
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0
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22 )()( κσ     (5) 
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The first term in this equation represents the volatility due to the continuous process and 

is equal to the integrated volatility found above.  The second term is the volatility due to 

jumps and is equal to the summation of the squared magnitudes of all the jumps between 

time t-1 and time t.  One should note that, if κ(s)=0 from time t-1 to time t, equation (5) 

reduces to the integrated volatility and is equal to equation (4). 

 The first measure of variance employed in jump detection is the realized 

variation, RV, defined as: 

∑
=

=
M

j
jtt rRV

1

2
,       (6) 

where rt,j = p(t – 1 + j/M) – p(t – 1 + (j-1)/M) and M is the number of samples in period t.  

If period t is one trading day, then M is the number of samples taken daily and rt,j denotes 

the jth sample on day t.  One should note that the realized variance function is very similar 

to the quadratic variation function except that it considers returns over finite time periods 

rather than the infinitesimally small time periods of quadratic variation.  Thus, it makes 

intuitive sense that the asymptotic value of realized variance in continuous time, as 

discussed in Barndorff-Nielsen and Shephard (2002) and elsewhere, is: 

∫ ∑−
≤<−

∞→
+=

t

t
tst

tM
sdssRV

1
1

22 )()(lim κσ    (7) 

which means that it is a consistent estimator of the aforementioned quadratic variation. 

 The second variance measure employed is the bi-power variation, BV, defined as: 

jt

M

j
jtt rr

M
MBV ,
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2,

2
1 2 ∑

=
−

− ⎟
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⎞

⎜
⎝
⎛

−
= μ     (8) 

where μ1 = π
2 .  While the summed terms for both RV and BV are quadratic with respect 

to returns, the BV terms are staggered, multiplying together returns that are separated by 
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a time period, whereas RV simply squares each return.  The constants outside of the BV 

summation are used to compensate for the degrees of freedom lost from the lag of returns 

so that the magnitudes of RV and BV may be nominally compared.  Interestingly, the 

asymptotic theory described by Barndorff-Nielsen and Shephard (2004) shows that, 

under certain assumptions: 

                                                     (9) ∫ −∞→
=

t

ttM
dssBV

1

2 )(lim σ

which estimates the continuous portion of the quadratic variation of equation (4).   

 The bi-power variation is a measure of volatility that is robust to jumps.  In 

determining RVt, the large, jump returns are squared and so their effect on the variance 

measure is magnified.  If one considers equation (8) and assumes that jumps are scarce, it 

is unlikely that both rt,j-2 and rt,j are jumps, and so the effect of the large, jump return on 

the daily BVt will be washed out when the jump return is multiplied by a small, non-jump 

return.  As the size of the sampling periods approaches zero, the effect of jumps becomes 

negligible in the BVt measure but remains significant in the RVt measure.  Even in the 

finite sampling case, large returns will have a much smaller impact on lagged variance 

measures than on non-lagged measures. 

Since RVt estimates the entire quadratic variation while BVt estimates only the 

continuous portion, RVt-BVt is a measure of the jump component of the quadratic 

variation: 

 ∑
<<−

∞→
=−

tst
ttM

sBVRV
1

2 )()(lim κ     (10) 
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The fraction of the total variation attributable to this jump component can be measured by 

simply comparing the above difference to RVt.  This statistic is known as the relative 

jump (RJ) and is defined as:  

      
t

tt
t RV

BVRV
RJ

−
= .      (11) 

2.3 Hypothesis Test for Jumps 

The asymptotic distributions described above can be employed to formulate a 

statistical test to address the validity of adding this jump component to the standard price 

model.  Since, in the absence of jumps, RVt and BVt have the same expected value, it is 

natural to construct a hypothesis test with the null hypothesis that there are no jumps.  

The two alternative hypotheses are RVt being larger than BVt and vice versa, but, since 

the jump component κ2 is strictly positive, the test only lends evidence to jumps if the 

hypothesis that RVt is larger than BVt is found to be true.  Thus, the hypothesis test is 

one-sided and can be represented algebraically as: 

0)()(:
0)()(:0

>−
=−

ttA

tt

BVERVEH
BVERVEH

 

To test this hypothesis, the RVt-BVt must be studentized by subtracting off its mean and 

dividing by its standard deviation.  The mean, under the null hypothesis, is zero.  

Estimating the standard deviation is far from trivial, but since RV and BV both 

asymptotically approach the integrated volatility in the absence of jumps, the variance of 

their difference is proportional to .  This value is known as the integrated 

quarticity and can be estimated with a statistic known as the quad-power quarticity (QP) 

defined in Barndorff-Nielsen and Shephard (2004) as: 

∫
−

t

t

dss
1

4 )(σ
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The constants outside the summation are necessary to correct for the degrees of freedom 

lost from the lagged returns.  A similar statistic called the tri-power quarticity (TP) is 

employed by Andersen, Bollerslev, and Diebold (2004) to estimate the integrated 

quarticity and offers nearly identical results.   

2.4 Daily Statistics 

 With QPt, a consistent estimator of the integrated quarticity, a normalized statistic 

can be created to test the null hypothesis.  The simplest form of this z-statistic is: 

    
tM

tt
tQP

QP

BVRV
z

)](5)[( 12
2

,
−+

−
=

ππ
    (13) 

The bracketed constant in the denominator is a characteristic of the joint distribution of 

RVt and BVt, as shown in Barndorff-Nielsen and Shephard (2004).  In hopes of 

improving finite sample performance, statistics can also be created using the logarithms 

of the volatility measures, as suggested in Barndorff-Nielsen and Shephard (2002).  This 

statistic is of the form: 

    
))(](5)[(

)log()log(
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One should note that, since the logarithm renders the numerator dimensionless, the 

denominator is normalized by dividing QPt by BVt
2.  This statistic can be further 

modified, as in Barndorff-Nielsen and Shepherd (2004), by making a maximum 

adjustment, which replaces 2
t

t

BV
QP  with ),1max( 2

t

t

BV
QP .  Theoretically, 2

t

t

BV
QP  is always less than 
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one, but in practice this is not always true, and this truncation improves the performance 

of the statistics. 

This paper will use a z-statistic that employs the relative jump measure in the 

numerator.  Like the logarithm form, RJt is dimensionless and so the denominator must 

again be normalized.  The statistic used here is of the form: 

    
),1max()](5)[( 2

12
2

,,

t

t

BV
QP

M

t
trmQP

RJ
z

−+
=

ππ
.     (15) 

In the absence of jumps, zQP,rm,t→N(0,1) as M→∞.  Thus, a simple t-test on the z-

statistics can be used as a jump detector.  Intuitively, on a day when RVt is large relative 

to BVt and QPt, there is a high probability that ∑
<<− tst

dss
1

2 )(κ  is non-zero, which implies 

that one or more jumps have occurred on that day.  Consequently, the z-statistic for that 

day will be large, or, more precisely, significant at a high confidence level.  For example, 

a z-statistic greater than 3.09 indicates a jump day at the 99.9% confidence level.  It is 

important to note that these are daily statistics, and so the test indicates days on which a 

jump occurs rather than the jumps themselves. 

 

3. Data and Data Filtering Techniques  

This paper will consider primarily the common stock of Altria Group, Inc., 

formerly Phillip Morris.  Altria Group has a market cap of approximately $150 billion 

and is a member of both the DJIA and the S&P 500.  While there is no particular 

uniqueness that motivated the use of Altria Group stock in the following analyses, the 

company does have a very fortuitous attribute: more than two-thirds of its annual revenue 
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comes from the tobacco industry, an industry that has received considerable public 

scrutiny in the last few years.  The legal ramifications of this attribute are extremely 

relevant to the jump characteristics of Altria Group, Inc. 

The primary data is common stock price data for Altria Group, Inc. (Ticker: MO) 

from 1999-2005 as acquired from the WRDS TAQ database.  These data include the 

price, share volume, and exchange on which every trade occurred for the 1,760 trading 

days.  This data was filtered so as to only include NYSE trades and was then sampled at 

5-minute intervals throughout the standard trading hours, (9:30am to 4:00pm EST) 

creating 78 price values and 77 return values per day.  Share volume on the NYSE was 

summed up over 5-minute intervals as well.  Overnight returns (price changes outside of 

trading hours) are not considered in this paper. 

The sampling program used a backtracking method, whereby the transaction price 

occurring immediately before each 5-minute tick was taken as the price at that tick.  

While this backtracking may cause complications in assets with small trading volume 

when the magnitude of this backtrack may be a few minutes on average, Altria Group 

common stock had an average daily share volume of about six million over the data set 

and this backtrack was only a few seconds on average.  On the occasions in which an 

entire 5-minute interval contained no trades, the most recent trade from the interval 

before was taken as the price.  This technique is reasonable since, if there have been no 

trades, one may assume that the price has not changed a significant amount. 

Filters were also put in place to correct or remove erroneous data from the 

sample.  The most common errors found in the data were time stamp errors (attributing a 

trade to the wrong time) and simple typos.  These errors, if they occur on a sampled trade, 
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will show up as a spike in the price, changing drastically over one interval and returning 

to near the original price level in the next interval.  Unfortunately, the jump statistics 

employed in this paper are quite susceptible to these errors, and will often generate a 

large z-statistic because of a price spike.  Filters were set up to order the prices by time 

stamp and to remove price spikes by eliminating large returns that are immediately 

followed by large returns in the opposite direction.  These filters eliminated the vast 

majority of errors in the data set.  

The S&P 500 futures data2 that is utilized in Section 7 contain daily z-statistics 

and RJt values from 1999-2002.  This data set comprises 980 trading days. 

Price data for five other assets, namely the S&P 500 spider index fund (Ticker: 

SPY) and the common stock of Procter and Gamble Co., (Ticker: PG) American 

International Group, Inc., (Ticker: AIG) Wal-Mart Stores, (Ticker: WMT) and 

International Business Machines Corp. (Ticker: IBM) were acquired for January 3, 2001 

from the WRDS TAQ database.  The common stock data was limited to NYSE trades, 

while the spider index, which is not traded on the NYSE, was not filtered for a particular 

market. 

4. Jump Statistic Results 

The four panels of Figure 2 show, in descending order, RVt, BVt, RJt, and the 

daily statistic zQP,rm,t for Altria Group from 1999-2005.  Two RVt values exceed the chart 

dimensions and are approximately 104 and 74.  The horizontal line on the z-statistic plot 

at  corresponds to the 99.9% significance level. 09.3=z

                                                 
2 The S&P 500 futures data was generously provided by Xin Huang and originally described in Huang and 
Tauchen (2006). 

 15



 Over the 1,760 day sample period, the z-statistic detected 190 jumps at the 99.9% 

significance level, which is 10.8% of the total sample days.  In the absence of jumps, the 

z-statistic should be approximately N(0,1) distributed (exactly in continuous time) and so 

the test would be expected to only detect 1.8 jumps at this significance level.  The fact 

that the number of jumps actually present is two orders of magnitude larger than this 

expected value is incredibly strong evidence for the existence of jumps.   

Figure 3 compares the distribution of the 1760 daily z-statistics in the sample to 

the normal distribution predicted by the null hypothesis.  The histogram is the actual 

distribution of returns, while the associated curve has been smoothed with a kernel 

estimator.  The mean z-statistic is clearly greater than zero and the distribution features 

more outliers than would be expected.  Both of these properties are further evidence of 

the existence of jumps.  

 Table 1 provides basic statistics for the considered variance and jump measures, 

as well as 5-minute share volume.  One should note that RVt, BVt, and daily volume have 

standard deviations larger than their means, which implies that they are all highly 

volatile.  Also, since trading volume cannot be negative, its distribution must be 

significantly skewed.  Finally, it is particularly important to note that the average RJt 

value is 14.2%, which means that discontinuous jumps account for more than 14% of the 

total price variation, which is twice as large as the portion accounted for in the S&P 500 

index, as stated in Huang and Tauchen (2006). 
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5. Causes of Price Jumps and Smooth Changes 

Prices can make large movements in one of two ways: discontinuous jumps and 

continuous smooth movements.   This study considers four days with price changes of at 

least 4% over the day, two of which contain a jump and two of which are smooth price 

changes.   

Figure 4 shows the price and trading volume of Altria Group’s common stock for 

two significant jump days, February 4, 2005 and August 18, 2005.  One should recall that 

this contains only NYSE trades sampled at 5-minute intervals, and the volume is the total 

number of shares traded during each interval.   

On February 4, 2005, a US federal court ruled that tobacco companies could not 

be forced to pay the proposed $280 billion of past earnings that they were being sued for.  

As Phillip Morris accounts for about half of the domestic cigarette market, this decision 

was very good news and the stock price jumped about 4%, a market cap rise of about $5 

billion, between 2:00pm and 2:05pm.  The z-statistic on February 4 was 4.81 which is 

significant at virtually any level.  Also, the 5-minute volume jumped to approximately 

twenty times its sample average during and immediately after the jump. 

On August 18, 2005, the Illinois Supreme Court reversed a $1 billion judgment 

against State Farm Insurance Co.  The relevance of this event for Altria Group is that the 

case was a class-action lawsuit similar to the pending $10.1 billion class-action case 

against Altria Group’s Phillip Morris USA and was viewed as an indication of how that 

case would be ruled on as well.  This decision was announced at approximately 10:00am 

EST and, as is apparent in Figure 4, caused Altria Group’s stock price to immediately 

jump between 10:05am and 10:10am.  The z-statistic on August 18 was 5.37 and so very 
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significant and the 5-minute volume during and after the jump was about fifteen times the 

sample average. 

In contrast with the above findings, Figure 5 shows price and trading volume of 

Altria Group for two large, smooth movement days.  Both days have returns over the day 

of over 5% and z-statistics below 2.   

 On October 21, 2002, Philip Morris announced that it was considering launching 

a new, discount cigarette brand to compete with the small, discount brands that had been 

eroding its market share during the recent recession.  The market considered this positive 

news and the stock price increased 6.1%, but it did so smoothly over the first four hours 

of trading and the z-statistic for the day was -0.44.  While one may suggest many reasons 

why the price increase was more drawn out than the jumps described above, it was likely 

because 1) the announcement was made before trading began, 2) the announcement was 

indecisive and made no promises, or because 3) the market was unsure how to value this 

new project. 

 On May 24, 2004, a federal judge refused to reduce the $280 billion lawsuit 

described above (this refusal occurred nine months before the tobacco industry won the 

lawsuit).  The stock price dropped 8.9%, but did so smoothly over a few hours, and the z-

statistic was 0.64.  One could imagine that, since this ruling was not final and the 

expected value of the ensuing lawsuit still had to be estimated probabilistically, it took 

the market longer to value the effects of this ruling. 

This case study provides some new insight into the causes of jumps for specific 

companies.  While jumps in market indices like the S&P 500 and currency exchange 

rates are most often caused by macroeconomic announcements, as observed in Andersen, 

 18



Bollerslev, and Diebold (2006), the most significant jumps in the stock price of Altria 

Group were due to company-specific, or at least industry-specific, announcements and, in 

both these cases, more specifically, lawsuits.  Since earnings announcements are typically 

made outside of trading hours and so have virtually no effect on price volatility during 

standard trading hours, one could expect other announcements, such as lawsuits and 

executive resignations to be the primary catalysts of individual company price jumps.   

Interestingly, some company specific news announcements were accompanied by 

smooth price changes.  The evidence of this case study suggests that jumps are caused by 

decisive and easily quantifiable announcements.  The jump day rulings were conclusive 

and involved lawsuits of a precise amount, while the smooth day announcements were 

less absolute and would require significantly more modeling to value.  It is reasonable 

that the market would come to a consensus on the value of the first two announcements 

almost instantaneously but take a few hours to agree on the value of the latter two 

announcements.  Also, announcements made outside of trading hours, while unable to 

cause jumps, might cause smooth price changes during trading hours if the less active 

after-hours markets cannot provide the necessary liquidity.  These announcements would 

still have virtually no effect on the daily jump statistics. 

No clear evidence was found of macroeconomic announcements causing jumps in 

the stock price of Altria Group, although such evidence for other companies is presented 

in Section 7.  The apparent effect of company and industry related announcements 

suggests that estimating the jump characteristics of individual firm-based assets would 

require company and industry specific parameters, in addition to those of the general 

market. 
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One must note that this analysis can only be performed in hindsight, since 

announcements are inherently unpredictable to some extent and cannot typically be 

categorized before they occur.  If an announcement were perfectly predicted, then it 

would already be accounted for in the asset price.  In summary, while there is significant 

evidence that many jumps are associated with real world events and even that certain 

types of events are more likely to cause jumps than others, these events and their relevant 

properties are not much easier to forecast than are the asset prices themselves.   

 

6. Proximity Effects of Jump Days 

A qualitative analysis of the significant jump days shown in Figure 4 suggests that 

volatility and volume may differ before and after jumps occur.  Since jumps often 

represent an abrupt change in the underlying asset or the market’s valuation thereof, it 

seems reasonable that different traders and shareholders would have different perceptions 

of this change and would cause higher volatility and trading volume in striving to 

augment their positions.  These potential increases in volatility and volume after a jump 

day will henceforth be referred to as proximity effects. 

To substantiate this informal observation, a comparison of BVt, RJt, and daily 

volume for time periods immediately before and immediately after significant jump days 

was performed.  One should note that the continuous (BVt) and jump (RJt) components of 

volatility are addressed separately.  The method of comparison was to calculate the 

difference between the measured values before and after jump days.  The comparisons 

were made for two time periods; one day and one week (5 trading days) before and after 

each jump.  The results of this test are provided in Table 2. 
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Contrary to the initial qualitative prediction, the results of this test provide 

virtually no evidence for any proximity effects of jump days.  None of the variance 

measures or volume displays a statistically significant difference around jump days, 

although this is partly due to the fact that both volatility and volume have large standard 

deviations.  Interestingly, while the effects on the single day before and after might be 

considered relevant, (daily volume showed a mean difference of 8%) the effects 

measured at the week time period are almost completely undetectable.  This suggests 

that, if there are any proximity effects associated with significant jumps, they are of short 

duration.  This makes qualitative sense if one considers Figure 4 and notes the rapid 

return to normality after the jump, most evident in the volume plot.  

While it would be interesting to test this theory at the intraday level, such an 

experiment poses a few technical dilemmas.  First, in order to compare volatility or 

volume within the jump day before and after it occurs, one must be able to determine 

when exactly the jump occurs.  The jump detection tests as they are currently constructed 

offer no information as to when within a day the jump occurs, and so a new method of 

detection would have to be created.  While something as simple as determining the 

largest absolute 5-minute return in the jump day might be reasonably effective, it has not 

been considered in this paper.  Second, if one can indeed determine the exact time when 

the jump occurs, one then needs a measure of variance that either compares a different 

number of returns (jumps don’t have to happen in the middle of the day) or combines 

returns from multiple days into one statistic.  If the latter is used, it would doubtless have 

to consider overnight returns, which are not typically considered in intraday frequency 

data analysis and would add many complications.   
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The absence of any real proximity effects supports the discontinuous jump 

diffusion price model.  Since jump days have virtually no effect on the smooth, 

continuous days around them, the jump volatility and continuous volatility can be 

considered independent of one another and may be addressed separately.  Also, these 

results suggest that predicting jumps based on any measure of volatility or volume will be 

ineffective, since neither offers any indicator that a jump is forthcoming.  This idea will 

be addressed formally in Section 9. 

 

7. Cross-asset Comparisons of Jump Characteristics 

One might expect that a stock with a CAPM beta close to one would have a price 

jump when the S&P 500 index has a price jump.  According to several authoritative 

financial websites (Reuters.com and Yahoo! Finance, among others), Altria Group has a 

beta between 0.86 and 1.08.  Plotting the daily z-statistics of the S&P 500 against those 

of Altria Group presents a simple way of determining whether or not any correlation 

exists between the jump characteristics of the two assets.  A linear regression would be 

more formal, but a glance at Figure 6 reveals why a regression is, in this case, 

unnecessary. 

The daily z-statistics for Altria Group common stock and S&P 500 futures will be 

compared for the four years 1999-2002.  This data set contains 980 trading days.  Over 

this time period, Altria Group experienced 137 jump days significant at the 99.9% level 

while the S&P 500 futures index experienced 22 significant jumps.  As one might expect, 

the average jump component for the S&P 500 was significantly smaller (7%) than that of 

Altria Group (16%). 
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Figure 6 plots the z-statistics against each other for every day in the data set.  

Surprisingly, there appears to be no correlation whatsoever between the two sets of 

statistics.  On only one occasion do both assets experience a significant jump.  Though 

this paper only considers Altria Group and the S&P 500, similar comparisons have been 

performed in contemporaneous work for over 30 common stocks, and with comparable 

results. 

These results demand a closer consideration of the dynamics of a price jump in an 

asset index.  Under the assumption of no arbitrage, an index price can only jump when 

the value of its composing assets jumps.  In continuous time, the index would jump if and 

only if at least one underlying asset itself jumped and was not cancelled out by another 

asset jump in the opposite direction.  However, in discrete time the dynamics are more 

subtle, and the index may not jump when one or more underlying assets do jump if the 

magnitude of these underlying jumps becomes insignificant in the aggregate index 

portfolio.  For example, if Altria Group’s price jumps 5% and the prices of the rest of the 

S&P 500 stocks do not change, the index will probably not show a statistically significant 

jump.  As is the case with individual assets, the determination of jumps in discrete time is 

predominantly a statistical issue. 

There are also circumstances under which the index can jump in the absence of 

statistically significant underlying asset jumps.  The S&P 500 index is less volatile than 

individual assets and so, since the jump statistic compares the jump volatility (RV-BV) to 

overall volatility (RV), a price change of a given magnitude may be a statistically 

significant jump for the index and not for its underlying assets.  This will only occur, 

however, if a large number of underlying assets experience simultaneous price changes in 
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the same direction.  At this point it becomes clear that index jumps are determined not 

only by statistically significant jumps in underlying assets, but also by the covariance of 

the underlying asset prices.  Thus, in order for an event to cause a jump in the S&P 500, it 

must either cause a small group of stocks to jump a large magnitude, or a larger number 

of stocks to jump a smaller magnitude.  It seems reasonable that the lawsuits mentioned 

previously that caused Altria Group’s stock price to jump did not have enough of a 

widespread effect to cause the S&P 500 index to jump.  Also, one could conceive of 

events that would only moderately affect Altria Group but would also moderately affect 

lots of other companies, thus causing a jump in the index.   

 A case study of a particularly significant jump day for the S&P 500 provides 

some insight into the properties of these more widespread events.  January 3, 2001 is the 

most significant jump day in the data set for the S&P 500 (z=6.43) and coincides with the 

Federal Reserve unexpectedly lowering the federal funds rate 50 basis points.  This 

announcement occurred at approximately 1:15pm EST and caused the stock market to 

run-up drastically.   

 Figure 7 plots the price of six assets on January 3, 2001.  Though the S&P 500 

futures data was unavailable, SPY is an exchange traded fund that traces the S&P 500 

index.  In addition to Altria Group, price charts are provided for Procter and Gamble Co., 

American International Group, Inc., Wal-Mart Stores, and International Business 

Machines Corp.  All five companies are members of the S&P 500 and the DJIA and have 

CAPM betas close to 1.   

Aside from the enigmatic price drop for Altria Group, the other four stocks 

experienced a drastic jump in price at exactly 1:15pm, the same time that SPY 
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experienced a jump.  Furthermore, three of the five stocks have a significant z-statistic for 

January 3, which is strong evidence for the fact that, at least in very drastic situations, 

macroeconomic announcements can cause discontinuous jumps in individual companies 

as well as market-wide indices.  Interestingly, the z-statistic for the index was larger than 

all the underlying stocks except IBM, which supports the suggestion that the index could 

indeed experience a statistically significant jump in the absence of underlying asset 

jumps.  While much of the jump volatility of individual stocks is eliminated in a 

diversified index, the index itself has additional jump characteristics associated with the 

covariances of the underlying assets. 

 

8. Volume-Variance Regressions 

The relationship between trading volume and volatility has been studied 

extensively (Tauchen and Pitts (1983) and Shephard (1996), among others), but little 

work has been done using new high-frequency measures of variance.  The following 

regressions are all univariate OLS regressions of the form: 

  Volume = α + β*Variance    (16) 

where α and β are the OLS coefficients, and volume denotes daily share volume.  The 

regression will be performed with four different measures of variance: daily absolute 

returns, RVt, BVt, and RJt.  Table 3 presents the results for this regression and the 

logarithmic regression: 

  Log(Volume)= α + β*Log(Variance)    (17) 

 A few insights may be made from these results.  First, the fact that RVt and BVt 

exhibit far more explanatory power (as evidenced by the larger R2 values) than the 
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absolute daily returns lends credibility to the use of high-frequency data analysis.  

Whether or not one considers jump characteristics, there is much to be learned about an 

asset’s price dynamics by sampling at intraday frequencies. 

Second, and more pertinent to the topics of this paper, daily volume displays 

almost no correlation with RJt, which implies that volume is virtually independent of 

jump characteristics.  This conclusion is further supported by the slightly larger R2 value 

for the BVt regression as compared with the RVt regression.   

This result can perhaps be better explained through the volatility-volume model of 

Tauchen and Pitts (1983).  In this model, an asset’s price at time i, Pi, is an average of the 

reservation prices, Pij
*, of J traders such that: 

      ∑
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The change in price Pij
* from time i-1 to time i is modeled as the sum of a universal 

component, φi, and a trader-specific component, ψij, and so: 
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where iψ  is the mean of the trader-specific components at time i.  Trading volume, Vi, is 

modeled as a factor α multiplied by the difference between the change in trader 

reservation prices and the change in the market price, or: 

   ∑∑
==

−⇒Δ−Δ=
J

j
iij

J

j
iiji PPV

1
2

1

*
2 ψψαα                             (21) 

The central insight in this model is that trading volume does not depend on the universal 

component of price change, φi, and so if the legitimacy of a jump in an asset’s price is 
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generally agreed upon among traders, it need not have any more effect on trading volume 

than a smooth price change of the same magnitude.  In general, it is reasonable that 

traders’ reservation prices will differ from the market price just as much during a large, 

smooth price change as they will over a jump, and so the experimental finding that daily 

volume is virtually independent of the jump volatility component, RJt, agrees with the 

model’s prediction. 

  

9. Volatility Forecasting Models 

It is well documented that volatility displays significant autocorrelation (Baillie 

and Bollerslev (1996)) and, more recently, this relationship has been confirmed by Corsi 

(2004) using high frequency volatility measures.  In the presence of jumps, however, this 

concept becomes more subtle.  One would expect that the jump volatility component 

might display less autocorrelation than the continuous component because jumps have 

proven to be virtually unpredictable.  For this reason, forecasting models that separate 

these two volatility components may provide new insight into volatility forecasting. 

The following forecasting models will be logarithmic in both variables, and so it 

is easier to model the jump component with JMt such that: 

    
t

t
t BV

RV
JM =                  (21) 

rather than RJt, which is often zero (or negative if it is not truncated).  The forecasting 

models used here regress JMt, BVt, and RVt on the lagged variables JM, BV, and daily 

volume, and are of the form: 
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where subscripts d, w and m denote day, week and month variable lags, which are 

defined as: 

]...[ 21
1

, httthhtt JMJMJMJM ++++ +++=                (23) 

and h=1, 5, and 22 for day, week, and month lags, respectively.  The BV and volume lag 

variables are generated with the same equation.  These regressions were performed in the 

form of Equation (22), but two similar regressions were performed as well.  The volatility 

measures were regressed on just lagged JM and BV variables, and also just on BV or JM 

in a typical autocorrelation regression.  These regressions for JM are as follows: 
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The results of these regressions are provided in Tables 4a-c. 

 Considering the JM regressions of Table 4a reveals a great deal about jump 

forecasting, or the impossibility thereof.  First, it is readily apparent that jumps display 

virtually no autocorrelation, as the first regression yields an R2 value of 0.0086.  This 

agrees with the results from Section 6 that showed jump days having insignificant 

proximity effects on the volume and volatility of the surrounding days.  Interestingly, the 

day and month lagged variables of BV and daily volume are all statistically significant 

and provide more predictive power than do the lagged JM variables.  It should be noted, 

however, that the day and month lagged variables are of comparable magnitude and 

opposing signs, which implies that the jump component has short-memory dependence 

on these variables and little long-memory dependence.  Despite these statistically 
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significant variables, none of the JM regressions yields an R2 value greater than 0.087, 

which agrees with previous findings that suggest that jumps are stochastic. 

 The BV regressions reveal that the continuous volatility component is far more 

predictable than the jump component.  BV is highly autocorrelated, as all three lagged 

BV variables are significant in all three regressions and generate R2 just below 0.6.  None 

of the lagged JM variables are ever statistically significant, which supports the conclusion 

that knowledge of past jump characteristics provides no help predicting continuous 

volatility.  The day and week lagged volume variables are statistically significant, but 

again are of opposite sign and provide little additional predictive power.   

 The RV regressions mimic the BV regressions almost exactly, but are provided to 

show that the power to forecast volatility is entirely encapsulated in the forecasting of the 

continuous component.   

 These regressions provide a more formal argument for the earlier conclusion that 

jumps are stochastic.  The continuous volatility component, BV, is highly autocorrelated 

and predictable, but no more so than the entire volatility, RV.  Thus, while these 

regressions of decomposed volatility components has provided significant insight into the 

mechanics of volatility forecasting, it has little or no inherent forecasting power. 

 

10. Conclusions and Future Considerations 

The application of the variance difference jump detection method to the common 

stock of Altria Group generated results comparable to those found when the method was 

applied to market indices and currency exchange markets.  The number of significant 

jumps detected was more than two orders of magnitude greater than one would expect if 
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the price function was continuous, which is strong evidence for the presence of jumps.  

Additionally, the distribution of daily z-statistics, which should be N(0,1) in the absence 

of jumps, has a mean well above zero and is not normally distributed.  The magnitude of 

the jump component of variation was found to be even larger for this individual stock 

than for the indices and exchange rates, with an average of over 14%.   

The news-related causes of discontinuous jumps in Altria Group’s stock price 

were found to be mostly company specific announcements rather than the 

macroeconomic announcements found to affect the larger market assets.  Though many 

jumps can be undoubtedly linked to these news announcements, similar announcements 

can cause large, smooth price movements and it is very difficult to predict whether or not 

a particular event will cause a discontinuous, price jump or a smooth price movement.  

Any proximity effects of significant jumps on the surrounding days was found to be 

either insignificant or of very short duration.  Curiously, there was found to be no 

correlation between the daily z-statistics of Altria Group stock and the S&P 500 futures 

index, but a case study of the effects of an unexpected Federal Reserve announcement on 

the price of the S&P 500 index and five common stocks showed convincingly that a 

monumental macroeconomic announcement can, indeed, cause indices and common 

stocks to jump simultaneously.  Regressions of daily volume versus variance found that 

high-frequency variance measures are much more strongly correlated with volume than 

are absolute daily returns, but volume appears uncorrelated with jump characteristics.  

The forecasting regressions confirmed that, while the continuous component of volatility 

is highly autocorrelated and exhibits long memory characteristics, the jump component is 

stochastic and so virtually unpredictable.  Also, daily volume was found to be a 
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significant variable in forecasting both the continuous and jump components of volatility 

(though with miniscule explanatory power), although the jump component exhibited 

shorter memory with respect to volume. 

The central insight of this paper is the somewhat dismal fact that price jumps are 

both relevant and stochastic.  They explain significant portions of price volatility, but 

exhibit no autocorrelation, cannot be predicted with a knowledge of past trading volume, 

and have no measurable effect on the volatility and volume proceeding or following their 

occurrence.  Though many jumps can be linked to news events, smooth price changes can 

be linked to similar news events.  Jumps in indices do not even correlate with jumps in 

the underlying assets.  While these may appear to be frustrating findings, they indicate 

that the common practice of modeling price functions continuously is flawed and may be 

improved in the future. 

The most obvious extension of the findings of this paper is to consider a larger 

body of common stocks.  The legal ramifications for Altria Group as the leading producer 

in the cigarette industry potentially creates a unique jump profile, as evidenced by the 

real-world jump causes discussed previously.  Extending the analysis to other common 

stocks would lend credibility to the results of this case study, as well as allow for a more 

thorough analysis of cross-asset jump characteristics.  Also, a study of different indices 

could be performed to examine the relationship between an index’s jump characteristics 

and the covariance of its comprising assets. 

Extending the proximity effects experiment to include intraday measures might 

give a more definitive answer to whether or not the proximity effects of jumps are 

significant over any time period.   
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Finally, the most useful results that can come from this high-frequency data 

analysis are improved forecasting models, particularly for future volatility.  If significant 

improvements can be made on models that only employ daily data by the use of high-

frequency data and a consideration of jump characteristics, then many aspects of finance 

that depend greatly on volatility forecasting, notably derivative pricing, can be improved. 
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Table 1: Summary Statistics for Altria Group common stock for 1999-2005. 
  RV BV RJ 5-minute Volume (in thousands) 
Mean 3.262 2.676 0.142 77.42 
St. Dev. 5.252 3.806 0.131 122.74 
Min. 0.112 0.073 0 0 
Max 103.4 58.7 0.792 22118.1 

 
 
 
 
 
Table 2:  Proximity Effects of Jump Days. 

  BV RJ Daily Vol (Mill) 

Mean        
Overall 2.654 0.14 5.915 
Before Jump 3.35 0.174 6.06 
After Jump 3.43 0.163 6.5 

Median        
Overall 1.633 0.118 4.991 
Before Jump 2.41 0.157 5.25 
After Jump 2.49 0.149 5.34 

Standard Deviation       
Overall 3.833 0.129 3.583 
Before Jump 5.27 0.134 3.36 
After Jump 3.96 0.1342 3.57 

Proximity Effect (Aft - Bef)       
Day 0.0819 -0.0113 0.436 
Week 0.1197 -0.012 0.445 

Proximity Effect (% of Mean)       
Day 3.10% 8.10% 7.40% 
Week 0.90% 1.70% 1.50% 
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Table 3:  Volume vs. Variance Regressions. 
Volume = α + β*Variance 

 Standard Model (Vol in Millions) Logarithmic Model 
Variance Measure Beta C R-squared Beta C R-squared
abs(Ret) 154 4.17 0.289 0.184 16.39 0.209
SE (12.1) (.134)   (.010) (.050)   
RV 4160 4.68 0.334 0.300 18.06 0.412
SE (719) (.211)   (.010) (.085)   
BV 6330 4.35 0.405 0.313 18.22 0.419
SE (745) (.177)   (.010) (.090)   
RJ (JM for Log Model) 2.03 5.74 0.005 0.1886 15.46 0.006
SE (.912) (.160)   (.0584) (.0143)  
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Table 4a: Volatility Forecasting: Jump Component, JM. 
 Log(JMt)  
     
α 0.1468 0.53590 1.8907
 (0.0082) (0.04960) (0.5117)
    
βBV-d  -0.0486 -0.076
  (0.0113) (0.0115)
    
βBV-w  0.0350 0.0488
  (0.0142) (0.0196)
    
βBV-m  0.0610 0.0971
  (0.0137) (0.0183)
    
βJM-d -0.0762 -0.0325 -0.0436
 (0.0367) (0.0344) (0.0334)
    
βJM-w 0.1373 0.1285 0.1210
 (0.0435) (0.0414) (0.0397)
    
βJM-m -0.0008 0.0077 -0.0038
 (0.0409) (0.0375) (0.0374)
    
βVol-d   0.0799
   (0.0195)
    
βVol-w   -0.0444
   (0.0283)
    
βVol-m   -0.1098
     (0.0324)
    
R2 0.0085  0.0672  0.0871 
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Table 4b: Volatility Forecasting: Continuous Component, BV. 
 Log(BVt)  
    
α -0.8506 -0.8264 0.9122
 (0.1680) (0.1699) (1.5540)
    
βBV-d 0.3080 0.3065 0.2062
 (0.0294) (0.0293) (0.0331)
    
βBV-w 0.2511 0.2532 0.3854
 (0.0469) (0.0470) (0.0581)
    
βBV-m 0.3550 0.3555 0.3516
 (0.0434) (0.0435) (0.0554)
    
βJM-d  0.1992 0.1779
  (0.1140) (0.1120)
    
βJM-w  -0.0560 -0.0698
  (0.1232) (0.1252)
    
βJM-m  -0.2293 -0.2391
  (0.1117) (0.1127)
    
βVol-d   0.2874
   (0.0565)
    
βVol-w   -0.3532
   (0.0822)
    
βVol-m   -0.0301
     (0.1010)
    
R2 0.5911  0.5923 0.5994
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Table 4c: Volatility Forecasting: Combined Volatility, RV 
 Log(RVt)  
    
α -0.2690 -0.2490 3.2840
 (0.1642) (0.1728) (1.5820)
    
βBV-d 0.3087 0.3074 0.2083
 (0.0287) (0.0290) (0.0327)
    
βBV-w 0.2560 0.2582 0.3889
 (0.0459) (0.0470) (0.0593)
    
βBV-m 0.3992 0.4002 0.4259
 (0.0413) (0.0440) (0.0564)
    
βJM-d  0.1965 0.1616
  (0.1182) (0.1149)
    
βJM-w  -0.0428 -0.0690
  (0.1220) (0.1229)
    
βJM-m  -0.1732 -0.2027
  (0.1114) (0.1116)
    
βVol-d   0.2794
   (0.0571)
    
βVol-w   -0.3408
   (0.0841)
    
βVol-m   -0.1333
     (0.1023)
    
R2 0.6099  0.6107 0.618
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Figure 1:  Discontinuous Jump vs. Smooth Increase: Altria Group stock price on 
February 4, 2005 (top) and November 1, 2005 (bottom). 
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Figure 2:  Jump Statistics for Altria Group common stock for 1999-2005 
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Figure 3: Distribution of daily z-statistics compared to the expected N(0,1) distribution. 
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Figure 4:  Jump Days: Altria Group Stock Price and Share Volume on February 4, 2005 
(left) and August 18, 2005 (right). 
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Figure 5: Smooth Days: Altria Group Stock Price and Share Volume on October 21, 2002 
(left) and May 24, 2004 (right). 
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Figure 6:  Daily z-statistics of Altria Group vs. daily z-statistics of S&P 500 futures index 
for 1999-2002. 
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Figure 7:  Price charts for SPY, AIG, WMT, MO, IBM, and PG on January 3, 2001. 
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