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Abstract 

The decision to exploit a resource or explore the environment presents a common 

economic tradeoff.  The decision-making process of this tradeoff, however, is not well 

understood.  Recent neurobiological findings show that Norepinephrine may regulate the 

transition between exploitation and exploration behaviors through altering levels of 

arousal.  Using foraging theory models, I developed a mouse experiment to test 

Norepinephrine’s role in the exploit-explore paradigm.  The experiment requires the mice 

to receive smaller rewards that arrive predictably and reliably, or receive larger rewards 

that arrive unpredictably.  Compared to normal mice, mice with deficient Norepinephrine 

function show a tendency towards exploitation behaviors rather than exploration.  This 

demonstrates that proper Norepinephrine functioning is essential for the evaluation of the 

exploit-explore tradeoff. 
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I.  Introduction 

 

The choice to exploit or explore poses a dilemma: individuals can either receive 

immediate rewards or learn new information that may lead to a larger future reward.  

While both humans and animals frequently face this exploit-explore tradeoff, the neural 

mechanisms of the decision processes are poorly understood.  Recent work shows that 

separate brain regions control the implementation of exploitation and exploration actions 

(Daw et al., 2006).  The mechanism for alternating between these two actions, however, 

remains unclear.  A neuromodulatory protein called Norepinephrine (NE) may be 

responsible by regulating attention and arousal.  During heightened arousal, individuals are 

unable to execute a task and, instead, explore the environment.  Conversely, moderate 

levels of arousal allow an individual to focus on a particular task with high accuracy.2  To 

test the effects of NE, I developed an exploit-explore task that mimics natural situations.  In 

my experiment, I compared the performance of a breed of genetically altered mice with 

impaired NE functioning, called Norepinephrine Transporter knock outs (NET’s), to a 

group of genetically normal mice.  The NET mice performed exploitation for 80.5% of 

exploit-explore actions during baseline conditions, compared to 70.4% for the normal 

mice.3  Overall, the NET mice exhibited a tendency to exploit a resource rather than explore 

the environment.  

The tradeoff between exploitation and exploration is present in many real world 

situations.  For example, a common day laborer experiences an exploit-explore tradeoff 

when deciding where to work each day.  The laborer can choose to work a construction job 

                                                        
2 In the opposite extreme, low arousal corresponds to drowsiness and sleep. 
3 Baseline conditions refers to times when the Variable Arrival patch is inactive.  This will 

be explained in Section V. 
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that pays a steady, but low wage, or at a nearby strawberry farm to pick valuable 

strawberries.  Unfortunately for the laborer, strawberries are only occasionally and 

unpredictably ripe.  The laborer wastes a day of work if he travels to the faraway 

strawberry farm and finds the strawberries are unripe.  The laborer can choose to exploit a 

known resource (the construction job) or explore for the potentially more valuable job 

(strawberry picking).  Likewise, a traveler faces an exploit-explore decision when entering 

a new town in search of food.  The traveler can choose to eat at a chain restaurant with a 

familiar menu and food quality, or he or she can eat at an unknown, local venue.  The local 

venue represents exploration, as the food quality is unknown, while the chain restaurant 

represents exploiting known information.  

For years, behavioral ecologists have studied the exploit-explore tradeoff described 

above through optimal foraging theory (Hamelin 2006; Stephens and Krebs, 1986; Stevens, 

2002).  This theory provides a model for investigating animal behavior as animals search 

for resources such as food and hosts that are unevenly distributed in an environment.  The 

resources are typically located in discrete patches that vary in quality (Charnov 1976).  Just 

as the aforementioned day laborer can work at the steady construction job, some patches 

offer consistent, albeit less valuable, rewards.  At any point, the animal can choose to search 

for a more valuable patch at another location.  Moreover, some patches only offer rewards 

during certain periods that occur unpredictably.  Exploring the environment and increasing 

knowledge of patch rewards allows the animal to maximize high reward actions and 

minimize low reward actions.  The decision-maker must weigh the expected improvements 

in performance from information gathered while exploring with the lost opportunity to 

harvest resources (Wai-Tat Fu 2006; Stephens and Krebs, 1986). 
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Several common economic and game theory problems have similar tradeoffs.  The 

single-armed bandit problem models how an individual explores the environment for 

information (Audibert et al., 2009; Whittle, 1980; Whittle, 1988; Gittins 1979; Bolton and 

Harris 1999).  In the classical setup, a gambler walks into a room with several slot 

machines with variable, unknown payoff rates.  Hoping to maximize his or her payoff, the 

individual must strategically probe each slot machine for information about the payoff rate.  

Gittins and Jones (1974) solved this problem by proposing that each slot machine is 

assigned an index to calculate the projected value of using a particular slot machine.  The 

index incorporated the expected value of the slot machine and the expected increase in 

information about the slot machine payoff rate.  To maximize reward, an individual simply 

chooses the slot machine with the highest index. 

While theorists can find optimal solutions to the single-armed bandit and other 

similar foraging problems, these solutions frequently require complex calculations that are 

unrealistic for a person to perform given cognitive and time constraints (Wai-Tat Fu, 2006; 

Kahnman, 2002).  Indeed, when researchers studied animals in the wild, some animals 

failed to closely follow Charnov’s predictions.  For example, some species of sea bass, 

moose, shrews, insects and wasps followed sub-optimal foraging strategies (Kamil 1983, 

Anderson 1984; Barnard and Brown 1981; Zimmerman 1981; Pyke 1977; Waage 1979; 

Krebs et al. 1974; Outreman et al. 2005).   Despite this failure, Charnov’s theorem provides 

a good framework that is capable of approximating animal behavior.  Several animals, such 

as hummingbirds and the parasite nemeritis, closely approximate Charnov’s theorem 

(Hubbard and Cook 1978).  Apparently, animal species attempt to generate similar results 

to what Charnov predicts, but may not perform the complex calculations required for his 
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theory.  Humans and animals have neural systems that execute other, cognitively feasible, 

processes that produce these behavioral outcomes. 

 New fields such as neuroeconomics explore how neural mechanisms affect decision-

making and behavior.  Classical economic theory builds models where humans are 

represented as rational agents.  These agents spend time carefully planning all decisions 

(Mullainathan and Thaler, 2000; Davidoff, 1965).  In reality, people can act irrationally and 

make suboptimal decisions.  For example, stock market investors frequently hold losing 

stocks longer than a rational agent would (Koszegi 2008).  Neuroeconomics combines 

methods from neuroscience, economics, and psychology to offer alternate models for the 

underlying processes of decision-making. 

 Additionally, neuroeconomics studies indicate that certain individuals deviate from 

standard behavior in systematic ways.  Recent neurobiological findings show that various 

genetic and environmental factors can change behavior in certain categories of individuals.  

Parkinson patients taking particular types of medications, for example,4 show an 

inclination towards a gambling addiction (Dodd et al., 2005; Driver-Dunckley et al., 2003).  

Likewise, the gene 5-HTTLPR increases the likelihood of depression when an individual 

experiences stressful life events (Pezawas et al., 2005; Hairiri et al., 2002; Caspi et al., 

2003).  In both of these cases, affected individuals will systematically deviate from optimal 

behavior.  Similar interactions between genetics and the environment could have a large 

effect on individuals performing tasks such as foraging.  Across the entire human 

population, large differences probably exist in the levels of neurochemicals present in each 

                                                        
4 Specifically, the individuals are taking dopamine agonists.  Dopamine is a 

neurotransmitter that regulates variety of functions including movement, pleasure, and 

attention.  A dopamine agonist is a compound that activates dopamine receptors while 

dopamine is absent, mimicking the actions of dopamine in the brain. 
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person’s brain.  These differences, such as altered NE functioning, could account for 

systematic variations in behavior.  Modern genetic techniques allow researchers to analyze 

these differences in groups of a population, and create a more comprehensive model of 

decision-making. 

A new understanding of the neuromodulator Norepinephrine (NE) gives insight into 

the exploit-explore decision-making process.  Mentioned previously, NE is a neurochemical 

that regulates arousal and attention behavior (Aston-Jones and Cohen, 2005; Berridge and 

Waterhouse, 2003; Jouvet, 1969; Robinson and Berridge, 1993; Wise and Rompre, 1989).  

Regulation of NE may cause individuals to either perform a task more efficiently or 

disengage from a task and explore the environment.  This idea is motivated by findings 

showing that rat and monkey brain cells release NE when presented with arousing stimuli 

that normally elicit behavioral responses (Aston-Jones and Bloom, 1981; Brun et al., 1993).  

Further work showed that these brain cells have direct connections with brain areas 

associated with attention processing and motor response (Morrison et al., 1982; Foote and 

Morrison, 1987).  Taken together, these findings led to a theory of NE function stating that 

NE may produce behavioral adjustments in attention level that optimizes performance 

while completing an exploit-explore task. 

Investigating this theory will give economists a greater knowledge of exploit-

explore decision-making.  Economists can use this information to build more accurate 

models that more accurately depict human behavior and account for systematic deviations 

due to genetic factors.  To assess NE’s role in the exploit-explore tradeoff, I conducted an 

experiment where two cohorts of mice completed an exploit-explore task.  Each night, the 

mice were individually placed in a small box with two portholes into which a mouse can 
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“nosepoke,” an action whereby a mouse sticks his nose into a porthole to gain a reward.  

The portholes represent a foraging patch.  One patch, called the Fixed Interval (FI) patch, 

offers a constant, low reward value.  The other patch is called the Variable Arrival (VA) 

patch.  This patch is either active for a defined period and offers a high reward, or inactive 

and offers no reward.  The mouse chooses how much to alternate between exploiting the FI 

patch and exploring the VA patch to discover when the more valuable active VA patch is 

available for exploitation. 

This experiment provides an opportunity to assess relative levels of exploitation 

and exploration in different groups of mice.  Compared to normal mice, the NET mice 

showed a generally tendency towards exploitation.  While the VA patch was inactive, the 

NET mice nosepoked the more valuable FI patch instead of exploring VA patch to 

determine if it was active.  After the VA patch activated, the NET mice adjusted nosepoking 

behavior to a larger extent than normal mice to successfully exploit the active, highly 

valuable VA patch.  This task demonstrates that NE helps regulate the exploit-explore 

tradeoff. 

The rest of this paper is divided into seven sections.  Section II examines the 

relevant economic literature and explains how foraging theory is useful for studying 

decision-making paradigms.  Section III summarizes our current understanding of the 

neural mechanisms of the exploit-explore tradeoff.  Section IV discusses NE and its role in 

the explore-exploit tradeoff.  In Section V, the experiment is described in more detail.  

Section VI presents the theoretical framework for the experiment.  Section VII discusses the 

analysis and results of the experiment.  Section VIII concludes the paper. 

II.  Economic Literature Review 
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 Optimal foraging theory originated from studying animal food-gathering strategies 

in natural habitats (Krebs, 1973).  Foraging theorists developed models with four basic 

features: (1) how long an animal searches for patches; (2) which patch types the animal 

visits; (3) when an animal leaves a patch; (4) which type of food the animal consumes at a 

patch (Zimmerman, 1981).  Overall, foraging theorists discovered that animals appear to 

choose strategies to maximize resource intake by balancing the resources gained from 

exploiting a discovered patch and the cost associated with searching for a more valuable 

patch.  In this section, I describe an optimal foraging model and then compare this to a 

similar economics problem, the single-armed bandit problem.  This problem describes the 

tradeoff present in my experiment.  The remainer of my thesis will examine features (1) 

and (2) from above. 5 

2.1 Eric Charnov and the Optimal Foraging Problem 

Eric Charnov developed the first mathematical model and optimal solution to 

foraging theory in 1974.  Charnov proposed a patch leaving strategy that allowed an animal 

to gather resources at an average rate γ, the average resource capture rate for an 

environment (Hamelin et al., YEAR).  The model set-up is similar to the foraging 

environment previously described in the introduction, with three distinct features 

(Pleasents and Zimmerman, 1979; Weins, 1976): 

(A) A lone forager encounters resources arranged in nonrandom, discrete patches.  

(B) Each patch exhibits diminishing returns to resource accumulation rate.   

                                                        
5 While question three appears to be relevant to this thesis, the question actually requires a 

different mathematical approach. 
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(C) Other foragers are absent, leaving the lone forager to search without 

competition. 

The forager’s goal is to maximize cumulative resource intake.  To do this, the forager 

faces a choice: exploit a known patch or explore the environment for a new patch.  The 

forager chooses when to leave a patch, called the “patch leaving time,” and then explores 

the environment until a new patch is found.  The forager maximizes resource intake by 

relating the expected time exploring for a patch to the reward from exploiting a known 

patch. According to Charnov, an animal should exploit a known patch until the intake rate 

drops below γ.  At this point, the animal should leave the patch to explore for new patches.  

Thus, an animal should search for a new patch when the marginal capture rate in a patch is 

below the average capture rate for an environment (Stephens and Krebs, 1986).   

2.2 The Gittins Index and Slot Machines 

 While Charnov’s paper led to the creation of optimal foraging theory, he mainly 

addressed feature (3): when does an animal decide to leave a patch.  To understand the two 

features of foraging models that my thesis addresses, we must look at game theory and the 

single-armed bandit problem. 6  Introduced earlier, the single-armed bandit problem 

describes the strategies available to a gambler in a room with several slot machines with 

variable, unknown payoff rates (Whittle 1988).  Each period t, the gambler uses slot 

machine i with a mean payoff rate xi(t), and gains a reward gi(xi(t),t).  The slot machines do 

not have diminishing returns as Charnov’s patches did, but rather fluctuate payoff rates 

from period t→t+1 via a stochastic process.  As a result, the single armed bandit problem 

                                                        
6 Once again, the first two features of foraging models are: (1) how long an animal searches 

for patches and (2) which patch types the animal visit. 
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models how to choose a slot machine that will maximize reward over an infinite future 

instead of modeling when an agent should leave a patch. 

Since all of the slot machines have differing payoff rates, the gambler should 

occasionally probe each slot machine to gain information about the machine’s payoff rate.  

Even though this may lead to a lower short-term expected payoff, the gambler gains 

information about payoff rates through exploration that will maximize the long-term 

payoff.  Information now has a quantifiable value, as it can help the gambler choose the slot 

machine with a higher current payoff rate.  Gittins showed that each slot machine should be 

assigned an index vi(xi) that estimates the payoff rate from previous uses and the 

informational value from increasing the knowledge of the slot machine’s payoff state 

(Gittins 1974).  Each trial, an optimal gambler will choose the slot machine with the highest 

index.  

The single-armed bandit problem and the Gittins index closely mimics the situation 

of many foraging animals.  Some valuable resource patches are only available occasionally, 

such as ripe strawberries.  Animals must devote resources and time towards discovering if 

these resources are available to maximize reward intake.   

III. Neuroeconomic Findings in Foraging Theory 

Neuroeconomics can expand Gittins’ findings through studying the neural 

mechanisms of decision-making.  Beyond discovering which slot machine an optimal agent 

chooses, neuroeconomics attempts to elucidate how humans make choices and ascertains 

why deviations occur from optimal behavior.  Neuroeconomists predominately study how 

humans evaluate and obtain rewards, as well as create strategies to maximize reward 

intake (Doherty 2004).  The human brain has an organized reward representation circuit to 
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estimate the value of a reward, predict future rewards, and use this information to guide 

behavior (Hyman 2006).  While this system is not entirely understood, it utilizes several 

brain regions to constantly update and reevaluate reward representations based on 

current information (Samejima 2005).  

In a foraging task, reward representations help agents evaluate and choose between 

exploitation and exploration.  A recent finding by Daw et al. (2006) has greatly enhanced 

our understanding of the exploit-explore tradeoff by elucidating the neural mechanisms of 

these two actions.  Daw et al. uses a functional Magnetic Resonance Imaging device to 

observe brain activation while subjects participate in a single-armed bandit task.  

Numerous brain regions involved in the reward representation circuit were activated 

during the task (Figure 1). 
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Figure 1: Task Design* 

 

* From Daw et al., 2006 

The experiment mimics the single-armed bandit problem described above.  Initially, the 

subject chooses between four slot machines.  Each slot machines awards points to the 

subject, which can later be redeemed for money.  The slot machines pay off noisily around 

randomly changing means. 
 

After the subject completed the task, Daw et al. used a modified version of the 

Gittins index to categorize each trial as either exploitation or exploration.  The subject 

performed an exploitation action when he or she chose the slot machine with the highest 

perceived reward; the subject performed an exploration action when he or she chose a slot 

machine with a high informational value, but a lower expected reward.   Then, Daw et al. 

examined differences in brain activation during exploitation and exploration.  They found 

that several brain regions, each involved in the reward representation system, were active 

during exploration and not exploitation.  Apparently, these brain regions suppressed a 
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natural tendency to exploit a resource, and led to exploration instead.  This finding showed 

that the brain uses different regions to perform exploitation and exploration tasks.  The 

mechanism for activating the different brain regions involved in exploitation and 

exploration, however, is unknown.  Recent models suggest that NE may regulate the 

propensity to explore the brain through altering the functionality of the regions involved in 

exploitation and exploration.   

IV.  NE’s Role in the Exploit-Explore Paradigm 

NE is part of a class of brain chemicals called neuromodulators.  These chemicals 

regulate the functionality of various brain regions.7  For example, a neuromodulator can 

make particular brain regions more or less active during a given task.8  The change in 

activation can increase task performance or inhibit actions.  As a consequence, NE 

indirectly controls behavior through altering the effectiveness of different parts of the 

brain. 

NE was traditionally thought to regulate arousal and attention (Aston-Jones and 

Cohen 2005).  Neuroscientists posited that NE had simple, basic functions such as 

regulating alertness due to its broad and general connections to multiple brain regions.  

Indeed, neuronal recordings show that neurons release NE at high rates during walking, 

low rates during drowsiness, and virtually no NE during sleep (Aston-Jones and Bloom 

1981).  In contrast to these early hypotheses, recent findings show that NE may have a 

larger role regulating behavior. 

                                                        
7 Actually, neuromodulators affect the functionality of neurotransmittors. 
8 Increased activity of a brain region generally corresponds to a greater role for that region 

in performing a task. 
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Through modifying alertness and arousal, NE helps to optimize behavior by 

increasing or decreasing the attention given to a task.  Arousal is difficult to characterize 

with neurobiological mechanisms, but easy to define informally.  Simply, arousal is 

alertness or the ability to pay attention to a task.  Arousal is essential for performing even 

simple tasks.  At low levels of arousal, individuals have difficulty functioning.  Dampened 

arousal leads to drowsiness or, at the extreme, sleep.  In the opposite side of the spectrum, 

heightened arousal can lead to distractibility.  If an individual is interested in every loud 

noise or other stimulus, performing a task can be quite difficult.  Individuals perform 

optimally at a happy medium between heightened and dampened arousal. 

With connections to the reward representation circuit, the NE system’s regulation of 

attention and arousal can affect reward related tasks.  In the exploitation-exploration 

paradigm, NE may regulate whether an individual devotes attention towards exploiting a 

resource or abandons the resource and explores the environment.  Low levels of arousal 

lead to torpor and poor task performance; medium levels of arousal correspond to 

exploitation; and high levels of arousal lead to distractibility and eventually exploration of 

the environment.  Hence, the NE system provides a neural mechanism for switching 

between exploitation and exploration behaviors through regulating arousal. 
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Figure 2: Attention and Task Performance 

 

Figure 2: Adapted from Aston-Jones and Cohen (2005) 

V. Methods and Details from the Experiment 

 Thus far, I have presented a model of NE functioning that may regulate the 

transition between exploitation and exploration.  This model, however, is unconfirmed 

experimentally.  Additionally, the current battery of mouse experiments lacks tests for the 

exploit-explore tradeoff.  In this section, I describe an experiment created to investigate 

this tradeoff.  Section VI then demonstrates that the mice can adequately perform this 
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exploit-explore task, and shows that the behavior of the NET mice deviates from the 

behavior of the normal mice. 

5.1 The Principle Actors 

I use three groups of mice in this experiment: 

(1) A pilot group of normal, genetically identical mice9,10 

(2) A second group of genetically identical mice, age-matched to mice in group (3)11 

(3) A group of genetically altered NET (Norepinephrine Transporter knock out) mice 

 The mice in the first and third groups have normal gene expression and are referred to as 

wild type (WT) mice.  Primarily, I used the first group of mice as a pilot group to develop 

the exploit-explore experiment.  These mice participated in numerous unsuccessful exploit-

explore experiments in addition to the final version of the experiment.  Subsequently, 

groups (2) and (3) participated in the experiment.  I then compared the two groups’ results 

to determine how the NET mice deviate from WT mice in the exploit-explore task.12,13 

5.2 Experiment Details 

 The WT and NET cohorts participated in a foraging experiment that emulates a 

natural foraging experience.  As described earlier, the mice were individually placed each 

                                                        
9 These are C-57 black mice. 
10 The mice in the first group are older than the mice in the other two groups.  While age 

should not affect performance in this task, older mice do behave differently in some 

experiments. 
11 This eliminates any difference age may have on task performance. 
12 Norepinephrine transporter is a protein responsible for recycling NE after use (Xu et al. 

2000; Hall et al., 2009; Perona et al., 2009).  NET mice are genetically altered and lack this 

transporter.  After NE is used to send a signal from one neuron to another, the neuron is 

slow to recoup lost NE efficiently. 

13 Knockout mice, like the NET mice, are born with a genetic deficiency.  As the mice 

develop, alternate mechanisms develop to compensate for this deficiency.  This makes 

extrapolating results obtained from knockout mice difficult since alternate mechanisms 

may cause odd results. 
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night in a small box with two portholes.14  Each porthole, which represents a foraging 

patch, released liquid rewards to the mice.  Since a mouse did not have free access to food 

or water while in the box, it obtained liquid through nosepoking into the portholes.15 

The box was approximately 13 cm by 10 cm with one porthole on each the left and 

right end.  This box size is large enough for a mouse to comfortably explore, but not too 

large that traversing the box is a hindrance.  The portholes were approximately 2 cm by 2 

cm boxes that protrude from the side of the boxes.  At the end of the box, a liquid dispenser 

released small amounts of a liquid reward.  Each porthole box has a laser motion detector 

that records when the mouse nosepokes into the porthole.  Upon nosepoke, the liquid 

dispenser released the liquid reward for the mouse to collect.  The liquid reward was a 

mixture of water and sweet’n’low artificial flavoring.  See Figure 3 for a visual 

representation of the box and portholes. 

                                                        
14 Each mouse spent twelve hours per day in the boxes.  The two groups of mice lived under 

different light-dark cycles.  When the lights were on for one group of mice (day), the lights 

were off for the other group (night).  Mice are most active at night.  This allows both groups 

of mice to spend the night period in the experimental box. 
15 A program called Med PC collected data on the mouse’s nosepoke behavior from the box 

to analyze. 
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Figure 3: Experiment Box 

 

 Each porthole offers different reward rates during different time periods.  This gives 

the mouse two different patches from which to forage.  One patch, called the Fixed Interval 

(FI) patch offers a low reward value, r, at a constant rate.  After the mouse nosepokes at the 

FI patch and receives a reward, the mouse must wait a constant delay period of ∆ (5) 

seconds before receiving another reward for a nosepoke.  In simpler terms, the FI patch 

offers a maximum reward rate of r reward every ∆ seconds.  The other patch is called the 

Variable Arrival (VA) patch.  This patch is either active or inactive.  When inactive, the 

patch offers zero reward per nosepoke.  When active, the VA patch offers a large reward, R, 

when nosepoked, with R > r.  There is no waiting time in-between nosepokes while the VA 

patch is active.  Essentially, the active VA patch offers continuous, large rewards.16  The VA 

patch becomes active via a Poisson process with an arrival rate λ.  After the patch is active, 

the patch remains active for S (90) seconds before inactivating.17 

 

                                                        
16 The mouse is constrained by the physical limitations of a maximum nosepoke rate.  This 

rate is roughly two nosepokes per second. 
17 Note, the variables R, r, S, λ and ∆ are constant and exogenous in the experiment. 
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Table 1: Summary of Exogenous Constant Variables and Terms 

Variable or Term Purpose 

VA Variable Arrival patch 

FI Fixed Interval Patch 

R Large Reward from VA patch 

r Small Reward from FI patch 

∆ (5 seconds) Delay period between rewards for FI nosepokes 

λ Poisson arrival rate for VA patch 

S (90 seconds) Duration of active VA patch 

 

VI.  Theoretical Section 

To analyze this experiment, I first create a model of how a constrained-optimal 

mouse will behave.  This is not an optimal agent, but rather a cognitively and physically 

limited mouse.18  For example, a mouse is unable to continuously nosepoke, and is 

constrained physically by the maximum nosepoke rate of about two nosepokes per second.  

The mouse still performs optimally given reasonable constraints.   

6.1 The Constrained-Optimal Mouse 

Two situations exist for the optimally-constrained mouse: (1) the mouse does not know if 

the VA patch is active and (2) the mouse knows the VA patch is active.19  For each of these 

situations: 

(6.1A) The mouse can alter its overall nosepoke rate.  If the mouse does not know if 

the VA patch is active, it nosepokes at some rate ν (nosepokes / second).  If the mouse 

knows the VA patch is active, it nosepokes at a rate ν* (nosepokes / second). 

 

                                                        
18 For example, we will assume that our agent does not condition his nosepoking 

probabilities on information regarding patch turnoff time.  An ideal agent would delay 

nosepoking immediately after the VA patch turns off. 
19 The mouse does not know if the VA patch is active until the mouse nosepokes at the VA 

patch and receives a reward.  Likewise, the mouse knows the VA patch is active until the 

mouse nosepokes at the VA patch and is unrewarded. 
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(6.1B) The mouse nosepokes at the VA patch instead of the FI patch with some 

probability p, 0 < p < 1.  The probability p occurs when the mouse is unaware of the VA 

patch state; p* corresponds to the mouse knowing the VA patch is active.  Consequently, 

the mouse nosepokes at a rate p ν at the VA patch while its status is unknown, while 

poking at a rate (1 – p) ν at the FI patch. 

 

(6.1C) The mouse nosepokes at a constant rate determined by a Poisson process for 

each of the rates ν and ν*.  These nosepoke rates are dependent on the leisure 

preferences for the mouse. 20 

 

 Each situation offers different reward opportunities for the mouse.  When the VA 

patch status is unknown, the mouse can choose to nosepoke at the FI patch and receive a 

constant, smaller reward.  This represents an exploit behavior, as the mouse receives a 

reward from exploiting a known reward rate.  While this would maximize present reward, 

the mouse can occasionally nosepoke the VA patch to gain information about the status of 

the VA patch.  This information can lead to large future rewards if the VA patch is found 

active.21  Nosepoking the VA patch represents an explore activity.  It presents a direct cost 

to the mouse since the mouse receives no reward when the patch is inactive.  Instead, the 

mouse could perform other activities, such as grooming, sleeping, or nosepoking the FI 

patch.  In the second situation, the mouse knows that the VA patch is active.  When active, 

the mouse can continuously nosepoke at the VA patch until it becomes inactive.  The active 

VA patch offers a much higher reward than the FI patch offers, and without a delay period. 

Since the mouse faces two different situations, a constrained-optimal mouse would 

vary its nosepoke rate according to its knowledge of the VA patch.  While the VA patch 

status is unknown, the expected value of each nosepoke is low.  A constrained-optimal 

                                                        
20 Leisure activities are anything the mouse does beside nosepoking while in the 

experiment.  For the mouse, the marginal nosepoke reward equals the marginal leisure 

reward. 
21 Recall, the VA patch offers a large reward without a delay, while the FI patch offers a 

smaller reward with a five second delay (∆). 
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mouse would increase other leisure activities during his time, and nosepoke at a lower rate 

(ν), as nosepoking is less valuable.  In contrast, while VA patch is active, each nosepoke has 

a high expected value.  The mouse can maximize reward intake by nosepoking at a fast rate 

(ν*) and reduce leisure activities. 

Hypothesis 6.1  The mouse will increase nosepoke rate while the VA patch is active 

compared to inactive, ν* > ν. 

 

Similarly, a mouse will adjust p and p* to maximize reward while the VA patch is 

active.  The constrained-optimal mouse would exclusively nosepoke at the high value VA 

patch while it is active, and at a lower probability while the status is unknown. 

Hypothesis 6.2  The mouse will increase the probability of nosepoking at the VA patch 

while the VA patch is active compared to inactive, p* > p. 

 

Completing these two behaviors show that the mouse recognizes the tradeoffs present in 

the experiment.  Hypothesis 6.1 and 6.2 will be used later to check if the experimental WT 

mice can successfully complete the task.  Neither of these hypotheses tests whether NET 

mice show more or less exploratory behavior.  To do this, we need to examine how the 

constrained-optimal mouse maximizes reward intake. 

6.2 The Exploit-Explore Tradeoff for the Constrained-Optimal Mouse 

A constrained-optimal mouse creates a behavioral strategy where the reward 

benefit from exploiting the active VA patch equals the cost from exploring the VA patch 

while its status is unknown.  The mouse adjusts the probability p to balance these rewards 

and costs.  Specifically, this probability is dependent on the expected value of the VA patch 

and the FI patch.  When the mouse nosepokes the VA patch with an unknown status, the 

expected value of the reward is the probability the patch is active multiplied by the overall 

reward, or: 
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(5.1) EV[VAunknown status] = R S / (S + 1 / λ). 

For the FI patch, the expected value depends on the nosepoke rate.  If the mouse nosepokes 

at a rate faster than once per ∆ seconds, the mouse would receive a maximum reward of r / 

∆.  The delay period ∆ seconds encourages the mouse to nosepoke at a slower rate.   The 

constrained-optimal mouse would nosepoke at a rate equal to or slower than 1 / ∆, and get 

a reward r for every nosepoke. 

Hypothesis 6.3  A mouse will attempt to nosepoke at the FI patch at a rate equal to or 

slower than 1 / ∆ nosepokes per second. 

 

Although the mouse is nosepoking the FI patch at a slower rate, the expected value of the FI 

patch is larger than equation 5.1. 22  A mouse exclusively nosepoking at the FI patch would 

receive the expected reward per nosepoke: 

(5.2) EV[FI] = r ν. 

 Although Equation 5.2 is larger than equation 5.1, nosepoking the VA patch can lead 

to a larger future reward.  To compute this additional reward, I compare the loss from 

allocating nosepoking to the inactive VA patch with the gain in profit from nosepoking the 

active VA patch.  The loss from nosepoking the inactive VA patch is the VA nosepoke rate 

multiplied by the lost FI reward and the average time nosepoking the VA side before the 

mouse discovers an active VA patch. This equates to: 

(5.3) p r ν / (2λ). 

The gain in profit from nosepoking the active VA patch is the total reward from nosepoking 

the VA patch minus the alternative, or nosepoking the FI patch.  Both total reward values 

depend on the average amount of time spent nosepoking the active VA side once it is 

                                                        
22 The experiment sets the parameters S, λ, R, and r to ensure this is true. 
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discovered active.  Since the mouse randomly nosepokes, the amount of time left in an 

active VA patch after discovery is S / 2.23  Using this result, the total gain from an active VA 

patch is: 

(5.4) (S / 2) (ν*) R 

The overall gain in profit is the gain from the active VA patch minus the expected value of 

the FI patch nosepoked over the same time duration and nosepoke rate, or: 

(5.5) (S / 2) * (ν* R – r ν) 

 For an optimally performing mouse, equation 5.5 and 5.3 should be equal.  Solving 

for p: 

(5.6) p = λ S / (ν r) * (ν* R – r ν) = λ S * [(ν* / ν) * (R / r) – 1)] 

Equation 5.6 describes the behavior for a constrained-optimal mouse, and leads to several 

conclusions.  First, the probability p for devoting nosepokes to the VA patch is proportional 

to the ratios (R / r), (ν* / ν), and S / (1 / λ).  The reward ratio (R / r) and ratio of the time 

duration of the active VA patch to inactive VA patch [S / (1 / λ)] affect the nosepoke rates 

by altering the respective values of the VA and FI patches.  Both of these ratios are 

determined by the conditions of the experiment, and are independent of the mouse’s 

actions. 

Second, the value of the ratio ν* / ν and p show whether a mouse is engaging in 

more exploit or explore behaviors.  When comparing the NET and WT mice, a larger 

increase in ν* / ν corresponds to more exploit behavior.  Altering ν* / ν indicates the 

mouse is more efficient at exploiting the valuable active VA patch.  Likewise, a low value of 

                                                        
23 EV[time left | VA active] = S / 2 since the mouse will, on average, discover the active VA 

patch in the middle of the period S. 
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p indicates high exploitation behavior while the VA patch is inactive, as the mouse 

nosepokes at the FI patch more frequently.   

Hypothesis 6.4  A high ν* / ν and a low p correspond to exploitation behavior, while a high 

p corresponds to exploration behavior. 

Lastly, equation 5.6 shows that the ratio of mouse nosepoking rates (ν* / ν) is 

positively related to probability of nosepoking the VA patch p.  Mice with a high ν* / ν are 

better able to exploit an active VA patch, and have a larger expected future reward from 

discovering it.  Therefore, mice with a higher ν* / ν should spend more time exploring the 

VA patch (p) while the status is unknown to reap this large reward. 

Hypothesis 6.5  The ability to efficiently exploit the active VA patch (ν* / ν) should lead to 

more exploring activity while the VA patch status is unknown (high p).  A mouse with a low 

ν* / ν should have a lower p. 

 

 In summary, Hypothesis 6.1 and 6.2 confirm that the mice understand the task.  

Hypotheses 6.3, 6.4 and 6.5 compare the exploit and explore behaviors of the NET and WT 

mice. 

VII. Results 

 Recall that three groups were used in this experiment. 24  The first group was the 

older WT mice.  There are 10 of these mice, and each participated in the task for 16 days.25  

I used this data to show that mice are capable of understanding the exploit-explore task.  In 

addition, the mice underwent training prior to the experiment.  The training acclimated the 

mice to the experiment chambers, trained the mice to nosepoke the portholes for a liquid 

                                                        
24 All the mice are numbered.  See Appendix B for the mouse numbers, groups, and 

genotypes. 
25 Typically, the mice nosepoke about 1000 times per night.  This is a very large amount of 

data for a mouse experiment. 
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reward, and taught the mice that each porthole offers a different reward.  The second and 

third groups of mice are age-matched WT and NET mice, respectively.  I compared these 

two groups to find differences in exploit and exploration behaviors.  There are four mice in 

each of the two groups, and the mice participated in the experiment for 6 days after 

training.26 

7.1 Do the Mice Understand the Task? 

 This section shows that mice can understand and complete the experiment.  I 

examine the data for each of the ten older WT mice over 16 days.  I loot at 6.1A, B, and C.  

Also, I show that the mice follow Hypotheses 6.1 and 6.2.  In addition, I check if the mice 

show learning over the course of the experiment.  This verifies that the training was 

adequate for the experiment.  Section 7.1 is divided into three sections that each address 

one of the conditions mentioned above: 

(1) Do the mice nosepoke at a constant rate determined by a Poisson process?  This 

addresses 6.1C. 

(2) Are the ratios ν* / ν and p* / p positive and greater than 1?  This shows that the 

mice successfully exploit the active VA patch, satisfying 6.1A and 6.1B and also 

Hypotheses 6.1 and 6.2. 

(3) Do the mice exhibit learning behavior across days? 

                                                        
26 The younger mice nosepoke at a slightly lower rate: about 600 – 700 nosepokes per 

night.  As mentioned earlier, younger mice perform slightly differently in certain 

experiments than older mice.  Younger mice are more timid in experiments that older ones. 

The age of the mice should have little affect on the decision to exploit or explore.  Most of 

my results are either percentages or ratios, making the absolute number of nosepokes 

inconsequential. 
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After addressing all three questions, I determine if each individual mouse can complete 

the experiment.  Mice that fail to complete the experiment are removed from the data set.  

This is a common scientific practice.  Since all of the mice are genetically identical, 

performance differences arise from a failure to comprehend the task, rather than 

differences in cognitive abilities. 

Question 1 

To determine if a Poisson process determines the mouse nosepoke rate, I calculated the 

time interval between nosepokes and compared these to an exponential distribution.27  I 

then performed a goodness-of-fit χ2 calculation.  For nosepoking when the VA patch is 

inactive and active (ν and ν*), the inter-nosepoke interval fails to follow an exponential 

distribution (p = 0.999 for both).  This violates 6.1C.  Each nosepoke rate, however, has a 

distinct peak in the inter-nosepoke interval histogram that deviated from the exponential 

distribution.  These peaks occur for different reasons related to the task parameters, and 

help show that the mouse understands the task.  See below for sample distributions from 

one mouse (Figure 4 and 5). 

                                                        
27 An exponential distribution will describe the time intervals between two events for a 

Poisson process. 
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Figure 4 

 

Figure 4: The dark blue bars represent nosepoke intervals for WT mouse 32, while the light 

blue line is an exponential distribution.  All nosepoke intervals greater than 90 seconds 

were discarded.  Since the mouse spent roughly twelve hours each night in the experiment 

box, the mouse occasionally fell asleep or ignored the nosepoke boxes for extended period 

of times.  These large times do not show exploit-explore preferences. 28 

 

Visually, the mouse behaves significantly different than a Poisson-determined 

nosepoke rate would suggest while the VA patch is active.  A sharp peak occurs close to the 

one second inter-nosepoke interval.  When examining the task, the mouse has an incentive 

to nosepoke quickly at the VA patch while it is active.  This will cause a short inter-

                                                        
28 This mouse was chosen as an example because it shows the most pronounced effects. 
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nosepoke interval, explaining this deviation.  The peak shows that the mouse understands 

the task because the mouse nosepokes as quickly as possible when it recognizes that the 

VA patch is active.   

Figure 5 

 

Figure 5: See legend of Figure 4 for a description. 

In Figure 5, a large peak occurs around the five second nosepoke interval period.  

Recall that the FI patch has a five second delay period, ∆.  Since the peak occurs during this 

five second interval, the mice learn to time their nosepokes at the FI side to obtain a 

maximum reward rate (Hypothesis 6.3).  Note, this second peak disappears while the VA 
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patch is active (Figure 4).  The mouse only times nosepokes when the VA patch is inactive, 

and the mouse is nosepoking predominately at the FI side.29   

 While the mouse violates the assumptions of a Poisson distribution for the 

nosepokes, the tails of the nosepoke time intervals appear to follow a Poisson distribution.  

Neither quick nosepokes in succession or timing nosepokes five seconds apart should affect 

the distribution of nosepoke intervals from the ten second period onwards.  Figure 6 shows 

this nosepoke data.  

                                                        
29 The peak close to the one second interval period still exists.  This occurs because mice 

have a tendency to nosepoke in quick succession.  The peak while the VA patch is active is 

much larger than the peak near one second while the VA patch is inactive.  Considering the 

VA patch is inactive for the majority of the night, this shows that the peak during the VA 

active period is from the mouse adjusting its nosepoking strategy rather than just 

nosepoking in quick succession. 
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Figure 6 

 

Figure 6: I removed all the nosepokes intervals from 0 to ten seconds.  Then, I recalculated 

lambda for the exponential distribution and plotted it. 

 

The data is visually much closer to an exponential distribution.  Still, the goodness-of-fit p-

value is large and insignificant.  The small inter-nosepoke interval bins used in the 

histogram introduce a large variance, and could explain this failure. 

 Even though the mice fail to nosepoke according to a Poisson process, the other 

hypothesis and assumptions remain valid.  The tradeoffs presented in the model proposed 

in the previous section may be altered, but the intuitions about mouse behavior still hold.  
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A new, more accurate model should create a new method for determining mouse nosepoke 

behavior. 

Question 2 

Even though 6.1C failed to hold, the mice show an ability to perform the task well.  

The mice nosepoke at rapidly after the VA patch is turned on, and time nosepokes to 

maximize the reward rate at the FI patch.  To quantitatively show that the mice understand 

the task, I show that the mice alter nosepoke rates (ν) and the probability of nosepoking 

the VA patch (p) when the status of the VA patch changes.  Likewise, Hypotheses 6.1 and 

6.2 predict that, if the mouse understands the task, the mouse will have a ν* / ν and p* / p 

ratios greater than one. 

 Table 2 records the nosepoke rates for when the VA patch is active (ν) and inactive 

(ν*).  
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Table 2: Wild Type Mouse Nosepoke Rates 

Genotype Mouse 

Number 

Number of 

Observations 

Nosepoke Rate While 

VA Patch Active 

(nosepokes / second) 

Nosepoke Rate While 

VA Patch Inactive 

(nosepokes / second) 

P-value 

WT All 10 0.0837 0.0193** 0.0019 

WT 26 16 0.0799 0.0303** 0.0173 

WT 27 16 0.0811 0.0137** 0.0011 

WT 28 16 0.0648 0.0212** 0.0006 

WT 29 16 0.0990 0.0100** 0.0013 

WT 30 16 0.0639 0.0123** 0.0019 

WT 31 16 0.0761 0.0166** 0.0004 

WT 32 16 0.0986 0.0214** 0.0004 

WT 33 16 0.1075 0.0306** 0.0007 

WT 34 16 0.0823 0.0191** 0.0013 

WT 35 16 0.0838 0.0183** 0.0006 

Table 2:  * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance.  I performed a Wilcoxon signed-rank test to determine the 

p-value in the table. The Wilcoxon signed-rank test is a non-parametric hypothesis test for 

repeated measurements on a single sample.30  To generate the data, I created an average 

nosepoke rate while the VA patch is on and off for each mouse on each of the 16 

experimental days.  Then, I ran the Wilcoxon signed-rank test for each mouse individually.  

For all the mice, I created an overall nosepoke average across all days.  I used the Wilcoxon 

signed-rank test again to compare all of the mice nosepoke rates and record a p-value in 

the “All” row. 

 

The table shows that all mice significantly increased the nosepoke rate while the VA patch 

was active. 

While results from the mice are significant, the data fails to account for times when 

the mice sleep or are otherwise inactive.  The mice spend nearly twelve hours in the 

experiment boxes.  During this time, the mice spend long periods sleeping or performing 

other leisure activities instead of nosepoking.  I dropped all time periods longer than five 

minutes without a nosepoke.  The inactive periods give no information about exploitation 

                                                        
30 The Wilcoxon signed rank test is the non-parametric version of the paired student t-test. 
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and exploration preferences.  Table 3 shows the data with sleeping periods removed.  For 

all data reported from this point forward, sleeping periods are removed. 

Table 3: WT Mouse Nosepoke Rates without Sleeping Times 

Genotype Mouse Number of 

Observations 

Nosepoke Rate While 

VA Patch Active 

(nosepokes / second) 

Nosepoke Rate While 

VA Patch Inactive 

(nosepokes / second) 

P-value 

WT All 10 0.1341 0.0531 0.002*** 

WT 26 16 0.1255 0.0563 0.000*** 

WT 27 16 0.1422 0.0381 0.001*** 

WT 28 16 0.1035 0.0592 0.001*** 

WT 29 16 0.1620 0.0436 0.000*** 

WT 30 16 0.1478 0.0501 0.000*** 

WT 31 16 0.1310 0.0523 0.000*** 

WT 32 16 0.1447 0.0552 0.000*** 

WT 33 16 0.1469 0.0833 0.000*** 

WT 34 16 0.1165 0.0510 0.000*** 

WT 35 16 0.1217 0.0423 0.000*** 

Table 3: * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance.  I followed the same methods as described in the Table 2 

legend. 

 

Table 3 confirms that Hypothesis 6.1 is correct.  The mice successfully alter their nosepoke 

rates when the VA patch is active. 

 Next, I tested Hypothesis 6.2 by comparing the probability of nosepoking at the VA 

patch while active (p) and inactive (p*).  The table shows that six of the ten mice can alter 

nosepoking rates.   
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Table 4: Probability of Nosepoking at the Active VA Patch 

Genotype Mouse Number of 

Observations 

Nosepoke 

Probability While 

VA Patch Active 

(p*) 

Nosepoke 

Probability While 

VA Patch Inactive 

(p) 

P-value 

WT All 10 0.5902 0.4387 0.0028** 

WT 26 16 0.6420 0.3840 0.0386** 

WT 27 16 0.5216 0.6987 0.0979* 

WT 28 16 0.6596 0.4607 0.0879* 

WT 29 16 0.6502 0.3566 0.0261** 

WT 30 16 0.5737 0.2596 0.0494** 

WT 31 16 0.5509 0.4898 0.3519 

WT 32 16 0.5625 0.4225 0.4691 

WT 33 16 0.6515 0.3626 0.0071*** 

WT 34 16 0.5292 0.4643 0.7173 

WT 35 16 0.5617 0.4886 0.4691 

Table 4: * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance. 

 

 Overall, the mice performed well in the exploit-explore task.  All ten of the mice 

changed the nosepoke rate according the status of the VA patch, while six out of ten mice 

altered nosepoking probabilities at the VA patch.  The four mice that failed to alter 

nosepoke probabilities at the VA patch would be removed in future data sets.  The attrition 

of four mice is higher than most mouse tasks, but acceptable considering the complexity of 

this task compared to other mouse tasks.31  

Question 3 

 The last question concerns whether the mice show learning behavior over the 

course of the experiment.  In other words, I am checking if the session effect is significant. 

Throughout the sixteen experimental days, the mice can show a session effect through 

                                                        
31 In most mouse tasks, about one or two mice out of thirty are removed from the data set.  

The exploit-explore task, however, is significantly more complicated than the average 

mouse task.  In other, comparably difficult tasks, similar attrition rates are common. 
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either changing nosepoking rates (ν and ν*) or changing the probability of nosepoking at 

the VA patch (p or p*).  The mice showed no indication of a session effect by changing 

nosepoking rates while the VA patch was active or inactive (Table 5).  The mice did, 

however, show a session effect through changing the probability of nosepoking the VA 

patch while active and inactive.   

Table 5: Learning Across Days 

Type of Learning Coefficient of 

Correlation 

P-value Number of Statistically 

Significant Mice 

Nosepoking while VA 

Patch Inactive (ν) 

0.0457 0.5660 0 

Nosepoking while VA 

Patch Active (ν*) 

0.0320 0.5436 0 

Probability of 

Nosepoking the VA Patch 

While Inactive (p) 

-0.1470 0.0637* 3 

Probability of 

Nosepoking the VA Patch 

While Inactive (p*) 

0.2152 0.0063*** 3 

Table 5: * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance 

 

While the mice as a group showed indications of a session effect across trials, most 

of the data from individual mice are statistically insignificant.  Mouse 35 was the only 

mouse that showed a session effect across experiment days for both nosepoke probabilities 

(p and p*).32  Despite this, the session effect had a small affect on the data, and can 

reasonably be ignored.  If the session effect has any affect, it would skew the data towards 

                                                        
32 Mouse 35 failed to nosepoke the VA patch with different probabilities (Table 4), and is 

discarded from the data set. 
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showing that the mouse failed to complete the task.  The training sessions generally 

succeeded.33 

7.2 The Norepinephrine Transporter Knockouts and Wild Type Mice 

 Section 7.1 established that mice are capable of performing the exploit-explore 

experiment.  The mice alter behavior to successfully exploit the VA patch, and the session 

effect is small and generally insignificant.  After establishing that the experiment is viable, I 

performed the experiment again with age-matched NET and WT groups of mice.  This is a 

partial data set, as I am continuing to collect data.  For this data set, eight total mice 

performed the experiment for six days.  I explored all of the questions from Section 7.1, and 

the results are summarized in Table 7.34  Since the mice ran for a shorter number of days, 

many of the mice show statistical trends rather than statistical significance. 

                                                        
33 When the mice did show learning behavior, the learning showed improvements in task 

performance.  The mice decreased the probability of nosepoking at the VA patch while 

inactive, indicating that the mice exploited the FI patch.  Likewise, the mice increased the 

probability of nosepoking at the VA patch while active, indicating that the mice exploited 

the active VA patch.  Future experimenters should either increase training, or use the first 

few experimental days as training to eliminate the session effect. 
34 Appendix C shows the results. 
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Table 7: NET and WT Mice 

Genotype Mouse Alters Nosepoke 

Rate (yes / no)35 

Alters Probability of Nosepoking 

the VA Patch (yes / no)36 

Understands the 

Task (yes / no) 

NET 2575 Yes No No 

NET 2554 No Yes No 

NET 2553 Yes No No 

NET 2552 Yes Yes Yes 

WT 2577 No Yes No 

WT 2547 Yes Yes Yes 

WT 2574 No No No 

WT 2573 Yes No No 

Table 7: Bold indicates a yes answer.  Only two mice met both criterion: mouse 2552 (NET) 

and 2547 (WT).  Mouse 2554 (NET) and 2577 (WT) were close, and will be included in 

some analyses. 

 

7.3 Results from Experiment 

 The NET and WT mice showed differences in exploitation and exploration 

behaviors.  Compared to the WT mice, the NET mice demonstrated an increased tendency 

for exploitation, and diminished amounts of exploration.  The mice demonstrated this 

tendency in two ways: 

(1) The NET mice had a lower probability of nosepoking the VA patch while it was 

inactive than the WT mice did (p-value: 0.075).  While the VA patch is inactive, only 

the FI side offers a reward.  Nosepoking at the FI side at a high rate indicates more 

exploitation, and an unwillingness to explore the VA patch (Hypothesis 6.4) (Figure 

7).   

 

                                                        
35 Hypothesis 6.1 
36 Hypothesis 6.2 
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Figure 7: This is the average probability of nosepoking the VA patch while inactive.  

Only the mice that successfully completed the task were used in this graph: 2552 

(NET), 2554 (NET), 2547 (WT), and 2577 (WT).  This is significant to 10% (p-value: 

0.075). 

 

(1) Compared to the WT mice, the NET mice increased the difference of the nosepoking 

rate of the active VA patch and the inactive VA patch (p-value: 0.09437).  Increasing 

the difference (ν* - ν) demonstrates that the NET mice were more successful at 

adjusting behavior to exploit the active VA patch (Hypothesis 6.4) (Figure 8).

                                                        
37 For this p-value, the mouse nosepoke rates were normalized to account for differences in 

the absolute nosepoke rates. 
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Figure 8: Behavioral Differences Between NET and WT Mice 

 

Figure 7: This is the difference in nosepoking rates from the active VA patch to the inactive 

VA patch.  Only the mice that successfully completed the task were used in this graph: 2552 

(NET), 2553 (NET), 2575(NET), 2547 (WT), and 2577 (WT).  This is statistically 

insignificant (p-value: .400), mainly because the nosepoke rates are not normalized.  When 

the nosepoke rates are normalized, the values are significant to 10% (p-value: 0.094). 

 

 While Figure 7 and 8 indicate that NET mice exhibited more exploitation behaviors 

than the WT mice, the WT mice had a larger probability of nosepoking the active VA patch 

than the NET mice (WT: 71.4%, NET: 66.4%; p-value: 0.667).  Changing the probability of 

nosepoking the VA patch appears to be a more difficult task for the mice.38  The probability 

of nosepoking the VA patch while active may depend on the baseline probability of 

nosepoking the inactive VA patch.  In other words, p and p* may be related.  To test this, I 

compared the percent increase of the probability of nosepoking the VA patch for the NET 

and WT mice (Figure 9).39  The NET mice increased the relative probability of nosepoking 

                                                        
38 Indeed, recall that four of ten WT mice from group 1 failed to change nosepoke 

probabilities, while all ten changed nosepoke rates from the VA patch active to inactive. 
39 This is (p* - p) / p. 
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the VA patch more when compared with WT mice (p-value: 0.049).  This suggests that the 

NET mice are indeed better at altering their probability of nosepoking at the VA patch. 

Figure 9: Percent Increase in the Probability of Nosepoking the VA Patch 

 

 In this section, I showed that the NET mice exhibit a tendency towards exploitation 

over exploration.  The NET mice increased nosepoking rates significantly while the VA 

patch is active, nosepoked predominately at the FI patch while the VA patch is inactive, and 

increased the relative probability of nosepoking the VA patch.  This shows that NE has an 

effect regulating the exploit-explore tradeoff. 

VII. Conclusion 

 In my thesis, I investigated the role of NE in the exploit-explore tradeoff.  Previous 

research in optimal foraging theory provided an exploit-explore model for animal behavior.  

This model, however, failed to properly describe animal and human behavior.  The models 

required agents to make complex calculations that are unfeasible given both time and 

cognitive constraints.  New fields such as neuroeconomics have reinvestigated the exploit-

explore tradeoff by examining the neural mechanisms of decision-making.  Through 
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regulating arousal and attention, NE provides a model for transitioning between 

exploitation and exploration. 

In my thesis, I completed two tasks.  First, I developed an exploit-explore task that 

mice can successfully complete.  The mice can choose to nosepoke at either the FI or the VA 

patch.  The FI patch offers a constant, but small reward, while the VA patch offers an 

unpredictable, but high reward.  Mice successfully increase the nosepoke rate when the VA 

patch is active, and increase the probability of nosepoking at the VA patch while active.  

Both behaviors indicate that the mice can alter behavior to exploit the valuable VA patch.  

The task also provides an opportunity to measure the relative amounts of exploitation and 

exploration between two different groups of mice.  A high ratio of ν* / ν and a low p value 

indicate that the mice exhibit a tendency towards exploitation, while the reverse 

corresponds to exploration.  Future researchers can use this task with other groups of 

genetically altered mice to examine the exploit-explore tradeoff.   

Second, I determined that NE helps regulate the exploit-explore tradeoff.  Mice with 

deficiencies in NE functioning predominately performed exploitation rather than 

exploration.  Recall from Section III that two different brain regions are responsible for 

exploitation and exploration behavior.  The region that controls exploration appears to 

suppress a natural tendency for exploitation.  In the experiment, the NET mice may be 

unable to properly activate these two brain regions, and thus are unable to transition from 

exploitation to exploration.  NE may affect this transition by changing the level of arousal.  

Increasing arousal leads to distractibility, and causes an increase in exploration.  From this, 

I hypothesize that mice with deficient NE functioning are unable to properly increase 
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arousal during the exploit-explore task and engage in exploration.  As a result, the NET 

mice effectively remain in an exploitation mode. 

Although this experiment determined that NE is involved in the exploit-explore 

tradeoff, I am unable to make a definitive conclusion about the mechanism about NE 

regulation.  Many mice experiments similar to mine can only provide broad statements 

about the involvement of neurobiological systems in a task.  Future research should focus 

on discovering the mechanism for exploitation and exploration at the cellular level.  This 

will give larger insights into the decision-making mechanism. 

Still, my experiment has important implications for economists.  The explore-exploit 

tradeoff is found in numerous economic problems and real world situations.  For example, 

investors face an exploit-explore tradeoff when deciding whether to invest in a well-known 

company or a newer company with an unknown performance profile.  A greater 

understanding of the mechanisms of the exploit-explore decision will allow economists to 

create more accurate models.  Additionally, my results will allow economists to explain 

systematic deviations from optimal behavior due to genetic differences between people.  

Certain individuals may have lower levels of NE functioning, and may deviate from optimal 

behavior in a systematic way.  Future research should extend my findings to human 

populations, and incorporate the effects of altered NE function in economic models. 
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Appendix A: Basic Introduction to Neuroscience 

 This section serves as a basic introduction to the necessary neuroscience to 

understand the concepts in this paper.  Readers familiar with basic neuroscience may feel 

free to skip this appendix.  The neuron, the basic cell found in the brain, has three major 

parts: the cell body, the axon, and the dendrite.  The cell body performs normal cellular 

functions necessary to maintain the cell.  The axon and dendrite are long wire-like 

projections from the cell that give and receive, respectably, information from other cells.  

The information transmitted is electrical impulses.  Neurons interconnect in vast networks 

to process information.  This is analogous to a computer, and allows the brain to perform 

complex functions. 

 Remember above when we discussed brain regions.  While we only generally 

mentioned brain regions, a brain region is a collection of neurons.  These neurons are 

connected to other brain regions that process and receive other information.   For example, 

when the region of the brain that processes visual information locates a piece of food, it 

sends that information to the reward representation region.40  This region then integrates 

the information and, if the person is hungry, decides to eat the food.  The reward 

representation region then sends this decision to the motor region, which then performs 

the action. 

 Now that we understand the basics of brain functioning, we will learn how the brain 

initiates the electrical impulses that send information.  The axon of one neuron sends 

information to the dendrite from another neuron.  Then, the information is propagated 

                                                        
40 This is a hypothetical and very simplified example.  The example does, however, get 

across the major points necessary to understand how the brain works. 
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down the neuron body and to the axon to repeat this process.  Similar to an electrical wire, 

neurons connect in long chains to transfer information across the brain.  In-between each 

axon and dendrite combination is a small empty space called the synaptic cleft.  This is 

responsible for regulating, initiating, and ending electrical impulses.  In the synaptic cleft, 

neurons release chemicals called neurotransmitters that initiate electrical impulses in the 

next neuron.  Once released, these neurotransmitters are recycled and returned to the 

original neuron cell.  The neurotransmitters can be released again and again to initiate the 

electrical impulses, which are called action potentials.  NE, a nueromodulator, affects 

neurotransmitters and their ability to elicit electrical signals.  While this process remains 

unclear, NE could raise or lower the ability of neurotransmitters to send information via 

electrical impulses to other neurons.  In our model described previously, high levels of 

arousal may correspond to a high ability for neurotransmitters to initiate electrical signals.  

Low levels of arousal may lead to NE inhibiting neurotransmitters from propagating 

electrical signals. 

 Lastly, action potentials (electrical impulses) are an all-or-none phenomenon.  An 

electrical threshold exists where, above this threshold, a neuron will initiate an action 

potential when stimulated.  Below the threshold, the neuron will remain inactive.  Each 

neuron receives numerous inputs from other neurons. These impulses are additive, and 

can combine to generate a strong electrical stimulation above the threshold level in the 

neuron receiving the inputs.  This will elicit an action potential in the neuron, and 

propagate an electrical signal.  The action potentials, though, always have a constant 

electrical amplitude for each neuron.  Basically, action potentials are constant when they 

occur, not graded. To illuminate this point, imagine a single neuron (A) that is weakly 
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connected to four other neurons (B, C, D, E).  Stimulation from a single neuron, B, is under 

the threshold value and A remains inactive.  When all four neurons B, C, D, E activate, the 

sums of their electrical signals is greater than the threshold value, and A becomes active 

and creates an action potential. 

 There are three basic points to take away from this discussion.  First, the brain 

sends information via electrical impulses called action potentials.  Second, the brain is 

interconnected with different regions working together to perform an action.  Third, 

neuromodulators regulate the effectiveness of neurotransmitters. 

Figure A.1: Projections from Norepinephrine Neurons 

 

From Aston-Jones and Cohen 2005 

Note: The above image is of a monkey brain.  The connections in a human brain are similar. 

This image shows the connections between the brain region that secretes NE and the 

regions involved in evaluating rewards.  The red lines represent connections between brain 

regions.
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Appendix B 

Table B.1: List of Mice and Genotypes 

Mouse Number Genotype Group 

26 WT 1 

27 WT 1 

28 WT 1 

29 WT 1 

30 WT 1 

31 WT 1 

32 WT 1 

33 WT 1 

34 WT 1 

35 WT 1 

2577 WT 2 

2547 WT 2 

2574 WT 2 

2573 WT 2 

2575 NET 3 

2554 NET 3 

2553 NET 3 

2552 NET 3 

 

Appendix C 

Table C.1: Nosepoke Rates for WT and NET Mice 

 

Genotype Mouse Nosepoke Rate While VA 

Patch Active (nosepokes / 

second) 

Nosepoke Rate While VA 

Patch Inactive (nosepokes / 

second) 

P-value 

NET 2575 0.043021 0.016085 .0625* 

NET 2554 0.026165 0.034220 1 

NET 2553 0.070420 0.026123 0.031** 

NET 2552 0.070921 0.027225 0.031** 

WT 2577 0.0589756 0.0251112 0.312 

WT 2547 0.0433460 0.0325298 0.125 

WT 2574 0.0397241 0.0289258 0.437 

WT 2573 0.0595987 0.0323970 0.156 

Table E.1: * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance.  There are six observations per mouse.  See Table 2 for an 

explanation of methods.  Due to the lack of experiment days, mice 2575, 2553, 2552, 2547, 

and 2573 pass Hypothesis 6.1. 
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Table E.2: Probability of Nosepoking the VA Patch for WT and NET Mice 

Genotype Mouse Nosepoke Rate While VA 

Patch Active (nosepokes / 

second) 

Nosepoke Rate While VA 

Patch Inactive (nosepokes / 

second) 

P-value 

NET 2575 0.6314 0.5461 .812 

NET 2554 0.6368 0.2077 .125 

NET 2553 .59309 0.57427 1 

NET 2552 0.69141 0.18178 .0310** 

WT 2577 0.6528012 0.2604670 .0625* 

WT 2547 0.7755587 0.3314550 .0625* 

WT 2574 0.5815374 0.4248023 0.437 

WT 2573 0.6914196 0.1817849 0.312 

Table E.2: * values indicate 10% significance, ** values indicate 5% significance, and *** 

values indicate 1% significance.  There are six observations per mouse.  See Table 2 for an 

explanation of methods.  Due to the lack of experiment days, mice 2554, 2552, 2577, and 

2547 pass Hypothesis 6.2.
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