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Abstract 
 

NBA teams have the opportunity each offseason to alter their rosters via signing free 
agents. Using only regular season per game statistics, I examine the best method of calculating a 
player’s appropriate salary value based upon his contribution to a team’s regular season win 
percentage. I first determine which statistics most accurately predict team regular season win 
percentage, and then use regression analysis to predict the values of these metrics for individual 
players. Finally, relying upon predicted statistics, I assign salary values to free agents for their 
upcoming season on specific teams. My results advise teams to rely heavily on Player Impact 
Estimate (“PIE”) when predicting their teams’ win percentage, and to seek players whose 
appropriate salaries would be significantly more than their actual season-long salaries if the free 
agents were to sign.   
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I. Introduction 

Every offseason, National Basketball Association (“NBA”) front offices have the 

opportunity to reconstruct their teams with free agents. Free agents are players not under contract 

with a team, and are thus eligible to sign a contract with any team. Players become free agents in 

two ways – going undrafted out of college or finishing their contract with another team. There 

are also two types of free agents – unrestricted and restricted free agents. In restricted free 

agency, the player’s original team can retain the free agent via matching an offer that the free 

agent signs with a different team, while unrestricted free agents can sign with any team 

regardless of their original team’s wishes (Coon, 2015).  

NBA free agency, or the period in which players officially become either unrestricted or 

restricted free agents, starts on July 1 of each year. Teams immediately begin negotiating 

contracts with targeted free agents, hoping to reach a salary agreed upon by both parties. Players 

and teams, however, cannot sign negotiated contracts until July 7, providing the league time to 

determine the upcoming season’s salary cap based upon the previous season’s league-generated 

revenue. After the “July Moratorium”, players put pen to paper, ending their free agent status and 

beginning life under a new contract. By reaching agreements soon after the conclusion of the 

previous season, players have ample time to assimilate to their new location and team. 

Free agency allows teams to alter their rosters without trading players or draft picks, as 

long as teams have not reached the salary cap – the maximum amount of money a team can 

spend on its players. The more salary cap available to each team’s roster, the more funds each 

front office has to allocate to unsigned players, effectively claiming these individuals for future 

seasons. Teams establish objectives for free agency based upon their rosters’ needs, last season’s 

team performance, and current salary cap space, among other traits. A playoff team with limited 

salary cap space may consider its free agency exploits successful if it signs a veteran at the 

league minimum salary. Meanwhile, a non-playoff team with large cap space may claim free 

agency success after landing a 25 year old at the league maximum salary. In total, free agency 

success from the team’s perspective is dependent solely on the team’s specific situation.    

From the player’s perspective, free agency success is dependent on the amount of money 

received through the new contract, location of the new team, expected playing time, as well as 

talent level of the new team. Players in the prime of their career may reach for the most money 

available to them, and sign with a team solely based upon that factor. Players who recently 
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purchased a house may decide to resign with their previous team, hoping to keep their family in a 

region considered home. Veteran players in pursuit of statistical milestones may sign wherever 

their expected playing time is greatest. Meanwhile, veteran players in search of championships 

often take less money to sign with a competitive team – hoping to receive a championship ring 

prior to retiring from the game.  

After making their goals of free agency apparent, teams and players interested in one 

another must then negotiate salaries. Using game film, recorded statistics, medical history, etc., 

teams determine the appropriate prices to sign free agents. Despite the mass quantity of available 

information on NBA free agents, calculating what to pay players is subjective and team specific. 

Teams struggle to determine a player’s appropriate compensation.  

Occasionally, teams are able to underpay players. This can result from two factors: the 

team discovers talent in a player that other teams do not see, or a player does not understand his 

true value to the team. Most likely, these instances of underpaying players are combinations of 

both. Reigning NBA MVP Stephen Curry, for instance, is under a contract paying approximately 

$11 million per season, currently good for fifth highest on his team. Stephen Curry signed his 

contract after seasons featuring glimpses of brilliance and injury agony. Right now, in 

comparison to other superstars in the NBA, Stephen Curry is not receiving the compensation that 

he deserves, providing the Golden State Warriors with the opportunity to attract quality players 

with their extra money. However, not all teams have the Warriors’ fortune. Often, teams hurt 

their future by overpaying for player production. 

In the summer of 2012, the Toronto Raptors signed ex-New York Knicks shooting guard 

Landry Fields to a three-year $20 million contract. The Raptors expected Fields, who shot a 

dismal 25.6 three-point percentage and 56.2 free throw percentage in 28.7 minutes per game the 

previous year, to be a strong contributor for the Raptors going forward (ESPN). Thus, the 

Raptors allocated approximately 11.5% of their 2012-2013 salary cap to the shooting guard. The 

Raptors, however, soon realized that paying 11.5% of their season’s salary cap to a back-up 

shooting guard who struggled to shoot was a big mistake. Fields’ per game averages from the 

2011-2012 to 2012-2013 season fell from 8.8 points to 4.7, 4.2 rebounds to 4.1, and 25.6 three-

point percentage to 14.3. In addition, in his three-year stint with the Raptors, Fields played in 

only 107 out of 246 regular season games due to injury (ESPN). Landry Fields’ poor 

performance limited the Raptors’ production on the court, while his high salary limited the talent 



	  

	   6	  

the Raptors could acquire with their 14 remaining roster spots; the Raptors struggled to attract 

free agents with their reduced funds available under the salary cap. Fields’ massively overpaid 

salary prevented the Raptors from becoming major competitors in the Eastern Conference, and 

proved to be a dark spot on the Raptors’ front office’s record. 

When the Raptors completed their free agency signing with Landry Fields, they believed 

they improved their basketball team at a reasonable cost. Not until the season began did they 

realize that they needed a better method of determining his dollar worth using his previous 

statistics and attributes. The Raptors probably used one of multiple metrics to estimate Fields’ 

future contribution to winning.  

After a season concludes, Win Shares is a popular metric for determining how many team 

wins a player is responsible for in the regular season. A player’s Win Shares, or the team’s 

number of wins that a player deserves credit for obtaining, is calculated using league, team, and 

player statistics (Basketball-Reference.com). According to Sports Illustrated’s Will Laws, the 

average margin of error since the 1962-1963 regular season between summing a team’s 

collective Win Shares and the real win total is 2.74 wins (Laws, 2015). However, before the 

season begins, Win Shares is not very helpful. The metric does not take into account changes in 

roster composition, so players switching teams maintain the same Win Shares value regardless of 

the new environment. As a result, a free agent’s previous Win Shares value is a poor predictor of 

his future Win Shares value on a new team. Before the season began, the Raptors would have 

overestimated Fields’ Win Shares for the following season. 

Current Vice President of Basketball Operations for the Memphis Grizzlies and former 

ESPN writer John Hollinger uses Estimated Wins Added to value a player’s contribution to 

winning. Like Win Shares, though, Estimated Wins Added is a backwards looking metric that 

does not take into account a potential change in roster composition around the player. Thus, a 

player’s Estimated Wins Added on a new team is difficult to predict. Once again, the Raptors 

would have overestimated the number of Estimated Wins Added for Fields on their team.  

The Raptors needed a method of predicting future statistical production of free agents 

based upon previous player statistics and characteristics, as well as then calculating the 

appropriate compensation for this production. I provide NBA teams with said method, and 

determine how much teams should pay NBA free agents based upon the player’s previous 

statistics, current age, prior team’s last season performance, and new team’s roster. The goal is to 
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create a method using commonly recorded metrics to calculate the player’s annual salary that 

best represents his future contribution to team performance, where team performance is 

measured by regular season win percentage. By using publicly available per game metrics, I 

provide all NBA teams the opportunity to appropriately pay free agents. Because the salary cap 

continuously changes based upon league revenues, I determine the amount paid as a proportion 

of the salary cap. To test the usefulness of my model predicting team success from player 

production, I compare my model’s findings with that of the Win Shares model.   

Creating a statistical method for valuing players will provide more complete information 

to both front offices and free agents. The model will help teams not overpay for player 

production, and help free agents better understand their market. This will prevent salary disputes 

between teams and players, like that of Tristan Thompson and the Cleveland Cavaliers. Recently 

Thompson, a restricted free agent center, pushed to receive a five-year contract worth 

approximately $90 million from the Cleveland Cavaliers. The Cavaliers, though, believed that 

Thompson’s production was comparable to that of Draymond Green of the Golden State 

Warriors, who received a five-year $82 million contract in free agency. The two sides remained 

$8-10 million apart in negotiations, and created many distractions for LeBron James and the rest 

of the Cleveland roster. A proven model for valuing player performance to team success would 

have prevented such conflicts and distractions from occurring, and would have allowed 

Thompson and the Cavaliers to quickly reach an agreed upon salary level. 

I began my research by gathering team metrics from NBA.com for all teams in the 

previous ten seasons. The data includes box-score statistics such as team points per game, as well 

as advanced metrics such as unassisted two-point field goals made. Using these per game 

metrics, I can accurately predict team regular season win percentage. By discovering the 

statistical reasoning behind why teams win, I know which statistics teams should value in free 

agency. I only use regular season win percentage in characterizing team success due to the 

smaller sample size of postseason statistics, and thus only use regular season team statistics in 

the team analysis.  

After examining team statistics, I analyze player performance. Using the player’s 

previous statistics, prior team’s success, and current age, I predict the player’s performance for 

the following season. Current age proves useful in predicting future player production. Younger 
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players are expected to improve their performance, while the performance of players in their mid 

30s is expected to gradually decline.  

Lastly, I assign dollar values to players when joining a specific team. The change in a 

team’s win percentage due to adding a player determines the player’s worth to that team. Each 

team is expected to value free agents differently according to its current roster make-up.  

The paper discusses previous literature affecting my research in Section II – specifically 

how this research draws upon the work of others. The paper then contains the theoretical 

framework for the research in Section III, followed by the data in Section IV and empirical 

specification in Section V. Sections VI, VII, and VIII include the analysis of the team, player, 

and salary findings respectively. Lastly, I finish with concluding remarks on the analysis in 

Section IX, as well as a discussion of the research’s impact going forward.  

 

II. Literature Review 

 The idea of using statistics to value players in sports became popular following the 

release of Michael Lewis’ book “Moneyball” about the Oakland Athletics. Lewis describes the 

Athletics’ change in player valuation from that of the traditional scout’s eye-test to statistical 

analysis (Lewis, 2004). The Oakland Athletics proved that regular season success could result 

from relying upon statistical analysis, and signed cheaper players than their competitors due to 

the difference in player valuation techniques.  

 More NBA teams and independent researchers have explored NBA statistical analysis 

since the release of “Moneyball”, but few teams and researchers have focused on valuing and 

predicting player performance. Apart from the aforementioned Win Shares and Estimated Wins 

Added, succinctly valuing player performance is largely ignored. However, Daryl Morey, 

general manager of the Houston Rockets, encourages his teams to take three pointers. Morey 

determined that despite the increased difficulty in making longer shots, shooting three pointers is 

more valuable to team success than taking two pointers (Strauss, 2013). Houston averaged the 

most three point attempts per game at 32.7 during the 2014-2015 regular season, helping them 

achieve the sixth most points per game in the league at 103.9 (ESPN).   

Most NBA statistical analysis has revolved around better understanding on-court 

performances. Kirk Goldsberry and Eric Weiss of Harvard University analyzed interior defensive 

analytics through opponent field goal percentages and shot selection when specific big men are 
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on the court (Goldsberry & Weiss, 2013). Goldsberry and Weiss argue that elite interior 

defenders are not the best shot blockers, but are those that deter the most shots from being taken 

near the basket (Goldsberry & Weiss, 2013). Goldsberry analyzes other defensive metrics with 

Alexander Franks, Andrew Miller, and Luke Bornn in “Counterpoints: Advanced Defensive 

Metrics for NBA Basketball”; they record the percentage of shots that each player contests, 

amount of points scored against defenders, as well as the probability that people will shoot when 

guarded by particular players (Franks, Miller, Bornn, & Goldsberry, 2015).  

A better understanding of defense is a common theme within NBA front offices as well. 

Grantland’s Zach Lowe detailed the Toronto Raptors’ reliance on statistics to determine 

defensive alignments. The Raptors use SportVU, “a camera system… that records every 

movement on the floor and spits it back at its front-office keepers as a byzantine series of 

geometric coordinates”, to analyze where their players are on defense (Lowe, 2013). The front 

office created a code that takes opponents’ skill sets into account to determine where players 

should be on defense, and compares these results to those depicted via SportVU (Lowe, 2013).  

Though teams and researchers are finding new ways to understand on-court performance, 

there is little progress in determining whether these newly analyzed statistics are important 

insights into team success. Furthermore, there is not a publicly agreed upon method of assigning 

dollar values to players based upon these statistics, which is what I hope to establish. When 

creating the model to analyze player salaries based upon future performance, I consider the 

following work.  

From a labor economics perspective, I examine the tournament theory referred to in 

David J. Berri and R. Todd Jewell’s “Wage Inequality and Firm Performance: Professional 

Basketball’s Natural Experiment”. Berri and Jewell referred to tournament theory, which 

suggests that workers at the lower end of the firm’s hierarchy receive wages less than their 

marginal revenue product, while employees at the top of the hierarchy receive wages higher than 

their marginal revenue product. The deviation in wage from the marginal revenue product serves 

as motivation to work harder in the firm to reach an overall individual placement goal (Berri & 

Jewell, 2004). Because of a player’s ease of mobility amongst teams, I do not believe that 

players need to accept wages lower than their contribution to any team. However, I will return to 

tournament theory upon conducting my analysis.  
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III. Theoretical Framework 

 Baseball fan Bill James made one of the earliest attempts to predict team wins from 

statistics. While Major League Baseball organizations insisted on analyzing player and team 

performance using the “eye-test”, James remained dedicated to understanding baseball through a 

statistical lens. Though initially rebuffed as crazy, James’ legacy lives on – not only do teams 

from other sports rely on statistical analysis, but also James’ Pythagorean Expectation formula to 

predict baseball win percentage is still used today.  

 

Wins =
Runs  Scored!

Runs  Scored! +   Runs  Allowed! 

 

Other statisticians have slightly tweaked the value of the squared exponent used in the 

model, but the general concept remains the same (“Pythagorean Theorem of Baseball”). 

Statistician Dean Oliver incorporated the Pythagorean Expectation formula into the NBA by 

changing the runs metric to points. Oliver found that the exponent changed to 14 (Harrel, 2014), 

while later work by John Hollinger used 16.5 as the shared exponent (“What Is Pythagorean & 

Its Sports Betting Impact”). The difference in the exponent is attributed to the inability of 

predicting wins from only points scored and points against, as every team follows a different 

strategy.  

The Memphis Grizzlies, due to their size and strength on the court, slowed down games 

in 2014-2015, as evident by their 94.21 PACE for that season – fifth lowest in the league. A 

team’s PACE is the team’s number of possessions per 48 minutes. The Grizzlies depended on 

strong defense in limited possessions to get a win, and were extremely successful in executing 

this strategy; their win totals for the ’12-’13, ‘13-’14, and ‘14-‘15 seasons were 56, 50, and 55 

wins respectively. The Phoenix Suns of 2006-2007, however, won 61 games while executing the 

opposite strategy. Head Coach Mike D’Antoni encouraged his team to increase the number of 

possessions that each team had per game. As such, the ‘06-‘07 Suns had a PACE of 98.08, third 

highest in the league that season, which helped the Suns average 110.2 points per game – nearly 

four points per game higher than that of the next highest team that season. Both the 2014-2015 

Memphis Grizzlies and 2006-2007 Phoenix Suns were extremely successful during the regular 

season, but the teams attained their success in opposite ways.  
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Some teams choose not to have a season-long strategy, but rather to alter their strategies 

based upon the opponent. The New York Knicks isolate Carmelo Anthony on offense when they 

determine that he has a weak defender on him. Therefore, when the Knicks play teams with a 

poor small forward defender, their assist totals may decrease from when they play Jimmy Butler 

(Chicago Bulls), Kawhi Leonard (San Antonio Spurs), or other great wing defenders. Due to the 

variety of ways to win, there may not be a clear model for predicting regular season win 

percentage.  

Former Oakland Athletics General Manager and current Executive Vice President of 

Baseball Operations Billy Beane used statistical knowledge of how MLB teams win to determine 

which players to acquire. He relied upon the statistics of players while on other teams when 

predicting their production on the Athletics. The ease of using player performance on other 

teams to predict future performance on new teams, however, may only work for baseball. 

Baseball is a fairly independent team sport. Though there are nine players in a lineup, only the 

performances of two players (the pitcher and hitter) dictate whether a ball gets put into play. 

Furthermore, if the ball is put into play, the number of players that affect the fielding of the ball 

is limited. Thus, the performances of teammates do not play a large role on the performance of 

the individual.  

Basketball, though only allowing five players on the court at any given time, is much 

more of a team sport. Player chemistry – spacing, communication, movement, and team 

execution – plays a large role in both individual and team success. Kevin Love’s bad chemistry 

with his Cleveland Cavaliers teammates, namely LeBron James, was a major factor in his poor 

production during his first season with the Cavaliers. The Cavaliers were unable to predict 

Love’s initial inability to mesh with the team’s roster, but could anybody have been able to 

predict such a result? Because of the strong influence that a team’s roster has on player 

performance, it is difficult to predict how a player will perform after a change in roster 

composition.  

 

IV. Data 

I use regular season team and player per game statistics published on NBA.com for my 

data. The data includes team and player per game statistics from the last ten seasons. I obtained 

team data in order to first determine how teams win regular season games, and obtained player 
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data to then predict player production in future seasons. NBA.com contained 107 team season-

long statistics, however, not all of these 107 metrics were recorded for individual players as well; 

only 76 different metrics were recorded for both teams and individual players during the regular 

season (e.g. points per game, rebounds per game, etc.). As I hope to examine player 

contributions to team success, only these 76 statistics were analyzed in predicting team regular 

season win percentage. In Tables 1 and 2 below, each metric’s cell contains the per game 

average (“A”), standard deviation (“S”), and correlation to wins (“C”) of a team statistic over the 

past ten seasons. The metric is highlighted in green to signify a positive correlation to team wins 

and red for a negative correlation. Win percentage is the response variable, and is thus recorded 

in black without a correlation value. Table 1 lists each of the offensive metrics, while Table 2 

includes the defensive statistics. In the later Empirical Specification section, offensive metrics 

will be denoted as X1 statistics, with defensive statistics as X2.  

 

Table 1 – Offensive Metrics 

Win Percentage 
A:50.0; S:15.5 

X1: Field Goals Made 
A:37.1; S:1.6; C:0.4 

X1: Field Goals Attempted 
A:81.4; S:2.8; C:-0.1 

X1: Field Goal Percentage 
A:45.5; S:1.5; C:0.6 

X1: Three Pointers Made 
A:6.7; S:1.6; C:0.4 

X1: Three Pointers Attempted 
A:18.8; S:4.0; C:0.3 

X1: Three Point Percentage 
A:35.6; S:1.9; C:0.5 

X1: Free Throws Made 
A:18.3; S:2.1; C:0.1 

X1: Free Throws Attempted 
A:24.2; S:2.7; C:0.1 

X1: Free Throw Percentage 
A:75.6; S:2.9; C:0.1 

X1: Offensive Rebounds 
A:11.1; S:1.2; C:-0.2 

X1: Assists 
A:21.5; S:1.7; C:0.4 

X1: Blocks Against 
A:4.8; S:0.7; C:-0.4 

X1: Personal Fouls Drawn 
A:20.9; S:1.6; C:0.1 

X1: Points 
A:99.1; S:4.4; C:0.4 

X1: Plus / Minus 
A:0.0; S:4.6; C:1.0 

X1: Effective FG% 
A:49.6; S:1.9; C:0.7 

X1: Offensive Rating 
A:103.9; S:3.4; C:0.7 

X1: Assist Ratio 
A:16.8; S:1.1; C:0.5 

X1: Offensive Rebound % 
A:26.4; S:2.5; C:-0.0 

X1: Net Rating 
A:0.0; S:5.1; C:1.0 

X1: Assist % 
A:57.9; S:3.7; C:0.2 

X1: Assist to Turnover Ratio 
A:1.5; S:0.2; C:0.5 

X1: Turnover Ratio 
A:15.1; S;1.1; C:-0.3 

X1: True Shooting % 
A:53.8; S:1.9; C:0.7 

X1: PACE 
A:94.7; S:2.6; C:-0.1 

X1: Player Impact Estimate 
A:50.0; S:3.4; C:1.0 

X1: 2nd Chance Points 
A:13.2; 1.3; C:-0.1 

X1: Fast Break Points 
A:13.0; S:3.0; C:0.1 

X1: Points in the Paint 
A:40.9; S:4.0; C:0.1 

X1: %FGA 2pts 
A:77.0; S:4.7; C:-0.3 

X1: %FGA 3pts 
A:23.0; S:4.7; C:0.3 

X1: %pts 2pts 
A:61.3; S:3.8; C:-0.3 

X1: %pts 2pt-MR 
A:20.0; S:4.0; C:-0.2 

X1: %pts 3pts 
A:20.2; S:4.3; C:0.3 

X1: %pts Fast Break Points 
A:13.1; S:2.7; C:0.0 

X1: %pts Free Throws X1: %pts off Turnovers X1: %pts Points in the Paint 
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A:18.5; S:1.9; C:-0.0 A:16.5; S:1.4; C:0.0 A:41.3; S:3.5; C:-0.1 
X1: Percent of 2pt Field Goals 

Made Assisted 
A:51.8; S:4.4; C:0.1 

X1: Percent of 2pt Field Goals 
Made Unassisted 

A:48.2; S:4.4; -0.1 

X1: Percent of 3pt Field Goals 
Made Assisted 

A:85.3; S:4.2; C:0.1 
X1: Percent of 3pt Field Goals 

Made Unassisted 
A:14.7; S:4.2; C:-0.1 

X1: Percent of Field Goals 
Made Assisted 

A:57.9; S:3.7; C:0.2 

X1: Percent of Field Goals 
Made Unassisted 

A:42.1; S:3.7; C:-0.2 
X1: Points off Turnover 

A:16.3; S:1.6; C:0.2 
  

 

 

Table 2 – Defensive Metrics 

X2: Defensive Rebounds 
A:30.8; S:1.6; C:0.5 

X2: Total Rebounds 
A:41.9; S:1.8; C:0.3 

X2: Turnovers 
A:14.4; S:1.1; C:-0.3 

X2: Steals 
A:7.4; S:0.9; C:0.2 

X2: Blocks 
A:4.8; S:0.8; C:0.3 

X2: Personal Fouls 
A:20.9; S:1.7; C:-0.2	  

X2: Rebound % 
A:50.0; S:1.5; C:0.5 

X2: Opponent Points off 
Turnovers 

A:16.3; S:1.4; C:-0.5 

X2: Opponent 2nd Chance 
Points 

A:13.2; S:1.0; -0.3 
X2: Defensive Rating 
A:103.9; S:3.3; C:-0.7 

X2: Defensive Rebound % 
A:73.5; S:1.9; C:0.4 

X2: Opponent Fast Break 
Points 

A:13.0; S:1.7; C:-0.4 
X2: Opponent Points in the 

Paint 
A:40.9; S:3.3; C:-0.4 

X2: Opponent Less than 5ft 
FGM 

A:16.6; S:1.5; C:-0.5 

X2: Opponent Less than 5ft 
FGA 

A:28.2; S:2.2; C:-0.3 
X2: Opponent Less than 5ft 

FG% 
A:58.9; S:2.4; C:-0.5	  

X2: Opponent 5-9ft FGM 
A:3.3; S:0.5; C:0.1	  

X2: Opponent 5-9ft FGA 
A:8.3; S:1.1; C:0.2	  

X2: Opponent 5-9ft FG% 
A:39.8; S:2.5; C:-0.3 

X2: Opponent 10-14ft FGM 
A:2.7; S:0.4; C:0.3 

X2: Opponent 10-14ft FGA 
A:6.8; S:0.8; C:0.4 

X2: Opponent 10-14ft FG% 
A:39.2; S:2.3; C:-0.2 

X2: Opponent 15-19ft FGM 
A:5.8; S:0.8; C:-0.0 

X2: Opponent 15-19ft FGA 
A:14.4; S:1.8; C:0.1 

X2: Opponent 15-19ft FG% 
A:40.5; S:1.8; C:-0.4	  

X2: Opponent 20-24ft FGM 
A:5.7; S:0.8; C:-0.1 

X2: Opponent 20-24ft FGA 
A:15.0; S:2.1; C:0.0 

X2: Opponent 20-24ft FG% 
A:38.4; S:1.8; C:-0.4 

X2: Opponent 25-29ft FGM 
A:2.9; S:0.7; C:-0.2 

X2: Opponent 25-29ft FGA 
A:8.4; S:2.0; C:-0.1 

X2: Opponent 25-29ft FG% 
A:34.3; S:2.1; C:-0.3 

 	  

 

 Though most of the signs of the correlations between metrics and wins are expected, it is 

interesting to note that both offensive rebounds and second chance points are negatively 

correlated with wins. Often, teams are praised for their ability to rebound on the offensive end, 
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and then take advantage of such rebounds by scoring second chance points. However, teams that 

offensive rebound and score afterwards are only able to do so if they miss their original shot. 

Thus, teams have to be inefficient on their original shot to receive offensive rebounds and second 

chance points, the cause for the negative correlations.   

The data is limited to a ten season span due to a changing style of play over time. As 

shown in Figures 1 and 2 below, NBA teams on average have adjusted their shooting tendencies. 

In the 2014-2015 season, teams averaged 22.4 three point attempts per game; in the 2005-2006 

season, teams averaged just under 16 three point attempts per game. This increase in outside 

shooting has led teams away from the basket, effectively reducing the number of free throw 

attempts per game across this span. To avoid further deviations in team per game averages across 

seasons, and thus a misunderstanding of how teams win games today, the data is limited to the 

past ten years.  

 

Figure 1 – Team 3-Pointers Per Game 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	   15	  

Figure 2 – Team Free Throws Per Game 

 

 

 

 

 

 

 

 

 

 

 

 

The team data from the previous ten seasons also includes whether the team is located in 

the NBA’s Eastern or Western Conference. The player data consists of the above offensive and 

defensive statistics, as well as age, games played, minutes played, previous teams, and previous 

teams’ wins and losses.  

The data from NBA.com is extensive due to the inclusion of both offensive and defensive 

statistics. In addition, NBA.com offers recorded metrics for both teams and players, which is 

applicable to my study. Other data sources, such as ESPN.go.com or Basketball-Reference.com, 

feature either limited statistics or inapplicable statistics to both teams and players. Though 

NBA.com’s dataset includes more defensive player statistics than other publicly available 

datasets, there are still few recorded defensive player statistics compared to both offensive player 

statistics and team defensive statistics. NBA.com, for instance, displays 15 defensive metrics for 

teams that they do not record for individual players (e.g. opponent three point percentage). 

Unfortunately, the few efforts to record such individual defensive statistics have been done for 

only one or two seasons, as was done in “The Effect: A New Ensemble of Interior Defense 

Analytics for the NBA” and “Counterpoints: Advanced Defensive Metrics for NBA Basketball” 

(Goldsberry & Weiss, 2013) (Franks, Miller, Bornn, & Goldsberry, 2015). Thus, this research 

uses limited individual defensive statistics in the analysis. Without a firm understanding of 

player defensive contributions, a model may not accurately value player contributions to teams, 
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especially for defensive-oriented players. Also, apart from PACE, there are no statistics 

recording a player’s or team’s style of play, which will restrict the ability to predict player 

performance when joining a new team.  

The analysis does not incorporate the value of a player’s leadership or locker room 

presence. Chris Paul is a known leader around the NBA, and is known for getting his teammates 

to play at a higher level than they would otherwise. Meanwhile, Lance Stephenson has a history 

of letting his emotions negatively affect his teammates’ play. Unfortunately, there is no objective 

method of valuing a player’s leadership or locker room presence, as much of what occurs in the 

locker room and amongst players stays private. As a result, a leadership or locker room variable 

cannot be incorporated into a model valuing a player’s contributions to the team.  

The experience of the team’s head coach may influence the team’s regular season win 

percentage. However, there is no source that tracks the coaching experience of each coach during 

the regular season. As such, I assume that every team’s coach is on average equal in skill, and 

thus insignificant on the outcome of the game.  

Lastly, for calculating average salary levels of point guards, shooting guards, small 

forwards, power forwards, and centers, as will be explained later, I rely upon the salary data 

provided by Basketball-Reference.com. In classifying players by position, I rely upon data from 

ESPN.go.com.  

 

V. Empirical Specification 

 The first step of my analysis involves determining the predictors of team regular season 

win percentage. I regress regular season win percentage on the significant statistics above, and 

test for a dummy variable indicating the team’s conference (Eastern vs. Western Conference). 

Assuming the season-long averages remained constant for each of the 82 games, multiplying 82 

by the predicted win percentage estimates a team’s regular season win total. Shown below is an 

example of the regression equation used to calculate win percentage during the regular season.  

 

Regular  Season  Win  Percentage    =  α0  +  α1X1  +  α2X2  +  α3X3   (1)  

Let X1 = Team Offensive Statistics; X2 = Team Defensive Statistics; X3 = Eastern or Western    

Conference 
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The dummy variable for conference is included to take into account strength of schedule. 

The Western Conference has been comprised of significantly better teams than the Eastern 

Conference for the past few years. Thus I assume that Eastern Conference teams, who play other 

Eastern Conference teams more often than Western Conference teams, are more likely to win 

regular season games than if they played in the Western Conference against harder competition. 

If found statistically significant, the effect of this variable would need to be adjusted in future 

seasons due to roster changes across the NBA. However, barring many dramatic trades across the 

NBA, the Western Conference appears to be the more dominant conference in the NBA in the 

coming seasons.  

After predicting regular season win percentage, I then use regression analysis to predict 

future player performance. The response variables are those metrics found to be significant in 

predicting team regular season win percentage. An example of a regression model for estimating 

player performance is shown below, where points per game for the 2015 season is the variable 

being estimated.  

   

PPG2015  =  α0  +  α1PPG2014  +  α2PPG2013  +  α3PPG2012  

Where PPG = Points per game 

  

The past performances incorporated into the regression model extend as far back as the 

player performed during the past ten seasons – as long as such performances are deemed 

significant in predicting future player performance. Otherwise, if the regression model indicates 

that only two seasons worth of data is significant in predicting future player performance, for 

instance, then only a player’s past two seasons are used as predictors in the regression model.  

As mentioned, the regression model for team production provides the regular season win 

percentage based upon the team’s season-long per game statistics. By altering the team’s per 

game averages due to roster modifications, I can estimate the change in win percentage 

stemming from such roster moves. A change in team per game averages and wins due to a roster 

alteration occurs from free agency signings, which is exactly what I wish to examine. The issue 

lies, though, in how to alter the team per game averages to truly reflect the statistical value added 

by a new player. Summing a player’s statistics with a team’s per game averages does not provide 
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the team’s new per game averages if the player were to join. This can be illustrated by the 

following example.  

Let’s assume that the 15-man 2013-2014 Cleveland Cavaliers roster averaged 88 points 

per game, 36 rebounds per game, and 18 assists per game. If LeBron James were to take the 

place of one of the 15 players on the roster for the 2014-2015 season, and, assuming his 2014-

2015 statistical production was 25 points per game, 8 rebounds per game, and 7 assists per game, 

he would not allow the Cavaliers to average 113 points per game, 44 rebounds per game, and 25 

assists per game in the 2014-2015 season. This is because LeBron James’ minutes on the court 

would be replacing the starting small forward’s minutes from the previous season; the loss of this 

replaced player’s production must be accounted for in predicting the team’s future per game 

averages. Thus, ignoring the loss of the player LeBron James replaces would overestimate the 

increase in team per game statistics resulting from adding James.  

In order to determine the replaced player’s value, I assume that LeBron James is 

replacing an average player at his position on the Cavaliers. In reality, the player that LeBron 

James replaces could be the 15th man on the roster – somebody who barely played during the 

regular season. However, this player did not contribute much to the team’s performance, and 

hence his absence from the court for the Cavaliers is irrelevant. It is the on court absence of the 

small forward that LeBron James now plays instead of that is worth considering.  

I classify every player over the past ten seasons as a point guard, shooting guard, small 

forward, power forward, or center. In the case of James, I calculate the per game statistics of all 

small forwards on the Cavaliers if the players were to play James’ expected number of minutes. 

Next, I average the new per game statistics of each of the small forwards. By comparing James’ 

statistics with that of the average production of a small forward on the Cavaliers, I can find the 

true change in team per game statistics from adding James and losing a player, which is the 

difference in the per game statistics of James and the average small forward’s statistics. This 

difference can then be added to the team’s per game statistics, and the resulting increased win 

percentage is the true value that James’ statistics add to the Cavaliers’ winning chances. 

When assigning a dollar value to James’ contributions to the Cavaliers, I first assume that 

teams use their full salary cap to acquire a win for each game. This follows the premise that 

teams want to win as many games as possible, and that if teams could guarantee winning all 82 

games during the regular season by efficiently allocating their full salary cap, then teams would 



	  

	   19	  

do so. Some team owners more than others seek profits from their team in addition to simply 

team success. But, even these owners seek winning if given the choice to win or not to win, as 

winning attracts fans and leads to ticket revenue from postseason appearances. In addition, I 

determine the current league average salary level of a player at each position. Knowing the 

Cavaliers’ percentage point increase in winning due to replacing their team’s average producing 

small forward with LeBron James, I can then calculate the increase in salary that LeBron James 

deserves over the league average salary level of a player at his position. For example, if the 

Cavaliers’ win percentage jumps 20 percentage points due to the addition of James to their 

roster, then James deserves to be paid 20% more of the salary cap than the league average salary 

of a small forward. In other words, since adding James “guarantees” that the Cavaliers will now 

win an additional 20% of the season’s games, then assuming that efficiently spending the full 

salary cap can guarantee winning 82 games, James should be paid 20% of the salary cap plus the 

average salary of a small forward. A step-by-step example of calculating LeBron James’ value 

when added to the Cavaliers is shown below, where the simplifying assumption is that the only 

team per game statistics deemed significant in predicting team win percentage are points, 

rebounds, and assists. Each of the numbers shown is created for the purpose of the example.  
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Example 1 – Calculating LeBron James’ Salary 

 

Following this methodology, players receive the average salary per year at their position 

if their statistical contributions are equal to that of the average player at their position on the 

team they are joining. Meanwhile, players deserve a salary higher or lower than the league 

average positional salary based upon whether the player performs better or worse than the team’s 

average positional production.  

A player’s salary level is calculated from the league average positional salary rather than 

the team’s average positional salary to avoid the effects of a team’s previous spending. If Mike 

Miller and Shawn Marion’s salaries were each $15M in the example above, and LeBron James’ 

proportional increase in salary was due to the team’s average positional salary rather than that of 

the league, then LeBron James’ calculated salary would be $27.6M. As a result, James would be 

inclined to sign with a team that had already overpaid for players of his position. However, by 

1. Cavs Win Percentage Without LeBron James = 0.50 

2. Cavs Predicted Per Game Team Statistics = 88 points, 36 rebounds, 18 assists 

3. Current Small Forwards on the Cavs Roster: Mike Miller and Shawn Marion 

4. LeBron James’ Expected Minutes Per Game on the Cavs = 30 min 

5. Mike Miller Predicted Per Game Statistics in 30 min: 12 points, 5 rebounds, 1 assist 

6. Shawn Marion Predicted Per Game Statistics in 30 min: 8 points, 3 rebounds, 3 assists 

7. Avg Per Game Statistics of Cavs Small Forward = 10 points, 4 rebounds, 2 assists 

8. LeBron James Predicted Per Game Statistics on Cavs = 25 points, 8 rebounds, 7 assists 

9. Added Contribution to the Cavs = 15 points, 4 rebounds, 5 assists 

10. Cavs Win Percentage With LeBron James = 0.70 

11. Predicted Number of Wins Without LeBron James = 41.0 Wins 

12. Predicted Number of Wins With LeBron James = 57.4 Wins 

13. Because LeBron James increases the Cavs’ regular season win percentage by 20 percentage 

points, LeBron James deserves to be paid 20% more of the salary cap than the league average 

salary of a small forward.  

14. League Average Small Forward Salary = $6M 

15. Team Salary Cap for the 2014-2015 Season = $63M 

16. LeBron James’ Appropriate Salary on the Cavs = $6M + (0.20 X $63M) = $18.6M 
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using the league average salary, James’ salary is affected by the league-wide value for players of 

his position, thus avoiding the influence of a team’s history of paying free agents at a specific 

position.  

 

VI. Team Findings  

To determine a model for predicting team regular season win percentage, I used two 

different methodologies when performing linear regression. Both methodologies entailed a 

comprehensive analysis of all of the collected variables for team statistics over the past ten 

seasons, and effectively selected which variables or components were most important in 

predicting team win percentage. Furthermore, the selection process used in each methodology 

removed the multicollinearity that exists among the recorded team metrics.  

 

A. Manual Elimination  

The first methodology, deemed “manual elimination”, involved grouping the collected 

statistics into categories based upon the basketball actions that they describe. After 

understanding the recorded team metrics, I placed statistics into the following buckets: own 

shooting, opponent shooting, free throws, rebounding, passing, and miscellaneous. Shown below 

are the metrics that encompassed each bucket, where the metrics highlighted in red were the 

selected metrics from each bucket.  

 

Table 3 – Manual Elimination 

Own Shooting (29) 

FGM FGA FG% 3PM 
3PA 3P% eFG% TS% 

%FGA 2pts %FGA 3pts %pts 2pts %pts 2pt-MR 
%pts 3pts %pts FBPs %pts Off TO %pts PITP 

2FGM %AST 2FGM %UAST 3FGM %AST 3FGM %UAST 
FGM %AST FGM %UAST PTS Off Rtg 
PTS Off TO 2nd PTS FBPs PITP 
Opp BLKA    

 

Opponent Shooting (24) 

Opp Less than 5ft 
FGM 

Opp Less than 5ft 
FGA 

Opp Less than 5ft 
FG% 

Opp 5-9ft FGM 
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Opp 5-9ft FGA Opp 5-9ft FG% Opp 10-14ft FGM Opp 10-14ft FGA 
Opp 10-14ft FG% Opp 15-19ft FGM Opp 15-19ft FGA Opp 15-19ft FG% 
Opp 20-24ft FGM Opp 20-24ft FGA Opp 20-24ft FG% Opp 25-29ft FGM 
Opp 25-29ft FGA Opp 25-29ft FG% BLK Def Rtg 
Opp PTS Off TO Opp 2nd PTS Opp FBPs Opp PITP 

 

Free Throws (4) 

FTM FTA FT% %pts FT 
 

Rebounding (6) 

OREB DREB REB OREB% 
DREB% REB%   

 

Passing (7) 

AST TO STL TO Ratio 
AST% AST/TO AST Ratio  

 

Miscellaneous (6) 

Net Rtg PF PFD +/- 
PACE PIE   

 

By forming buckets for different metrics, “manual elimination” prevented 

multicollinearity – where multicollinearity is defined as two explanatory variables in the 

regression analysis having a correlation greater than 0.8 or less than -0.8. The own shooting, 

opponent shooting, free throws, rebounding, passing, and miscellaneous buckets did not have 

strong positive or negative correlations with one another.  

 Because the outcome of a basketball game is dependent mostly on shooting statistics (e.g. 

field goal percentages, field goals attempted, etc.), I chose to select three metrics from each of 

the shooting buckets, while only selecting one metric from each of the other buckets. I limited 

the number of metrics selected from the shooting buckets to three in order to prevent the 

aforementioned multicollinearity from occurring.  

 From the own shooting bucket I selected FGM (field goals made), eFG% (effective field 

goal percentage), and FGM %AST (percent of field goals made that are assisted). Each of these 

selections was a subjective decision based upon an understanding of the statistic and prior 
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knowledge of basketball. I chose FGM because the more teams make field goals, the more points 

that team scores, and thus the better chance the team has of outscoring its opponent. I chose 

effective field goal percentage because it is a field goal percentage metric that adjusts for the 

value of three pointers being greater than two pointers; it is more important for teams to make 

their three pointers than their two pointers due to the difference in shot value. The equation for 

eFG% is shown below.  

 

eFG% =
(FGM+ 0.5×3PM)

FGA  (2) 

 

Lastly, I selected FGM %AST because teams that pass the ball often and well are more likely to 

find open and easier shots – leading to more points. The Golden State Warriors and San Antonio 

Spurs are prime examples of offenses that succeed due to unselfish passing.  

 Unfortunately, NBA.com does not record opponent FGM, opponent eFG%, or opponent 

FGM %AST for individual players. Thus, incorporating these metrics into a team prediction 

model would prove useless when eventually trying to determine how each player contributes to 

team win percentage. Using the opponent shooting metrics from Table 3, I selected an array of 

opponent field goal percentages that describe short, medium, and long range shooting on the 

court – essentially accomplishing the task of providing an effective field goal percentage for 

opposing players. I believe that opponent shooting from less than five feet from the basket, 10-14 

feet from the basket, and 20-24 feet from the basket accurately summarize the short, medium, 

and long range shooting that occurs during a game. 

 I selected FTM (free throws made) from the free throws bucket. Unlike the other free 

throw based statistics in the group, FTM takes into consideration both the number of times that a 

team shoots free throws as well as the success of these attempts. The percentage of points that 

are free throws (%pts FT) does a similar task to that of FTM, though it is highly dependent on 

the number of FGM for teams.  

 I selected DREB (defensive rebounds) from the rebounding bucket. I preferred DREB to 

REB (total rebounds) and OREB (offensive rebounds) because in order for a team to retrieve 

OREB, the team must miss its shots. Thus, having a high number of OREB or REB may be a 

combination of both strong and poor play for a team. High DREB totals, however, are only 
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positive indicators of a team’s performance, as defensive rebounds represent a team forcing the 

opponent to miss its shots.  

 I chose the AST/TO (assist to turnover ratio) over other metrics within the passing bucket 

because AST/TO takes into account both the assist and turnover totals of a team. Teams that total 

high assist and high turnover numbers or low assist and low turnover numbers do not perform as 

well as teams with high assist and low turnover counts. Thus, AST/TO is the metric in the 

passing bucket most telling of offensive success. 

 Lastly, I selected PF (personal fouls) from the miscellaneous bucket. Though opponent 

free throws made was not recorded for individual players on NBA.com, PF is a strong indicator 

of the number of free throws made for the opponent.  

 I included each of these metrics in the linear regression equation shown below, where 

regular season win percentage is the response variable. I chose to use linear regression in order to 

predict the effects of multiple metrics on team win percentage. The results from the regression 

are shown in Table 4.  

 

Winning% = α! + α!FGM+ α!eFG%+ α!FGM  %AST+ α!Opp  Less  than  5ft  FG%

+ α!Opp  10  to  14ft  FG%+ α!Opp  20  to  24ft  FG%+ α!FTM+ α!DREB

+ α!
AST
TO + α!"PF 

(3) 
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Table 4 – Regression Output from Equation 3 

P-values bolded are less than 0.05 

 

The r-squared for the model is 0.74, indicating that approximately 74% of the variation in 

win percentage is explained by the independent variables in the regression model. The residuals 

of the model have a minimum of -17.69 and a maximum of 22.08. Translated into number of 

games won or lost, the regression model predicts one team to win approximately 15 games more 

than the team actually won, while the model also predicts one team to win about 18 fewer games 

than it did.  

The p-values of each of the variables are less than 0.05, providing evidence that the 

coefficients of each of the explanatory variables are significantly different from zero. The signs 

of the coefficients for effective field goal percentage, opponent field goal percentage less than 5 

feet, opponent field goal percentage 10-14 feet, opponent field goal percentage 20-24 feet, free 

throws made, defensive rebounds, assist to turnover ratio, and personal fouls all make sense from 

Variable Estimate T-value Std. Error P-value 95% Lower 95% Upper 
Intercept -0.80 -0.03 26.00 0.98 -51.96 50.36 

FGM -2.44 -5.36 0.45 1.67e-07 -3.34 -1.54 
eFG% 4.34 12.80 0.34 <2e-16 3.67 5.01 

FGM % 
AST 

-0.72 -4.27 0.17 2.62e-05 -1.05 -0.39 

Opp <5ft 
FG% 

-0.86 -4.42 0.19 1.37e-05 -1.24 -0.47 

Opp 10-14ft 
FG% 

-1.88 -6.50 0.29 3.53e-10 -2.44 -1.31 

Opp 20-24ft 
FG% 

-1.04 -4.39 0.24 1.56e-05 -1.50 -0.57 

FTM 1.57 6.05 0.26 4.53e-09 1.06 2.08 
DREB 1.38 3.79 0.36 1.83e-04 0.66 2.10 

AST/TO  39.98 9.22 4.34 <2e-16 31.45 48.52 
PF -0.86 -2.45 0.35 0.01 -1.55 -0.17 

  
R-Squared = 0.74 
Residual standard error = 7.98 
N = 300 
Residuals: 
     Min         1Q      Median     3Q       Max  
   -17.69     -5.77      -0.11       5.18     22.08 
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a basketball perspective. The coefficient estimates for field goals made, field goals made percent 

assisted, and assist to turnover ratio are interesting to note.  

The field goals made variable has a coefficient of -2.44 (95%CI: -3.34, -1.54). If the 

number of field goals made per game for a team increases by one, holding all else constant, then 

the regular season win percentage for the NBA team is predicted to decrease by 2.44 percentage 

points. The negative nature of the coefficient for field goals made is certainly counterintuitive 

from a basketball perspective. As teams make more field goals, they score more points, thus 

increasing their chances of outscoring the opponent. However, the results of the regression 

analysis indicate otherwise - that teams decrease their chances of winning with each made field 

goal. These results illustrated the need for further modifications to the model predicting team 

regular season win percentage.  

The coefficient for percent of field goals made assisted is -0.72 (95%CI: -1.05, -0.39). 

The model indicates that if the percent of field goals made assisted per game increases by one 

percent, holding all else constant, a team’s regular season win percentage will decrease by 0.72 

percentage points. The sign of this coefficient is surprising. As previously indicated, teams that 

often share the ball perform better on the offensive end than those that do not. The Oklahoma 

City Thunder has demonstrated success doing the opposite; the Thunder rely on few passes and 

isolation plays to score effectively. I believe that the Thunder, though, are an exception to the 

rule.  

The assist to turnover ratio variable has a coefficient of 39.98 (95%CI: 31.45, 48.52). If 

the per game assist to turnover ratio increases by one, holding all else constant, then the team’s 

regular season win percentage will increase by 39.98 percentage points; a one unit increase in the 

per game assist to turnover ratio can easily be the difference in a team making or not making the 

postseason. The coefficient for the assist to turnover ratio variable is by far the greatest in 

magnitude amongst the explanatory variable coefficients. However, due to the nature of what the 

metric describes, the magnitude of the variable is not all that surprising. In the past ten seasons, 

only four teams posted an assist to turnover ratio of 2 or greater; every other team posted an 

assist to turnover ratio between 1 and 2. Thus, it seems reasonable that a one unit increase in the 

ratio would yield such a large change in win percentage. Furthermore, the positive sign of the 

coefficient makes sense from a basketball viewpoint, as teams that increase their assists while 

diminishing their turnovers are more likely to score than those that do not.    
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Due to the negative coefficient estimates for both FGM and FGM %AST, I conducted 

regression analyses without one of these two variables in the equation. In both instances, the 

remaining variable in the regression maintained a negative coefficient estimate. As such, I 

removed both FGM and FGM %AST from the equation. In addition, to test my belief that DREB 

is a better indicator of winning than total rebounds, I substituted REB into the regression 

equation for DREB. Lastly, I included the aforementioned PACE metric into the regression 

equation with the hope of determining whether speed of play is a predictor of team win 

percentage, despite my initial thought indicating otherwise. The modified equation is shown 

below, with the regression output in Table 5.  

 

Winning% = α! + α!FTM+ α!eFG%+ α!Opp  Less  than  5ft  FG%

+ α!Opp  10  to  14ft  FG%+ α!Opp  20  to  24ft  FG%+ α!REB+ α!
AST
TO

+ α!PACE+ α!PF 

(4) 

  

Table 5 – Regression Output from Equation 4 

Variable Estimate T-value Std. Error P-value 95% Lower 95% Upper 
Intercept -45.28 -2.00 22.62 0.05 -89.81 -0.75 

FTM 1.79 8.30 0.22 3.89e-15 1.37 2.22 
eFG% 4.62 19.12 0.24 <2e-16 4.15 5.10 

Opp <5ft 
FG% 

-0.55 -3.43 0.16 6.89e-04 -0.87 -0.24 

Opp 10-14ft 
FG% 

-1.39 -5.94 0.23 8.12e-09 -1.85 -0.93 

Opp 20-24ft 
FG% 

-0.70 -3.55 0.20 4.56e-04 -1.09 -0.31 

REB 2.90 11.05 0.26 <2e-16 2.38 3.42 
AST/TO 23.03 8.73 2.64 <2e-16 17.83 28.22 
PACE -2.20 -12.41 0.18 <2e-16 -2.55 -1.85 

PF -0.60 -2.13 0.28 0.03 -1.15 -0.04 
  

R-Squared = 0.82 
Residual standard error = 6.61 
N = 300 
Residuals: 
     Min         1Q      Median     3Q       Max  
   -15.21     -4.41        0.11      4.64     19.23 
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P-values bolded are less than 0.05  

 

The r-squared of Equation 4’s regression is higher than that of Equation 3’s regression 

(0.82 compared to 0.74), while the residual standard error is lower (6.61 compared to 7.98) – 

both indications of a stronger predicting model. The coefficients’ signs and magnitudes of the 

variables included in Equation 3 and Equation 4 (FTM, eFG%, Opp <5ft FG%, Opp 10-14ft 

FG%, Opp 20-24ft FG%, AST/TO, and PF) remain fairly similar in both regressions. The 

AST/TO coefficient has the greatest change in magnitude, with the coefficient estimate changing 

from 39.98 to 23.03. The AST/TO variable’s statistical significance though, like each of the 

variables included in both Equation 3 and 4, remains the same due to a p-value of less than 0.05. 

Furthermore, the added REB and PACE variables are found to be statistically significant due to a 

p-value of less than 0.05.  

The free throws made per game variable has a coefficient of 1.79 (95%CI: 1.37, 2.22) in 

Equation 4. The coefficient indicates that a team that ended three games below .500 could have 

finished even on the season averaging only two more free throw makes per game, holding all 

else constant. The sign of the coefficient seems reasonable from a basketball perspective. Free 

throws are a high percentage shot that most players prefer to take in comparison to a contested 

jump shot. Having the opportunity to make a free throw also means that an opposing player 

committed a foul, which can force the opposition to sit talented players in foul trouble. In 

addition, the magnitude of the coefficient makes sense. In order for the number of free throws 

made to greatly affect team win percentage, teams must attempt a significant amount of free 

throws per game. 

Effective field goal percentage has a coefficient of 4.62 (95%CI: 4.15, 5.10). If the 

effective field goal percentage of a team increases by one percent, while holding all else 

constant, the team’s regular season win percentage will increase by 4.62 percentage points. The 

positive sign of the coefficient seems reasonable, as the more efficiently teams shoot on the 

court, the more likely teams will win games.  

Opponent field goal percentage less than 5 feet from the rim has a coefficient of -0.55 

(95%CI: -0.87, -0.24). If the opponent’s field goal percentage less than 5 feet from the rim 

increases by one percent, holding all else constant, the team’s regular season win percentage will 

decrease by 0.55 percentage points. Opponent field goal percentage 10-14 feet from the basket 
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has a coefficient of -1.39 (95%CI: -1.85, -0.93). If the opponent’s field goal percentage 10-14 

feet from the basket increases by one percent, holding all else constant, the team’s regular season 

win percentage will decrease 1.39 percentage points. Opponent field goal percentage 20-24 feet 

from the hoop has a coefficient of -0.70 (95%CI: -1.09, -0.31). If the opponent’s field goal 

percentage 20-24 feet from the hoop increases by one percent, holding all else constant, the 

team’s regular season win percentage will decrease 0.70 percentage points. The magnitudes and 

signs of these coefficients are reasonable. The more efficiently the opponent shoots from any 

spot on the floor, the less likely a team is to win the game. It is noteworthy though that the 

coefficient for opponent field goal percentage from 10-14 feet is greatest in magnitude amongst 

the three different spots on the floor. I would have assumed that the coefficient for 20-24 feet on 

the court would have the greatest magnitude or impact on win percentage, as 20-24 feet includes 

the more valuable three point shot.  

The substituted REB variable has a coefficient of 2.90 (95%CI: 2.38, 3.42), indicating 

that if total rebounds per game increased by one, holding all constant, then the team’s win 

percentage would increase by 2.90 percentage points. It is interesting that the coefficient and t-

value for total rebounds is larger than that of the DREB variable in Equation 3, illustrating that 

total rebounds in fact play a larger role in predicting team win percentage than solely defensive 

rebounds. This is mostly likely because though receiving offensive rebounds only occurs from 

missed shots, at least the team is making the most of its missed shots rather than going 

immediately to defend. Due to the statistical significance and importance of total rebounds, I 

continue to use total rebounds instead of defensive rebounds in the regression analysis. 

The PACE variable, despite my initial beliefs, proves to be statistically significant in 

predicting team regular season win percentage. The PACE variable has a coefficient of -2.20 

(95%CI: -2.55, -1.85), demonstrating that a one possession increase per 48 minutes, holding all 

else constant, results in approximately 2 fewer wins in the regular season. Though successful fast 

breaks are helpful for teams, quick shots are often an indication of poor and inefficient shot 

selection. Thus, teams that hold the ball to find the best open shot seem to be more likely to win 

than teams willing to take the first shot available. 

Lastly, the personal fouls variable has a coefficient of -0.60 (95%CI: -1.15, -0.04). If the 

number of personal fouls increases by one foul per game, holding all else constant, the team’s 

regular season win percentage will decrease 0.60 percentage points. The magnitude of the 
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coefficient is fairly small, though statistically significant. This makes sense, as an increase in 

only one personal foul per game is not likely to make a big impact on a team’s win chances. The 

negative sign of the variable’s coefficient is intuitive, as personal fouls hurt a team’s chances of 

winning a game. Personal fouls prevent players from staying on the court, as well as often allow 

the opposition to take free throws. 

In addition to using Equation 4 to predict team win percentage, I conducted a regression 

analysis using net rating as the only explanatory variable to predict team win percentage. Net 

rating is the difference in a team’s offensive and defensive rating; offensive rating is the number 

of points scored for a team in 100 possessions, while defensive rating is the number of points 

allowed by a team in 100 possessions. When calculating net ratings for individual players, only 

the points scored by either team while the player is on the court is taken into consideration. Net 

rating has a correlation of 1.0 with wins; a positive season-long net rating indicates a team 

outscoring its opponent on average. I hoped to determine the best metric predictor of team 

regular season win percentage from this regression analysis. The output of the analysis is shown 

in Table 6 below.  

 

Table 6 – Regression Output from Win Percentage on Net Rating 

P-values bolded are less than 0.05 

 

As evident from Table 6, net rating alone is an excellent predictor of team win 

percentage. The predicted win percentages of 50% of teams are within approximately 2.7 

percentage points above or below their actual regular season win percentages. Though net rating 

is a strong predictor of team wins, the variable’s usefulness in isolating player contributions to 

team win percentage is limited. As shown by the metric’s definition, net rating is affected by the 

Variable Estimate T-value Std. Error P-value 95% Lower 95% Upper 
Intercept 49.98 227 0.22 <2e-16 49.54 50.41 
NetRtg 2.93 68 0.04 <2e-16 2.84 3.01 

  
R-Squared = 0.94 
Residual standard error = 3.81 
N = 300 
Residuals: 
     Min         1Q      Median     3Q       Max  
   -11.91     -2.74        0.01      2.69     10.57 
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actions of all ten players on the court at any given time. Therefore, it is difficult to attribute the 

changes in net rating to any one player on the court. 

Including only players who had played in ten or more games during the ’15-‘16 season, 

Los Angeles Clippers guard CJ Wilcox led the NBA in net rating with 29.0 as of February 22nd, 

2016. Wilcox’s high net rating may have been due to the fairly small sample size of his 

performance (he only averaged about four minutes per game). Second to Wilcox was, 

predictably, Stephen Curry with 21.1, followed by many San Antonio Spurs, Golden State 

Warriors, and Oklahoma City Thunder players. In fact, of all players who had played in ten or 

more games, only three players in the top 25 in net rating were not on the Spurs, Warriors, or 

Thunder. These top 25 net rating players included stars from the three highest win percentage 

teams in the Western Conference, such as Draymond Green, Kawhi Leonard, and Kevin Durant, 

but also included role players such as Festus Ezeli and Kyle Anderson. Because Ezeli and 

Anderson often play in lineups with the aforementioned stars, their net ratings were higher than 

if they had played on different teams; their high net ratings were representative of their 

teammates, not themselves. LeBron James is much more talented than Ezeli and Anderson, yet 

his net rating was lower than their ratings. Due to this inability to isolate a player’s true talents, I 

am not including net rating in the model predicting team regular season win percentage.  

Player Impact Estimate (“PIE”) is an advanced metric that “is an estimate of a player’s or 

team’s contributions and impact on a game. PIE shows what % of game events did that player or 

team achieve” (NBA.com).  

 

𝑃𝐼𝐸 = (PTS   +   FGM   +   FTM   −   FGA   −   FTA   +   DREB   +    (.5  ×  OREB)   +   AST   +   STL  

+    (.5  ×  BLK)   −   PF   −   TO)   ÷ (GmPTS   +   GmFGM   +   GmFTM   −   GmFGA  

−   GmFTA   +   GmDREB   +    (.5  ×  GmOREB)   +   GmAST   +   GmSTL  

+    (.5  ×  GmBLK)   −   GmPF  –   GmTO) 

(5) 

 

 

As evident from Equation 5, PIE records player or team activity in all aspects of the game. 

Shown below are the results from regressing win percentage on PIE. 

 

Winning%  =  α0  +  α1PIE   (6)  
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Table 7 – Regression Output from Equation 6 

P-values bolded are less than 0.05 

 

Similar to net rating, PIE is an excellent predictor of team win percentage. The 

coefficient is positive, sensibly indicating that as a team’s PIE increases, or the team becomes 

more efficient, the team will win more games. The coefficient’s magnitude estimates that if the 

team’s PIE increases by one unit, then holding all else constant, the team will win between 3 or 4 

more games during the regular season. The r-squared is extremely high at 0.92, indicating that 

approximately 92% of the variation in team regular season win percentage can be explained by 

only PIE. In total, PIE is a strong predictor for team regular season win percentage, and is used 

later when calculating appropriate player salaries. However, I do not include PIE in Equation 4, 

as incorporating PIE into the equation forces each of the other variables to become statistically 

insignificant. Thus, I use Equation 4 and 6 separately and compare results. 

 

B. Principal Components Analysis 

The second methodology to forming a linear regression equation that predicts team 

regular season win percentage from multiple per game metrics is called “principal components 

analysis”. Principal components analysis does not regress the response variable directly on the 

explanatory variables. Instead, win percentage is regressed on the principal components selected 

within the explanatory variables. Though it is difficult to understand each component from a 

basketball perspective, by finding the components that make up each of the collected metrics, I 

effectively limit the number of predictors in my regression model – avoiding the 

multicollinearity that would otherwise exist.  

Variable Estimate T-value Std. Error P-value 95% Lower 95% Upper 
Intercept -165.29 -43.98 3.76 <2e-16 -172.68 -157.89 

PIE 4.31 57.42 0.07 <2e-16 4.16 4.45 
  

R-Squared = 0.92 
Residual standard error = 4.46 
N = 300 
Residuals: 
     Min         1Q      Median     3Q       Max  
   -11.07     -2.96       -0.04      3.00     14.45 
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The results of the principal components analysis are shown in Table 8, where V1 through 

V9 represent the nine components that explain the most variance of the explanatory variables. In 

total, these nine components explain approximately 75% of the variance of the independent 

variables. After converting the teams’ statistical values into the principal components V1 through 

V9, team win percentage was regressed on all of the teams’ principal components.  

 

Table 8 – Principal Components Analysis 

P-values bolded are less than 0.05 

 

Though the principal components successfully explain the variance amongst the 76 

recorded metrics, not all of these 76 metrics are useful in explaining team win percentage. As 

evident from Table 8, only three of the nine components are statistically significant, with p-

values less than 0.05. These results indicate the usefulness of “manual elimination”, as then the 

statistically insignificant or unhelpful predictors are ignored when predicting team regular season 

win percentage.  

To test the strength of Equation 4 and 6 in predicting future win percentage, I estimated 

each team’s current (as of March 14th, 2016) 2015-2016 regular season win percentage using 

actual team statistics. On average, ‘15-‘16 teams had played 65.8 games by March 14th. The 

Variable Estimate T-value Std. Error P-value 95% Lower 95% Upper 
Intercept 190.26 1.64 116.09 0.10 -38.22 418.74 

V1 -0.00 -0.27 0.00 0.80 -0.01 8.39e-03 
V2 0.38 0.96 0.39 0.34 -0.39 1.15 
V3 -0.35 -1.35 0.26 0.18 -0.87 0.16 
V4 1.67 5.69 0.29 3.19e-08 1.09 2.24 
V5 -0.08 -0.47 0.17 0.64 -0.42 0.25 
V6 1.78 6.00 0.30 5.75e-09 1.19 2.36 
V7 1.13 4.28 0.27 2.55e-05 0.61 1.66 
V8 0.45 1.50 0.30 0.13 -0.14 1.04 
V9  0.01 0.06 0.22 0.96 -0.42 0.45 

  
R-Squared = 0.42 
Residual standard error = 11.98 
Residuals: 
     Min         1Q      Median     3Q       Max  
   -29.74     -8.45        0.08      7.70     36.01 
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predicted win percentages for each team using Equation 4 and 6, along with the differences from 

actual win percentage, are shown in Table 9.  

 

Table 9 – Predicted vs Actual Win Percentages 

Team 
Actual 
W% 

Equation 4 Predicted 
W% Difference 

Equation 6 Predicted 
W% Difference 

Atlanta 56.70% 45.22% 11.48% 61.60% -4.90% 
Boston 59.10% 36.84% 22.26% 61.17% -2.07% 
Brooklyn 27.30% 28.95% -1.65% 34.48% -7.18% 
Charlotte 56.90% 42.94% 13.96% 52.99% 3.91% 
Chicago 50.00% 43.07% 6.93% 47.39% 2.61% 
Cleveland 72.30% 53.61% 18.69% 63.75% 8.55% 
Dallas 50.00% 42.38% 7.62% 52.13% -2.13% 
Denver 42.40% 33.72% 8.68% 43.52% -1.12% 
Detroit 51.50% 33.70% 17.80% 43.52% 7.98% 
Golden 
State 90.80% 72.73% 18.07% 80.11% 10.69% 
Houston 50.00% 32.38% 17.62% 41.37% 8.63% 
Indiana 53.00% 30.84% 22.16% 55.57% -2.57% 
L.A. 
Clippers 64.60% 51.43% 13.17% 62.46% 2.14% 
L.A. Lakers 20.90% 12.75% 8.15% 18.98% 1.92% 
Memphis 59.10% 40.05% 19.05% 50.41% 8.69% 
Miami 57.60% 45.23% 12.37% 59.88% -2.28% 
Milwaukee 43.30% 26.99% 16.31% 43.95% -0.65% 
Minnesota 31.80% 31.96% -0.16% 46.10% -14.30% 
New 
Orleans 36.90% 29.75% 7.15% 39.21% -2.31% 
New York 41.20% 31.44% 9.76% 45.24% -4.04% 
Oklahoma 
City 66.70% 59.80% 6.90% 67.63% -0.93% 
Orlando 43.10% 29.03% 14.07% 43.09% 0.01% 
Philadelphia 13.60% 6.46% 7.14% 18.98% -5.38% 
Phoenix 25.80% 13.04% 12.76% 26.73% -0.93% 
Portland 52.20% 48.68% 3.52% 47.39% 4.81% 
Sacramento 38.50% 31.39% 7.11% 46.53% -8.03% 
San Antonio 84.80% 68.07% 16.73% 87.86% -3.06% 
Toronto 68.80% 56.00% 12.80% 61.17% 7.63% 
Utah 47.00% 38.77% 8.23% 50.41% -3.41% 
Washington 46.20% 19.66% 26.54% 43.52% 2.68% 

Differences highlighted in green are within 10% 
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As can be seen from Table 9, Equation 6 does a much better job of estimating 2015-2016 

team win percentages. Only two of the thirty teams’ win percentages are not estimated within ten 

percentage points using Equation 6. Interestingly, Equation 4 estimates the win percentage of 

one of these two teams, the Minnesota Timberwolves, within 0.16 percentage points – by far the 

most closely estimated win percentage by Equation 4. On average, Equation 4 underestimates the 

actual win percentage by 12.17 percentage points, while Equation 6 on average underestimates 

the actual win percentage by 0.16 percentage points. The fact that Equation 6 is a much better 

predictor of team regular season win percentage is consistent with my regression analysis results, 

as the r-squared of Equation 6 is 0.92 with a residual standard error of 4.46, while the r-squared 

of Equation 4 is 0.82 with a residual standard error of 6.61.  

 As Table 9 shows, Equation 4 underestimates 28 of the 30 teams’ regular season win 

percentages. This may be due to the fact that average per game statistics for teams are different 

now than they were ten years ago. Thus, when using teams’ statistics over ten seasons to form 

the coefficient estimates for predicting team regular season win percentage, the coefficient 

estimates do not take into account the new trends in acquiring, for instance, a higher PACE or 

lower FTM (PACE increased from a team average of 92.99 in the 2005-2006 season to an 

average of 96.30 in ’14-’15, while FTM fell from 19.60 to 17.14 over the span). Because of these 

statistical trends, as well as the PACE and FTM coefficient estimates’ negative and positive 

signs respectively, teams are expected to achieve win percentages lower than they actually will 

during the regular season.  

Equation 6, meanwhile, overestimates 17 of the 30 teams’ regular season win percentages 

– a much more symmetric or randomly distributed error. Though teams are totaling higher or 

lower statistical numbers for specific metrics, all teams are doing so together. Thus, there is no 

change in efficiency from a statistical viewpoint for two teams during a game. As a result, it is 

expected that Equation 6, or really PIE for that matter, would over and underestimate team 

regular season win percentage approximately the same. 

 

VII. Player Findings 

Based upon my analysis of team performance, I sought to predict each of the explanatory 

variables in Equations 4 and 6 for players in their next season. I began my investigation 

predicting the variables in Equation 4.  
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A. Equation 4 

 I started by analyzing the 92 players who played all ten seasons in the dataset. Though 

viewing only ten-year players greatly reduced my number of observations, I hoped to use the 

most information possible on a player by extending a player’s previous history to 10 seasons. I 

regressed each player’s 2014-2015 metric on his previous season’s number of wins, current age, 

age squared, and the per game averages of the same metric for the previous 9 seasons. I included 

the player’s previous season’s number of wins in order to take into account a player’s history of 

strong performance. Though I hoped to use a player’s missing games (or 82 minus number of 

played games) as a variable representing a player’s injury history, I decided to leave missing 

games out of the regression equation. Too many players missed games during the regular season 

due to coaching decisions, and I would have confused a player’s injury woes with poor 

performance or being a weaker player on a strong roster. Thus, there is no explanatory variable 

that takes into account a player’s injury history in my player prediction equations.  

 After regressing, for example, the ’14-’15 FTM variable on last regular season’s wins, 

current age, age squared, and the previous nine seasons’ FTM, I performed a Durbin-Watson 

Test on each regression equation to test for autocorrelation amongst the errors terms. None of the 

Durbin-Watson Tests posted p-values less than 0.02, and I proceeded with my analysis that there 

was no autocorrelation in the error terms. I followed a backwards elimination process of 

removing variables, eliminating the metric from the earliest season if it were statistically 

insignificant (p-value > 0.05), forming the regression equation without the variable, and 

continuing the process of elimination. After reaching a point where all historical metrics were 

significant, I then removed previous regular season wins if it were insignificant, age squared, and 

then age. If age and age squared were significant when one was kept in the model, but not when 

both were in the model, I put each of the variables in the model; when both of the variables were 

left in the model, the r-squared of the model increased.   

The equations for FTM, PF, PACE, REB, and opponent FG% less than 5 feet include 

only one year of experience in predicting the next season’s metric. The AST/TO variable was 

best predicted when using the AST/TO per game values from one year and three years ago. Only 

the opponent field goal percentage from 10-14 feet from two seasons ago was statistically 

significant in predicting next season’s opponent FG% from 10-14 feet. Interestingly, eFG% was 

best predicted by the eFG% from six seasons prior, while opponent field goal percentage from 
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20-24 feet was best predicted from per game averages from six and eight seasons ago. 

Realistically, though, this is not very helpful when trying to appropriately pay NBA free agents, 

as NBA players play on average 4.8 years in the NBA (Nelson, 2013). In addition, the contracts 

of NBA first round draft picks are guaranteed for only two years, while contracts for second 

round picks typically last for two years as well. Thus, teams often only have two years to analyze 

players before extending these young free agents a contract offer. For players entering free 

agency later in their careers, examining the eFG% or opponent FG% from 20-24 feet of the 

player six years ago is plausible and potentially useful for predicting the eFG% and opponent 

FG% from 20-24 feet for the player for the following season.  

Because six of the nine variables were best predicted using data from only the two 

previous seasons, rookies often play only two seasons in the NBA before entering free agency, 

and, because I wanted to increase my number of observations, I chose to analyze all players in 

the NBA who played for three straight seasons. The third season’s metrics acted as dependent 

variables, while the two earlier seasons’ metrics were predictors.  

Many NBA players missed entire seasons but later returned to the league to play. Such 

reasons for missing entire seasons included injury and playing in a league abroad. For players 

who returned after missing whole seasons, I treated their performance history as two separate 

players before and after the missing season, effectively increasing my number of observations. 

Because I did not care which player I was analyzing, this data manipulation was doable.  

In rare instances, players did not record an opponent field goal percentage from a specific 

distance. This occurred if the player played extremely limited minutes during the season. In these 

instances, I gave the player the average opponent field goal percentage from that distance from 

the 2014-2015 season as his opponent field goal percentage.  

The equations for predicting each of the explanatory variables found in Equation 4 are 

shown below, where I followed the backwards selection process indicated earlier using only two 

seasons to predict the third season. All of the Durbin-Watson Tests showed no autocorrelation 

amongst the errors terms, with p-values greater than 0.02. In each equation, the “.1” or “.2” next 

to a variable name indicates that the metric is from one or two seasons ago respectively. The 

“W.1” variable represents the player’s number of regular season wins from the previous season. 

Table 10 displays the r-squared and standard residual errors for the equations predicting each of 

the player statistics. 
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FTM  =  α0  +  α1Age  +  α2Age  squared  +  α3FTM.1  +  α4FTM.2  

eFG%  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4eFG%.1  +  α5eFG%.2  

PF  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4PF.1  +  α5PF.2  

PACE  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4PACE.1  

AST/TO  =  α0  +  α1AST/TO.1  +  α2AST/TO.2  

REB  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4REB.1  +  α5REB.2  

Opp  FG%  <  5ft  =  α0  +  α1W.1  +  α2Opp  FG%  <  5ft  .1  

Opp  10-‐14ft  FG%  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4Opp  10-‐14ft  FG%.1  +      

α5Opp  10-‐14ft  FG%.2    

Opp  20-‐24ft  FG%  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4Opp  20-‐24ft  FG%.1  +      

α5Opp  20-‐24ft  FG%.2    

 

Table 10 – Regression Results from Predicting Player Metrics 

Variable R-squared Residual Standard Error 

FTM 0.74 0.62 

eFG% 0.13 10.51 

PF 0.49 0.49 

PACE 0.08 3.30 

AST/TO 0.35 0.95 

REB 0.74 1.15 

Opp  FG%  <  5ft 0.02 7.2 

Opp 10-14ft FG% 0.01 10.57 

Opp 20-24ft FG% 0.00 7.26 

 

Using these equations, I then predicted the 2015-2016 regular season statistics of current 

players who have played for the past two seasons. Table 11 shows the average and median 

difference of the 2015-2016 actual results minus the 2015-2016 predicted player results.  
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Table 11 – 2015-2016 Differences in Actual and Predicted Player Metrics 

 FTM eFG% PF PACE AST/TO REB Opp  

FG%  <  

5ft 

Opp 

10-14ft 

FG% 

Opp 

20-24ft 

FG% 

Avg -1.74 1.89 0.11 2.25 0.00 0.01 -0.07 1.33 -0.83 

Median -1.52 1.74 0.14 2.14 -0.04 -0.05 -0.19 1.52 -0.40 

 

The average difference between actual and predicted results is the largest for PACE. This 

is because PACE is the variable most dependent on team roster and coaching staff. If a player 

moved to a team with a drastically different coaching philosophy, his PACE would change 

regardless of his personal change in skill set. Since the model predicting PACE cannot anticipate 

a change in roster or coach, the difference between actual and predicted results is largest on 

average for PACE.  

The negative average difference for FTM is expected. The average number of FTM per 

player per game has decreased from 1.61 to 1.39 from the ’05-’06 to ’14-’15 season. As of 

March 14th, 2016, players averaged 1.43 FTM per game for the ’15-’16 regular season. Because 

of the decline in FTM over the past ten seasons, the model overestimates the number of FTM for 

players in future seasons. The positive average difference for eFG% is expected due to the trend 

shown in Figure 1. As players make more three pointers per game, their eFG% rises due to the 

higher value of three pointers compared to two pointers (see Equation 2). As long as players 

continue to make more three pointers than they did in the previous ten seasons, the model is 

expected to underestimate the effective field goal percentage for players. Lastly, despite their 

fairly low r-squared values and high residual standard errors shown in Table 10, the models for 

opponent field goal percentages did a strong job of predicting the next season’s values.   

 

B. Equation 6 

For comparative purposes, when trying to predict a player’s next season’s PIE, I also 

used players who played three straight seasons. I followed the same backwards selection process 

as indicated above, removing variables if they were statistically insignificant with a p-value 

greater than 0.05. In addition, I kept both age and age squared in the equation if both of the 
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variables were significant when the other was removed from the regression. The equation for 

predicting PIE is shown below. 

 

PIE  =  α0  +  α1W.1  +  α2Age  +  α3Age  squared  +  α4PIE.1  +  α5PIE.2   (7)  

 

The Durbin-Watson Test’s p-value for Equation 7 was 0.26, indicating that there was not 

sufficient evidence to suggest that there was autocorrelation amongst the error terms. Table 12 

displays the r-squared and residual standard error of Equation 7, while Table 13 displays the 

average and median difference between the actual and predicted PIE values for players during 

the 2015-2016 regular season.   

 

Table 12 – Regression Results from Equation 7 

 R-squared Residual Standard Error 

PIE 0.13 7.24 

 

 

Table 13 – 2015-2016 Differences in Actual and Predicted Player PIE 

Average 0.44 

Median 0.52 

 

Though the model predicting PIE had a fairly low r-squared and high residual standard 

error, as evident from Table 12, the model did a great job predicting a player’s next season’s PIE. 

Because there is no constant trend in player PIE over the past ten seasons, similar to the results 

found in Table 9, there is no strong over or underestimation for the 2015-2016 season.   

 

VIII. Assigning Dollar Values 

Using the models above, I cannot predict player performance for players who have 

played one or zero previous seasons in the NBA. Unfortunately, every roster in the NBA for the 

2015-2016 regular season had at least three players that fell within this criteria as of March 14th, 

2016. To solve this issue, I gave second-year players their statistics from the previous season. I 

gave rookies drafted during the first round the median value of a statistic from player 
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performance during the 2014-2015 season. I gave rookies drafted in the second round, undrafted 

rookies, or players coming from overseas the tenth percentile value of a statistic from player 

performance during the 2014-2015 season. When calculating team eFG%, opponent field goal 

percentages, AST/TO, and PACE, I needed to assume the minutes per game each player would 

receive in order to determine the team-weighted averages for these metrics. I assumed constant 

minutes per game for all players from their last season if they played in the previous season. All 

first round picks were assumed to have the median number of minutes per game from the 2014-

2015 season; all other first year players were assumed to have the tenth percentile number of 

minutes per game from the 2014-2015 season. 

 When calculating PIE using Equation 5 for a team, the team becomes the “player” in the 

analysis. However, because most players on a team play a unique number of minutes, and, the 

“game statistics” in Equation 5 consider only those statistics in which a player was on the court, 

players on the same team do not have the same denominator in Equation 5. Furthermore, the 

team plays the entire game, and as such does not have the same Equation 5 denominator as any 

player. As a result, a team’s Player Impact Estimate is not the sum of its players’ Player Impact 

Estimates; I needed to find a relationship between the sum of the players’ PIE for a team and the 

team’s own PIE. I summed the players’ PIE for all 30 teams as of March 14th, 2016 during the 

’15-’16 regular season, and divided this total by the team’s own PIE on that day. The average 

multiple was 2.73, with a minimum multiple of 2.09 and a maximum multiple of 3.56. I chose 

2.73 as the multiple to use when converting player PIE to team PIE going forward.  

 After predicting or assuming (as indicated above) player performance for every player 

during the 2015-2016 season, I calculated the per game averages for each of the metrics in 

Equation 4 and Equation 6 for the 30 NBA teams. I then subtracted every team’s actual 2015-

2016 statistics from their predicted ’15-’16 statistics, and divided every team’s predicted 

statistics by their actual statistics. As expected, the free throws made per game metric had the 

greatest difference and multiple between predicted and actual regular season values. The average 

FTM difference was 18.89, while the median FTM difference was 19.40; the average FTM 

multiple was 2.06, while the median FTM multiple was 2.04. Rebounds per game proved to have 

the second greatest difference, with an average difference of 8.36 and a median difference of 

8.39. Personal fouls had the second highest multiple, with an average multiple of 1.30 and a 

median multiple of 1.31.  
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 I corrected each of the predicted values using their average and median differences and 

multiples, effectively providing me with five team per game values for each metric. I then 

calculated the team win percentages using the team per game averages corrected by the average 

differences, median differences, average multiples, median multiples, and no correction. Column 

1 of Table 14 shows the predicted minus the actual win percentages for each of the 30 teams 

during the ’15-’16 regular season, while columns 2 through 5 show residuals (predicted – actual) 

with the predicted statistics corrected by the average differences, median differences, average 

multiples, and median multiples respectively.  

 

Table 14 – Predicted Team Statistics for ’15-’16 from Equation 4 Minus Actual Statistics 

  1 2 3 4 5 
Atlanta 37.27% -11.85% -12.51% -11.39% -10.10% 
Boston 25.49% -23.63% -24.29% -19.92% -18.72% 
Brooklyn 13.62% -35.49% -36.15% -22.14% -21.06% 
Charlotte 48.97% -0.14% -0.80% -3.80% -2.44% 
Chicago 41.09% -8.02% -8.68% -10.06% -8.80% 
Cleveland 44.12% -4.99% -5.65% -13.03% -11.61% 
Dallas 28.02% -21.10% -21.76% -20.94% -19.58% 
Denver -6.62% -55.73% -56.39% -43.88% -42.85% 
Detroit 12.33% -36.79% -37.45% -28.40% -27.32% 
Golden State 22.84% -26.28% -26.94% -24.66% -23.37% 
Houston 74.84% 25.72% 25.06% 13.76% 15.10% 
Indiana 29.53% -19.58% -20.24% -23.82% -22.48% 
L.A. Clippers 76.56% 27.44% 26.78% 11.29% 12.84% 
L.A. Lakers 33.50% -15.62% -16.27% -13.71% -12.52% 
Memphis 34.57% -14.55% -15.21% -15.34% -14.11% 
Miami 34.25% -14.86% -15.52% -18.19% -16.98% 
Milwaukee 39.36% -9.76% -10.42% -5.96% -4.79% 
Minnesota 37.07% -12.04% -12.70% -6.71% -5.58% 
New Orleans 79.35% 30.23% 29.57% 23.26% 24.62% 
New York 29.44% -19.68% -20.34% -18.29% -17.07% 
Oklahoma City 66.12% 17.00% 16.34% 2.67% 4.02% 
Orlando 33.37% -15.75% -16.41% -12.68% -11.46% 
Philadelphia -9.35% -58.47% -59.13% -35.13% -34.28% 
Phoenix 47.69% -1.43% -2.09% 2.80% 3.91% 
Portland 13.82% -35.29% -35.95% -26.92% -25.85% 
Sacramento 56.93% 7.81% 7.16% 2.43% 3.72% 
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San Antonio 23.41% -25.70% -26.36% -32.91% -31.47% 
Toronto 57.41% 8.29% 7.63% -0.18% 1.18% 
Utah 31.60% -17.51% -18.17% -12.75% -11.57% 
Washington 56.11% 6.99% 6.33% 0.44% 1.78% 
Average 37.09% -12.03% -12.69% -12.14% -10.90% 
Median 34.41% -14.71% -15.36% -12.89% -11.59% 
Standard Dev 21.71% 21.71% 21.71% 15.13% 15.21% 
Cells highlighted in green are within 10% 

 

I conducted the same process for Equation 6 as well. Table 15 shows the results. 

 

Table 15 – Predicted Team Statistics for ’15-’16 from Equation 6 Minus Actual Statistics 

  1 2 3 4 5 
Atlanta -11.00% 13.19% 12.02% 16.02% 13.78% 
Boston -20.25% 3.94% 2.77% 5.33% 3.21% 
Brooklyn -22.25% 1.94% 0.78% -0.60% -2.40% 
Charlotte -15.62% 8.57% 7.41% 10.55% 8.38% 
Chicago -28.68% -4.49% -5.66% -4.81% -6.79% 
Cleveland -51.66% -27.47% -28.63% -28.22% -30.17% 
Dallas -20.45% 3.74% 2.57% 4.19% 2.15% 
Denver -38.10% -13.92% -15.08% -16.71% -18.48% 
Detroit -29.21% -5.02% -6.18% -5.41% -7.39% 
Golden State -29.22% -5.03% -6.20% -0.54% -2.92% 
Houston -17.30% 6.89% 5.72% 7.83% 5.75% 
Indiana -27.94% -3.75% -4.92% -3.88% -5.88% 
L.A. Clippers -21.77% 2.41% 1.25% 4.46% 2.29% 
L.A. Lakers -60.75% -36.57% -37.73% -44.91% -46.22% 
Memphis -7.66% 16.53% 15.36% 19.59% 17.33% 
Miami -45.49% -21.30% -22.47% -22.93% -24.80% 
Milwaukee -10.47% 13.71% 12.55% 14.69% 12.61% 
Minnesota -23.24% 0.95% -0.22% -1.17% -3.00% 
New Orleans 9.44% 33.62% 32.46% 36.28% 34.06% 
New York -24.03% 0.16% -1.01% -1.03% -2.94% 
Oklahoma City -30.55% -6.37% -7.53% -4.75% -6.89% 
Orlando -19.85% 4.33% 3.17% 4.01% 2.03% 
Philadelphia -19.86% 4.33% 3.17% 0.25% -1.42% 
Phoenix -12.13% 12.06% 10.90% 10.80% 8.90% 
Portland -22.81% 1.38% 0.21% 1.80% -0.24% 
Sacramento -22.67% 1.52% 0.36% 0.28% -1.62% 
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San Antonio -43.85% -19.66% -20.83% -17.59% -19.77% 
Toronto -37.17% -12.98% -14.15% -12.14% -14.22% 
Utah -10.73% 13.45% 12.29% 14.95% 12.82% 
Washington -14.54% 9.65% 8.48% 10.85% 8.74% 
Average -24.33% -0.14% -1.30% -0.10% -2.10% 
Median -22.46% 1.73% 0.57% 0.27% -1.52% 
Standard Dev 14.15% 14.15% 14.15% 15.60% 15.47% 

 Cells highlighted in green are within 10% 

 

When using a correction method, Equation 6 does a better job of predicting team win 

percentage than any of Equation 4’s methods. Not using a correction method with Equation 6 

predicts the win percentage on average much further away from the actual team win percentage 

than using any of the correction methods on Equation 6. Method 5 for Equation 6, or dividing the 

raw predicted statistics by 0.896 (the median multiple between raw predicted statistics and actual 

statistics), has a greater absolute average residual, absolute median residual, and standard 

deviation than method 3, and is thus ruled out as the best correction method for Equation 6. 

Method 4 has the smallest absolute average and median difference between predicted and actual 

statistics, though its standard deviation is larger than that of methods 2 and 3. Cleveland, L.A. 

Lakers, Miami, and New Orleans all have residuals of at least 20 percentage points. In the case 

of New Orleans, the overestimation of the team win percentage is largely due to the number of 

injuries that the team has suffered this season. As of March 30th, New Orleans had already lost 

seven players for the remainder of the season due to injury. Because of these four large residuals 

in the sample, I chose the correction method with the smallest median residual – method 4. The 

multiple used for method 4 is 0.887. Knowing the best method for forming team per game 

averages from player per game statistics, I then proceeded with altering team rosters and thus 

their statistics as if free agents joined the team.  

 I calculated the average salary value of each position (point guard, shooting guard, small 

forward, power forward, and center) in the NBA for the 2015-2016 season, taking into account 

only players who received year long contracts; ten-day contracts, D-league contracts, or the 

contracts of mid-season acquisitions were ignored. I chose to find the average salary value at 

each position rather than in the NBA as a whole in order to take into account the supply and 

demand of player types, as well as the differing importance of each position. It is harder to find a 

dependable seven-footer than a six-foot four guard, which is evident in centers’ and shooting 
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guards’ average salaries of $5,720,130.53 and $3,520,657.45 respectively; point guards, small 

forwards, and power forwards had average salaries of $5,113,057.14, $4,534,743.47, and 

$4,429,419.32 respectively. Point guards are paid higher than shooting guards and forwards due 

to their difficult task of leading and managing games.  

 If I wanted to calculate the appropriate salary for a player resigning with a team, I 

calculated the predicted statistics for the team if the player were to stay on the team for the next 

season. For example, if the aforementioned Draymond Green stayed on the Golden State 

Warriors for the 2015-2016 season and the rest of the roster stayed constant, then the Warriors 

were projected to win 89.36% of their games using method 4 shown above (the Warriors happen 

to have won 89.9% of their games as of March 20th, 2016). Without Draymond Green, however, 

I assumed that the average performance of the players at his position on the Warriors would take 

his place. For the Warriors, Anderson Varejao, Marreese Speights, James Michael McAdoo, and 

Kevon Looney also play power forward. As a result, I averaged the statistics of each of these 

players in order to calculate the performance of the player replacing Green. Because PIE is a 

measure of efficiency, I did not need to take into account the number of minutes played by the 

replaced or replacing players. The Warriors’ regular season win percentage without Green was 

84.23%, 5.12% lower or approximately 4.2 fewer games won than with Green. Because the 

Warriors won 5.12% more of their games when they had Green instead of their average player, 

Green deserved to be paid 5.12% more of the salary cap than the average performing player at 

his position in the NBA. Since power forwards received on average $4,429,419.32 in salary for 

the 2015-2016 season, Green deserved to receive $8.0 million for the 2015-2016 season, 

approximately $6.3 million less than the $14.3 million Green actually received from the Warriors 

for the ’15-’16 season.  

Center Tristan Thompson, who the Cavaliers argued this offseason was comparable to 

Draymond Green, increased the Cleveland Cavaliers’ predicted 2015-2016 win percentage 5.15 

percentages points or 4.2 total wins. Thompson, therefore, deserved a $9.4 million salary from 

Cleveland for the ’15-’16 season, approximately $5.9 million less than the $14.3 million 

Thompson received this season from the Cavaliers. Though Thompson changed the Cavaliers’ 

win percentage by almost the exact same margin as Green, Thompson deserved over one million 

dollars more because his primary position is center. The model shows that Cleveland was, in 
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fact, fairly correct in comparing Thompson to Green, and that Thompson still deserved to receive 

significantly less than his actual salary from the Cavaliers.  

I followed a similar methodology when calculating the appropriate salary of players 

joining new teams. I calculated the win percentage of the team without the free agent by simply 

predicting the team’s per game statistics for the following season assuming a constant roster. To 

determine the win percentage of the team with the free agent, I added the player to the roster and 

removed the average performance of the player at his position already on the team. For example, 

when adding Kevin Durant to the Warriors’ 2015-2016 roster (a scary thought that might come 

true in the summer of 2016), I removed the average production of small forwards Harrison 

Barnes, Andre Iguodala, and Brandon Rush from the Warriors, while adding the statistics of 

Kevin Durant. According to the model, if Kevin Durant had joined the Warriors before this 

season, the Warriors would have registered a win percentage of 98.54%, making the team almost 

unbeatable with the superstar. More realistically, though, for Durant to join the Warriors, Golden 

State will need to get rid of Harrison Barnes in order to pay Durant the contract he deserves. 

Simply replacing Barnes with Durant would have yielded the Warriors a 92.3 win percentage 

and approximately 2.4 more wins for this 2015-2016 season.  

I followed the above methodologies for an additional 40 of last season’s NBA free 

agents. I chose 40 free agents that were diverse in team, position, and salary characteristics. 

Table 16 reports the actual 2015-2016 salaries of the players, as well as my calculated 

appropriate salaries for these players based upon the team with which they signed. 

 

Table 16 – Actual vs Appropriate 2015-2016 Salaries 

Player Team Actual Salary 
(mil) 

Appropriate Salary 
(mil) 

Difference 
(mil) 

Quincy Acy SAC $0.98 $4.43 -$3.45 
Al-Farouq 
Aminu POR $7.50 $10.74 -$3.24 

Alan Anderson WAS $4.00 $2.48 $1.52 
Will Barton DEN $3.33 $7.04 -$3.71 
Aron Baynes DET $6.50 $5.59 $0.91 
Matt Bonner SAS $1.50 $4.14 -$2.64 
Jimmy Butler CHI $15.26 $8.22 $7.04 
Omri Casspi SAS $3.00 $5.16 -$2.16 
Tyson Chandler PHX $13.00 $9.20 $3.80 
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Norris Cole NOP $3.04 $6.20 -$3.16 
Jae Crowder BOS $6.00 $7.56 -$1.56 
Toney Douglas NOP $1.16 $0.41 $0.76 
Goran Dragic MIA $14.78 $9.67 $5.11 
Wayne Ellington BKN $1.50 $4.29 -$2.79 
Monta Ellis IND $10.30 $6.07 $4.23 
Kevin Garnett MIN $8.50 $6.86 $1.64 
Marc Gasol MEM $19.70 $10.31 $9.39 
Tyler 
Hansbrough CHA $1.19 $3.30 -$2.12 

Joe Ingles UTA $2.25 $2.73 -$0.48 
Richard 
Jefferson CLE $1.50 $1.08 $0.42 

John Jenkins DAL $0.98 $3.08 -$2.10 
Jonas Jerebko BOS $5.00 $5.66 -$0.66 
Cory Joseph TOR $7.00 $8.11 -$1.11 
Shane Larkin BKN $1.50 $5.59 -$4.09 
Jeremy Lin CHA $2.10 $6.34 -$4.24 
Robin Lopez NYK $13.00 $5.52 $7.48 
Kevin Love CLE $19.50 $11.81 $7.69 
KJ McDaniels HOU $3.33 -$0.60 $3.93 
Khris Middleton MIL $15.00 $5.77 $9.23 
Paul Millsap ATL $19.00 $5.36 $13.64 
Jameer Nelson DEN $4.50 $1.88 $2.62 
Pablo Prigioni LAC $0.98 -$1.41 $2.39 
Austin Rivers LAC $3.10 $5.31 -$2.21 
Glenn Robinson IND $0.85 -$0.43 $1.28 
Luis Scola IND $3.00 $4.55 -$1.55 
Kyle Singler OKC $5.00 $3.22 $1.78 
Jason Terry HOU $1.50 $0.15 $1.35 
Charlie 
Villanueva DAL $1.50 $3.39 -$1.89 

CJ Watson ORL $5.00 $4.07 $0.93 
Lou Williams LAL $7.00 $6.26 $0.74 

 

 The salary differences highlighted in green are those in which the actual salary is greater 

than the appropriate salary, and vice versa for those highlighted in red. The average actual salary 

of those players whose appropriate salary is greater than their actual salary is $3.03 million, with 

a median of $2.63 million. The average actual salary of those players whose appropriate salary is 

less than their actual salary is $8.61 million, with a median of $6.75 million. It appears that end-
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of-bench players are thus underpaid for their contributions to team win percentage, while starters 

or high-end bench players are overpaid for their contributions to team win percentage. Of those 

free agents listed in Table 16, the highest appropriate salary for a player is $11.84 million for 

power forward Kevin Love of the Cleveland Cavaliers, while the lowest appropriate salary is 

negative $1.41 million for point guard Pablo Prigioni of the Los Angeles Clippers. Prigioni 

remains on the Clippers’ roster more for his leadership and experience (he is 38 years old) than 

for his on-court contributions (he averages 12.6 minutes per game in the 51 out of 73 games he 

has played this season). Playing point guards Chris Paul and Austin Rivers on the roster instead 

of Pablo Prigioni appears to be the better move for the Clippers going forward. The other players 

with negative appropriate salaries, KJ McDaniels and Glenn Robinson, face a similar situation as 

Prigioni in having strong talent at their respective positions on their roster. McDaniels, a 

shooting guard, plays behind James Harden, Corey Brewer, Trevor Ariza, and Jason Terry on the 

Houston Rockets. Meanwhile, Robinson’s departure from the Indiana Pacers would pave the way 

for more minutes from Paul George, Monta Ellis, CJ Miles, and Solomon Hill.  

The player with the largest positive difference between actual and appropriate salary is 

Paul Millsap of the Atlanta Hawks; Millsap has a difference of $13.64 million, while his actual 

salary is $19 million. Millsap starts at power forward for the Hawks, who also have Kris 

Humphries, Mike Muscala, and Mike Scott on the roster at power forward. Humphries, Muscala, 

and Scott have predicted PIE of 9.6, 10.9, and 10.7 respectively, compared to Millsap’s 11.1. 

Thus, replacing Millsap with the average performance of these forwards would only decrease the 

Hawks’ win percentage by 1.32 percentage points. Memphis Grizzlies center Marc Gasol has the 

second largest positive difference between actual and appropriate salary with a difference of 

$9.39 million. Having Gasol increases the Grizzlies’ number of wins by approximately 5.4, a 

fairly large margin during the regular season. Thus, the large positive difference between actual 

and appropriate salary is really a reflection of Gasol’s high actual salary of $19.70 million for the 

2015-2016 season.  

It is interesting to note those players that have an appropriate salary greater than their 

actual salary. These are players potentially underrated and definitely underpaid by their teams. 

Point guard Shane Larkin of the Brooklyn Nets has a large negative difference between actual 

and appropriate salaries for the ’15-’16 season. Larkin shares the point guard duties for the Nets 

with the not very impressive group of Donald Sloan, Jarrett Jack, and Markel Brown. Larkin, 
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though, is not much of a better alternative from the average performance of these point guards; 

Larkin improves the Nets’ win percentage by only 0.67 percentage points. In Larkin’s case, his 

appropriate salary is drawn more from the average salary of point guards than from his 

performance above the average. On a team with better point guards, for example the Los Angeles 

Clippers, Larkin would deserve a much lower salary.  

Unlike many of the other undervalued players, Al-Farouq Aminu, Jae Crowder, and Cory 

Joseph are three guys that play big minutes and are still paid actual salaries less than their 

appropriate salaries. The Portland Trailblazers have a steal in small forward Al-Farouq Aminu. 

Without Aminu, the Trailblazers would be left to play Allen Crabbe, Maurice Harkless, and Luis 

Montero at their small forward spot. Having Aminu increases the team’s regular season win 

percentage by 8.86 percentage points. As a result, Aminu should be paid $10.74 million for his 

contributions to win percentage for the Portland Trailblazers. Aminu, though, received a $7.50 

million salary for the 2015-2016 season. Most likely, Aminu received a lower actual salary 

because his performance the season before on the Dallas Mavericks was limited from sharing 

small forward duties with Chandler Parsons, Jae Crowder, and Richard Jefferson.  

Except for Jae Crowder, the Boston Celtics have small forwards that are fairly young, 

inexperienced, and not efficient on the court. Crowder received $6.00 million from the Celtics 

for this season, but because the Celtics would win about 3.5 fewer games without him, Crowder 

deserves a $7.56 million salary for the ’15-’16 season. After his trade to the Celtics mid-season 

last year, Crowder’s minutes per game increased. Thus, his time-share in Dallas does not appear 

to be the root of his lower actual salary.  

Meanwhile Cory Joseph, back-up point guard for the Toronto Raptors, has a predicted 

PIE higher than starting Raptors point guard Kyle Lowry and other bench point guard Delon 

Wright. If Joseph were to leave the team, the Raptors would lose about 3.5 more games if Lowry 

and Wright were left to replace Joseph. Joseph’s high predicted PIE lends credibility to the idea 

that he should play more of Kyle Lowry’s minutes at point guard.  

 

IX. Conclusion 

 When trying to predict team regular season win percentage from actual player statistical 

performance, the advanced metric PIE is a better predictor of team success than the combination 

of FTM, eFG%, REB, AST/TO, PACE, PF, and opponent field goal percentages within five feet, 
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10-14 feet, and 20-24 feet away from the hoop. Also, when trying to use predicted team values 

for the above metrics, the nine variables do a worse job of predicting team regular season win 

percentage than team PIE. The average residual (actual – predicted) for predicting team win 

percentage from the nine variables in Equation 4 is 12.17% and 37.09% using actual statistics 

and predicted team statistics respectively; the average residual (actual – predicted) for predicting 

team win percentage from Equation 6 is 0.16% and 24.33% using actual and predicted team 

statistics respectively. The drastic increase in the average residuals from using predicted 

variables is due to the difficulty in predicting player performance from only the previous two 

seasons. Player performance can stray from a usual track due to injury, roster changes, coaching 

changes, or in a positive light, practice. As a result, accurately predicting the performance of all 

players is a struggle.  

 These findings indicate that teams win not from necessarily tallying huge statistical 

totals, but from being more efficient than the opposition. As mentioned previously, teams can 

win in a variety of ways – playing quick or slow – and the objective for the team is to find its 

strategy and be efficient at executing it. I hoped through the combination of PACE and the other 

metrics in Equation 4 that I could manufacture a team’s efficiency of play in comparison to that 

of the opponent. However, by the very nature of the formula, PIE did a more accurate job of 

illustrating a team’s efficiency in comparison to the opponent’s efficiency.  

My model estimates players to contribute much fewer wins than the Win Shares model 

indicates. Even as of March 20th, 2016, the players with the top five Win Shares in the unfinished 

2015-2016 regular season had greater Win Shares than my model’s predicted contributed wins 

for the entire regular season. Table 17 shows the predicted wins contributed for the entire regular 

season and the actual Win Shares for players as of March 20th.   

 

Table 17 – Actual vs Projected Contributed Wins 

  
Win Shares as of 

3/20/16 
Projected '15-'16 Contributed 

Wins 
Stephen Curry 15.2 10.4 
Kevin Durant 12.7 11.5 
Russell 
Westbrook 12.4 8.5 
Kawhi Leonard 12.4 7.7 
Kyle Lowry 11.5 0.3 
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The projected wins contributed are significantly less than the actual Win Shares of 

players because the projected wins contributed takes into account the players that will replace the 

analyzed player, while Win Shares does not. When calculating a player’s Win Shares, the team is 

completely ignored except for its PACE and points per possession - only the statistics of the 

analyzed player are used. When I project the number of wins contributed by a player, I am 

calculating the difference in the number of wins that a team achieves with and without the 

player, having other players replace the player’s performance. In other words, I care about how 

the team will perform when somebody else plays the minutes that the player would play if he 

were to not be on the team. Because of the difference in what I am trying to calculate, I expect 

the projected contributed wins to be less than the number of Win Shares.  

 Looking at Table 17, it is interesting to note which players are “replaceable” by their 

team. Kevin Durant’s Win Shares are only 1.2 wins greater than his season-long projected 

contributed wins. These metrics are close in value due to the limited skill of the remaining small 

forwards on the Oklahoma City Thunder roster if Durant were to leave the team. Kyle Lowry, 

meanwhile, posts a Win Shares over 38 times higher than his projected contributed wins. As I 

mentioned previously, the Toronto Raptors, Lowry’s team, have a great back-up point guard in 

Cory Joseph who could replace Lowry if he were to leave. The Raptors also feature recent first-

round pick Delon Wright – a player capable of filling in at point guard if Lowry were to leave. 

Thus, the loss of Lowry does not appear to be too significant for the Raptors.  

According to my analysis of paying free agents according to how much they affect a 

team’s regular season win percentage, teams overpay free agent superstars and underpay the last 

men on the bench. This provides evidence to the existence of the tournament theory in the NBA 

that Berri and Jewell alluded to in “Wage Inequality and Firm Performance: Professional 

Basketball’s Natural Experiment” (Berri & Jewell, 2004). Though the NBA allows for mobility 

of players across teams, there appears to be too great of a supply of lower tier players for teams 

to increase the salary of bench players. Bench players accept these lower wages with the 

motivation that they will become stars in the NBA, rather than play abroad under a potentially 

higher salary. Meanwhile, there is a limited supply of superstars in the NBA, and these players 

receive the riches resulting from multiple teams bidding for them. 

Despite the fact that my model demonstrates that these superstars are overpaid for their 

contributions to team win percentage, teams would be wrong to pay superstars the salary that the 
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model dictates so long as bench players are willing to receive salaries lower than their worth. A 

change in salary demanded by end-of-bench players seems unlikely, and the only such reason 

why bench players would receive higher salaries is if the minimum league salary were increased 

by the NBA, but no such move appears imminent.  

Teams should focus less on which superstars are deemed overpaid (as all superstars are), 

and focus on which role players are underpaid for their contributions to team win percentage. 

These role players may be underpaid because their teams have bad players at their respective 

positions, or because teams overlook the efficiency of these players in their limited minutes. If 

these players are underpaid because of the team’s poor roster composition, then the team should 

look to improve its roster at the player’s respective position; superstars or good starting players 

would not be underpaid, and thus the team has room to improve this position. In terms of 

efficiency, teams should start relying heavily (if they do not already) on a player’s PIE when 

determining his worth to the team, as this study proves that a team’s PIE is a great predictor for 

team regular season win percentage. Front offices can look for players that play at a slow speed 

and thus do not put up big numbers, but have efficient statistics in limited possessions. Toronto 

Raptors center Jonas Valanciunas is such a player. The Raptors play at the third slowest PACE in 

the NBA during the 2015-2016 season, restricting the numbers that Valanciunas can obtain. 

Though he has a PIE of 14.0 as of March 20th, 2016, the 27th highest PIE in the NBA of players 

averaging 25 or more minutes per game, Valanciunas is only 18th in rebounds per game, 37th in 

blocks per game, and 93rd in points per game of all players. The Raptors identified Valanciunas’ 

strong ability to impact the game in a limited number of possessions, and have already reached a 

hefty extension with the center; the Raptors offered Valanciunas $14.4 million for the ’16-’17 

season.  

All in all, this model provides teams with an alternative and easy-to-use method of 

valuing free agents. As this model’s only inputs are player characteristics and statistics recorded 

on NBA.com, every team can predict player performance, calculate changes in team 

performance from roster moves, and determine the appropriate salaries of free agents based upon 

their estimated contribution to win percentage. If teams were to adopt this model, I would not 

expect teams to pay superstars less or end-of-bench players more. Rather, I would expect teams 

to devote more attention in free agency to signing efficient role players – those players that 

deserve more money than what their statistical totals would dictate. 
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Glossary (terms and abbreviations taken from NBA.com) 
 
%FGA 2pts = Percent of Field Goals Attempted 2-points 
%FGA 3pts = Percent of Field Goals Attempted 3-points 
%pts 2pt-MR = Percent of Points 2-point Field Goals – Mid Range 
%pts 2pts = Percent of Points 2-points 
%pts 3pts = Percent of Points 3-points 
%pts Fast Break Points = Percent of Points Fast Break Points 
%pts FT = Percent of Points Free Throws 
%pts Off TO = Percent of Points off Turnovers 
%pts PITP = Percent of Points Points in the Paint 
+/- = Plus/Minus 
10-14ft = 10-14ft from the hoop 
15-19ft = 15-19ft from the hoop 
20-24ft = 20-24ft from the hoop 
25-29ft = 25-29ft from the hoop 
2FGM %AST = Percent of 2pt Field Goals Made Assisted 
2FGM %UAST = Percent of 2pt Field Goals Made Unassisted 
2nd PTS = 2nd Chance Points 
3FGM %AST = Percent of 3pt Field Goals Made Assisted 
3FGM %UAST = Percent of 3pt Field Goals Made Unassisted 
3P% = Three Point Percentage 
3PA = Three Pointers Attempted 
3PM = Three Pointers Made 
5-9ft = 5-9ft from the hoop 
AST = Assists 
AST Ratio = Assist Ratio 
AST/TO = Assist to Turnover Ratio 
AST% = Assist % 
BLK = Blocks 
BLKA = Blocks Against 
DefRtg = Defensive Rating 
DREB = Defensive Rebounds 
DREB% = Defensive Rebound % 
eFG% = Effective Field Goal Percentage 
FBPs = Fast Break Points 
FG% = Field Goal Percentage 
FGA = Field Goals Attempted 
FGM %AST = Percent of Field Goals Made Assisted 
FGM %UAST = Percent of Field Goals Made Unassisted 
FGM = Field Goals Made 
FT% = Free Throw Percentage 
FTA = Free Throws Attempted 
FTM = Free Throws Made 
Less than 5ft = Less than 5ft from the hoop 
NetRtg = Net Rating 
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OffRtg = Offensive Rating 
Opp = Opponent 
OREB = Offensive Rebounds 
OREB% = Offensive Rebound % 
PACE = Pace 
PF = Personal Fouls 
PFD = Personal Fouls Drawn 
PIE = Player Impact Estimate 
PITP = Points in the Paint 
PTS = Points 
PTS Off TO = Points off Turnover 
REB % = Rebound % 
REB = Total Rebounds 
STL = Steals 
TO = Turnovers 
TO Ratio = Turnover Ratio 
TS% = True Shooting % 
 

 

 

 

 

 

 

 

 

 

 

 


