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Abstract

Lopomo, Marx & Sun (2009) show that, given a speci�ed environment, pro�table

collusion is not possible for a two-person bidding ring operating at a �rst-price sealed-bid

auction. This research investigates the rigor of their result by expanding the theoretical

framework to the case of a three-bidder cartel. The output generated from the linear

programming model con�rms the authors�earlier result. This is a key �nding as it is the

�rst to establish a basis for comparison of equilibrium surplus scenarios among multiple-

bidder auction formats. The analytic and numerical results pave the way for future

research examining the e¤ect of cartel size on pro�tability and have many real-world

implications for both private and public policy alike.
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1 Introduction

Over the last decade, a string of high-pro�le cases of collusion have drawn increasing

awareness to the issue of illegal cartels operating in both public and private auctions.

This attention has garnered stricter legal enforcement as well as a stronger desire among

academics to understand how such cartels operate. A number of studies have examined

better ways to detect collusive behavior. Other economics literature has examined what

precautionary measures can be taken in order to create a bidding framework that is ro-

bust to collusion. The possibility for (and susceptibility to) collusion in real-life auctions

motivates research on this topic. Lopomo, Marx & Sun (2009) previously determined that

pro�table collusion was impossible in a simpli�ed �rst-price sealed-bid auction format.

This paper builds upon their existing theoretical model. More speci�cally, the research

investigates whether the framework remains immune to collusive behavior when the sce-

nario is extended to a more relaxed case with three symmetric bidders. The �ndings have

implications for realistic cases mentioned above.

Auction markets move billions of dollars in goods and services each day. The enormous

growth of e-commerce has encouraged business to construct auctions for goods whose

trade was previously negotiated bilaterally (Klemperer, 2002). Auctions have a signi�cant

impact on the economic landscape of the public sector through procurement processes

of government contracts and public goods. This year alone, international governments

are expected to bring in tens of billions of dollars by auctioning o¤ third-generation

(3G) radio spectrum and hundreds of billions of dollars through the sale of CO2 Cap-

and-Trade permits (Batten et al., 2008 and Budget, 2009). While these auctions are an

e¤ective means of allocating public and private goods, they have recently faced pervasive

episodes of bid rigging by illegal cartels as evidenced by guilty verdicts in antitrust

lawsuits spanning multiple countries and sectors (Kovacic et al., 2006).

Collusion is undesirable in the sense that it can decrease the revenue obtained by

sellers and lead to an ine¢ cient �nal allotment of goods from the auction (Burtraw et

al., 2008). Given this fact, research on the causal mechanisms by which bidders support

collusive agreements is both useful and important for auctions; by understanding the

preconditions that enable collusion, sellers may suitably design their auctions in order to

anticipate and avoid such circumstances. In this way, sellers can preemptively eliminate

collusion or successfully detract would-be cartels from attempting it. Such precautionary

auction design is a more valuable approach to combating collusive behavior than ex-post
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detection and prosecution, which can prove very di¢ cult to accomplish.

Various authors have shown that environmental factors play a large role in how prof-

itable collusion can be (Skrzypacz & Hopenhayn, 2004). It has also been found that

not all bidding formats are equally immune to collusion. More speci�cally, Mailath &

Zemsky (1991) wrote a seminal paper which concluded that bidders can successfully and

pro�tably2 collude at second-price auctions when there is a mechanism in place to en-

force compliance among ring members during the legitimate auction. Another study by

McAfee & McMillan (1992) demonstrated that bidders can successfully and pro�tably

collude at �rst-price auctions within a similar submissive framework. Marshall & Marx

(2007) took this �nding one step further and proved that cartels are less pro�table when

facing a �rst-price auction than other common auction formats such as open-ascending-

bid and second-price auctions.

A current working paper (Lopomo, Marx & Sun, 2009) considers a �rst-price sealed-

bid (FPSB) auction with two bidders operating within a theoretical context whereby

coordinated behavior cannot be enforced. Contrary to the aforementioned research, which

found that cartels can achieve some degree of collusive gain in various auction formats,

Lopomo et al. determined that pro�table collusion is not possible at all. Numerical

computations and a linear programming duality argument are used to complete their

proof. The authors�novel approach enables them to draw much stronger conclusions

than previous research. However, their analytic results are only applicable for a simpli�ed

model involving an all-inclusive cartel with two symmetric bidders. As a result, a general

robustness issue with their work is the extent to which the results from this two-bidder

setting can be extrapolated to cases in which more than two bidders are active. In view

of this gap in literature, this research extends the theoretical model used by Lopomo

et. al (2009) by relaxing a constraint. Speci�cally, the research introduces an additional

bidder to the model. It tests the strength of the authors�previous result3 when the model

is expanded to a three-bidder environment.

The extension to n = 3 is important because if the model holds for n = 3, there

is reason to believe that it will work for all cases of n > 3 as well. The notation and

computer code is rewritten and retested. The results prove that the framework holds for

this particular extension, despite the relaxed constraint. These �ndings encourage future

2"Successful" collusion occurs when a cartel is able to support the collusive agreement. This is a
necessary but not su¢ cient requirement for a cartel to be "pro�table," in which case the members
generate a surplus that is greater than the non-cooperative outcome.

3Lopomo et. al�s (2009) claim "...in simple environments, a bidding ring operating at a �rst-price
sealed-bid auction cannot achieve any gains relative to non-cooperative bidding if the ring is unable to
control the bids that its members submit at the auction.�(Abstract).
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research involving scenarios with additional variables and relaxed assumptions.

The paper proceeds as follows. Section 2 provides a literature review of related re-

search and places this particular extension within its proper context. Section 3 discusses

the theoretical framework of auction theory and lays out the speci�c model for this study.

Section 4 presents the analytical results of the research by solving the optimization prob-

lem for a cartel using a bid coordination mechanism and benchmarking this outcome

against other equilibrium scenarios. The �nal section concludes the paper with a dis-

cussion on the real-world implications of the �ndings and suggestions for other possible

extensions to this research.

2 Literature Review

There have been numerous studies related to bidder collusion at auctions in the past.

Empirical literature has generally focused on �nding ways to detect the presence of

collusion ex-post. Porter & Zona (1993, 1997), Zona (1986) and Baldwin, Marshall &

Richard (1997) each propose tests to detect collusion in auction markets. Speci�cally,

Porter and Zona (1993, 1997) analyze collusion in the context of Long Island highway

construction data and Ohio school milk markets, respectively. Baldwin, Marshall &

Richard (1997) examine collusive and competitive behavior using forest timber sales

data. Howard & Kasermann (1989) and Nelson (1993) numerically calculate damages for

cases where explicit bid-rigging was known to have occurred. McMillan (1991) performs

a similar study for Japanese public works contracts. Kovacic, Marshall & Rai¤ (2007)

investigate tacit and explicit collusion in the vitamins industry during the 1990s while

Pesendorfer (2000) uses data for school milk contracts at �rst-price sealed-bid auctions

in Florida and Texas during the 1980s as a case study for collusive behavior in auctions.

Empirical work on collusion generally su¤ers from the di¢ culty in acquiring extensive

data on what is an illegal and secretive activity.

Theoretical literature has researched the causal mechanisms driving collusion for var-

ious single-object auctions. Graham & Marshall (1987) and Mailath & Zemsky (1991)

consider collusive agreements whereby cartels use side payments (often categorized as

�strong� cartels) and assess the payments� resulting impact on e¢ ciency. Klemperer

(2002) lists and gives examples of critical pitfalls in auction design and discusses feasible

resolutions for them. He concludes that the two most important features of an auction

are its robustness to collusion and its attractiveness to potential bidders and that there

are considerable tradeo¤s associated with each. A separate body of work examines the

ways in which bidding rings allocate bids and transfers to their members in a way that is
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incentive-compatible and generates the maximum expected surplus, given a set of insti-

tutional features (Asker, 2009a). McAfee & McMillan (1992), Marshall & Marx (2007),

and Lopomo, Marx & Sun (2009) characterize the optimal collusive mechanism for car-

tels given certain environments and auction formats. These papers stand out among the

others due to their acute relevance to this particular research and will now be discussed

in further detail based on chronological order.

2.1 McAfee & McMillan (1992)

McAfee & McMillan (1992) consider a �rst-price, sealed-bid auction with symmetric

bidders and an all-inclusive cartel. The cartel members communicate and bid for the

right to be the sole cartel member to attend the main auction. The highest bidding

cartel member is sent to the main auction, while other cartel members are prevented

from bidding. Several assumptions are made regarding the theoretical framework. First,

it is assumed that in event of a tie, a winner is randomly chosen among the highest

bidding cartel members. Second, the identity and bid of the winning bidder becomes

known. Finally, a re-auction function is enabled which allows cartel members to make

transfer payments amongst themselves both before and after the auction. This possibility

for resale facilitates self-enforcing collusion amongst the cartel members in what is known

as a �bid submission mechanism�(BSM).

The paper concludes that bidders can successfully and pro�tably collude at �rst-price

auctions when such a mechanism is in place to enforce ring members to comply with the

cartel�s bid recommendations during the auction. In equilibrium, the cartel member who

won the right to attend the legitimate auction is the one with the highest value for the

object, and that cartel member wins the object at a price equal to the seller�s reserve

price.4 The cartel members then share a sum of money equal to the di¤erence between

the price reached in the cartel�s own auction and the price reached in the main auction.

Therefore, the mechanism is e¢ cient and extracts the entire surplus from the seller and

the side payments feature achieves e¢ ciency within the bidding ring.

2.2 Marshall & Marx (2007)

Another study (Marshall & Marx, 2007) expands existing literature by creating a

direct comparison of collusion at �rst-price versus second-price auctions. The work con-

4The reserve price is the minimum price the seller is willing to accept, below which the good in
question will not be sold. The reserve price is usually a positive value (otherwise the seller would gain
nothing from auctioning o¤ the good), although there are certain cases where the reserve price may be
pegged to zero (Asker, 2009b).
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siders a FPSB scenario with no resale when pre-auction side payments between the

bidders are allowed. Thus, the bid submission mechanism from the framework presented

by McAfee & McMillan (1992) does not exist. Rather, cartel members must rely on a

�bid coordination mechanism�(BCM) whereby the cartel can make recommendations as

to how its members should bid, but has no means of enforcing those suggestions.

Marshall & Marx (2007) �nd that pro�table collusion is much more di¢ cult to achieve

in a �rst-price auction than in a second-price auction when no enforcement mechanism

is incorporated. It is the �rst research to establish that, in some environments, �rst-

price auctions are robust to certain types of bidder collusion. Furthermore, the paper

concludes that cartel payo¤ is lower than in the framework of McAfee & McMillan but

remains higher than in a non-cooperative setting.

The intuition behind the di¤erent result from prior research has to do with the re-

placement of the bid submission mechanism with a bid coordination mechanism. In

addition to providing incentives for truthful revelation of private information, the cartel

must also provide incentives for its members to follow instructions and not deviate from

the agreed upon plan. Therefore, the problems presented by game theory models such as

adverse selection and moral hazard make the task of pro�table collusion more challenging

and consequently decrease the expected cartel payo¤.

2.3 Lopomo, Marx & Sun (2009)

Although Marshall & Marx (2007) formalize the notion that collusive viability and

pro�tability may vary based on auction format, they do not show the extent to which

this is, in fact, the case. A recent study by Lopomo, Marx & Sun (2009) addresses this

issue.5 The authors use a very similar model to the abovementioned paper, with two

symmetric bidders operating under a bid coordination mechanism in a FPSB auction.

In contrast to previous studies of scenarios involving BSMs, which found that a cartel

can achieve some degree of collusive gain, this paper determines that a cartel using a BCM

does no better than non-cooperative bidding. In fact, at least in some simple settings,

pro�table collusion is not possible at all when there is no enforcement mechanism in

place to control the bids of the cartel members (For a graphical representation of non-

cooperative and collusive outcomes for BSM vs. BCM models, please see Figure 2 in

Appendix A). This is a seminal �nding in the sense that the researchers are able to

reformulate a game theoretic cartel problem into a linear optimization model. Their

5This research is a direct extension of Lopomo, Marx & Sun�s working paper, �Bidder Collusion at
First-Price Auctions�(2009).
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study extends the model of collusion in the �rst-price auctions in a discretized framework,

and incorporates linear programming along with duality arguments to prove their result.

This analytic approach allows Lopomo, Marx & Sun (2009) to determine a much

stronger �nding than previous literature has been able to achieve. Nevertheless, their

results are only valid within the context of the highly-speci�ed framework which they

construct. Said di¤erently, there is still room for further improvement upon the robust-

ness of their model. For instance, it may be the case that their �nding is strictly reserved

to the special instance of two symmetric bidders. However, this paper strengthens the

robustness of their framework and a¢ rms the validity of their �ndings for a more relaxed

environment of n = 3 bidders.

3 Theoretical Framework

3.1 Overview of Auctions

3.1.1 Auction Theory

Auction theory falls under a branch of game theory commonly referred to as "mecha-

nism design" (Adams, 2007). Mechanism design involves games of private information in

which the participants are directed to choose from di¤erent payo¤structures. Such games

are ultimately solved by motivating the agents to disclose their private information and

reach a collective decision in what is known as an �Incentive-Compatible Mechanism�

(Chung & Ely, 2002). According to Tabarrok (2007), the goal of mechanism design is

�to create institutions that produce a desirable outcome while respecting the fact that

agents have private information and are self-interested."6 However, constructing such ef-

�cient institutions is di¢ cult to achieve in practice due to the adverse selection problems

associated with information asymmetry.

The study of frameworks which provide ample incentives for truthful revelation of

information has particular usefulness in the design of auctions. Auctions are considered to

be well-treated by such game theoretic techniques because the behavior and expectations

of each bidder depends on the strategic environment in which he operates, including the

behavior and expectations of the other bidders as well as the rules of bidding set forth by

the seller (Alexandrova, 2009). In these games of incomplete and imperfect information,

rational players attempt to bid in a way that maximizes their expected utility given

their own set of beliefs about their competitors�strategies, which ultimately results in a

Bayesian Nash equilibrium (BNE) outcome. Academic research often attempts to isolate

6Tabarrok (2007) pg. 1.
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the essential elements of auction design and analyze equilibrium scenarios in idealized

models in order to better understand and explain actual real-world phenomena.

3.1.2 Auction Formats

In order to e¤ectively grasp the theoretical framework of this study, one must �rst

have a basic understanding of how auctions operate. The bidding model in an auction

may di¤er in a number of ways. Examples of variations to the basic form include time

constraints, limits on bid prices, private or public participation, and et cetera. However,

the four most widely used auction structures are the open-ascending (or English auction),

the open-descending (or Dutch auction), the �rst-price sealed-bid (hereafter referred to

as "FPSB"), and the second-price sealed-bid (or Vickrey Auction) (Marshall & Marx,

2008).

This paper examines a static FPSB format. The model is distinct from open-ascending

auctions in that there is only one round of bidding and the identity of each bidder remains

private. The sealed �rst-price auction format is typically used for the procurement of

government contracts and public goods.

Consider a simpli�ed framework for a FPSB auction with n bidders. Each bidder

i 2 f1; 2; :::; ng has a valuation vi for the good being auctioned.7 Let the probability choice
set of the buyer�s valuations for the good, vlow;:::vhigh be independently and uniformly

distributed on [0; 1] and assume that player i submits a bid bi based on his particular

valuation. Each bidder simultaneously submit his "best and �nal" o¤er8, with the highest

bidder winning the object and paying an amount equal to the higher of (i) his bid or (ii)

the reserve price.

3.2 Introduction to Collusion

3.2.1 How it Works & Impact on E¢ ciency

Most developed countries contain a framework of laws that explicitly prohibit the

abuse of market power. For instance, price �xing, bid rigging, market allocation, and

other forms of collusion are prohibited by Section 1 of the Sherman Act and are subject to

criminal prosecution by the Antitrust Division of the United States Department of Justice

(U.S. Department of Justice, 2005). Violation of the Sherman Act is a felony, punishable

7To simplify notation, it is assumed that there is only one good for sale. This restriction is without loss
of generality since valuations are independently distributed across multiple goods. Thus, the equilibrium
for a single object �rst-price auction is equivalent to the equilibrium of any multiple-object auction
(Pesendorfer 2000).

8Language used in (Klemperer, 2002).
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by a maximum �ne of $100 million for corporations, $1 million for individuals, and a jail

sentence of 10 years.9 While the legal status of many kinds of collusive behavior remains

ambiguous, antitrust violations have been found to be unambiguously harmful; that is,

such violations are per se illegal (Klemperer, 2002). These serious crimes contribute to

in�ation, destroy public con�dence, and undermine the free enterprise system, which all

have potentially devastating e¤ects on the global economy. Price �xing, bid rigging, and

market division have also been shown to defraud consumers and unquestionably raise

prices or restrict output without creating any plausible positive externalities to o¤set the

damages incurred.

Bid rigging is the most relevant form of collusion for this research. Such conspiracies

are usually categorized as bid suppression, complementary bidding, bid rotation, and/or

subcontracting schemes. At an elemental level, bidding rings use private information

to manipulate the auction result and the �nal price level of a particular good in their

favor. The bidders are aware the identity of the other bidders, form a cartel, and then

weaken competition by agreeing to only bid against outsiders and not against themselves,

thereby increasing their individual and collective surplus (Asker, 2009a). This collusion

may be done prior to, during, and after the legitimate bidding process. Real-world

examples of pre-auction meetings include U.S. v. Addyston Pipe & Steel Co. (cast iron

pipe) and Finnegan v. Campeau Corp (bidding for Federated Department Stores). Well-

known instances of post-auction meetings include U.S. v. Ronald Pook (antiques), U.S.

v. Seville Industrial Machinery (used machinery), and District of Columbia v. George

Basiliko (real estate).10

McAfee & McMillan (1992) investigate the major obstacles which cartels must over-

come in order to be successful. The ring must �rst develop a mechanism for dividing the

surplus as well as a mechanism for enforcing the collusive agreement. Thus, they face

internal issues related to adverse selection and misaligned incentives. From an external

perspective, pro�table cartels must also beat out new entrants to a colluding industry

and ward o¤ potential retributive actions by prior victims of collusion to destabilize

the ring. The Department of Justice has also conducted research on the industry and

auction-speci�c conditions which are more favorable to collusion. These factors include

9In some circumstances, maximum �nes and jail sentences may be increased, depending on the o¤ense
committed.
10Associated citations: U.S. v. A-A-A Elec. Co., Inc., 788 F.2d 242 (4th Cir. 1986); U.S. v. Addyston

Pipe & Steel Co. et al., 1897 LEXIS 2499 (E.D. Tenn. Feb. 5, 1897); U.S. v. Raymond J. Lyons, No.
81-1287, 1982 U.S. App. LEXIS 22194 (Feb. 1, 1982); U.S. v. Ronald Pook, No. 87-274, 1988 U.S.
Dist. LEXIS 3398 (E.D. Pa. April 18, 1988); U.S. v. Seville Industrial Machinery Corp., 696 F.Supp.
986 (D.N.J. 1988); U.S. v. W.F. Brinkley & Son Construction Company, Inc., 783 F.2d 1157 (4th Cir.
1986).
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the number of sellers, the substitutability or standardization of the good(s) in question,

repetitive purchases, as well as the social and geographic proximity of the bidders to one

another (U.S. Department of Justice, 2005).

Successful collusion can result in lower revenue for the auctioneer and give an unfair

advantage to cartel members. It may also impede an e¢ cient outcome in the sense that

colluders generate false price signals and/or increase price volatility by submitting bids

that do not fully re�ect their genuine valuations (Burtraw et al., 2008). Thus, there is

a gap between the bidders�true values for the goods being sold and the bids that are

actually made at auction. However, with regard to allocative e¢ ciency, collusion has no

real impact since the good will always be given to the highest bidder (a prerequisite for

equilibrium) and any remaining surplus will be captured by either the buyer or the seller.

Bid rigging and other forms of collusion can be very di¢ cult to detect (and even harder

to prove) since collusive agreements are by their nature secret, with only the participating

parties having knowledge of the scheme (U.S. Department of Justice, 2005). Indeed, the

cumbersome rules required to consummately combat behavior classi�ed as tacit collusion

may in of themselves result in extreme market ine¢ ciencies (Klemperer, 2002). In the

United States, the Antitrust Division of the Department of Justice is speci�cally respon-

sible for detecting, investigating, and prosecuting these crimes once they are thought to

have occurred. A proactive approach to the problem is more desirable than these limited

attempts to uncover collusion in the sense that preventative measures could be taken to

preemptively eliminate collusive agreements before they are even reached. For example,

a straightforward and e¤ective solution that directly addresses big rigging behavior is

better auction designs. However, premeditated auction design is rarely the method of

choice in practice.

3.2.2 Simpli�ed Model

With the aforementioned background on mechanism design, auction formats, and

bidder collusion in mind, the theoretical framework for this research will be examined

more closely. This paper considers collusion in static auctions where coordinated behav-

ior cannot be enforced among members of the all-inclusive cartel during the legitimate

auction - an identical model to that of Lopomo, Marx & Sun (2009), with the exception

that this research introduces a third bidder into the framework.

�Static�indicates that the game is played once, without repeated interactions by the

players. �All-inclusive�refers to the fact that the cartel members are the only participants

in the legitimate (also referred to as the "target") auction, where the good is actually
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transferred from the seller to the buyer.11 To understand why this is a su¢ cient condition,

note that it is an optimal environment for collusion when the bidding ring must only

control the bids of its members in order to manipulate the auction and need not worry

about outside bidders. Thus, if the cartel cannot generate a surplus greater than or equal

to the non-cooperative outcome in a best-case scenario (i.e. an all-inclusive auction)

then it would be even harder to pro�tably collude in a suboptimal setting where non-

cartel members are incorporated. The following assumptions are made in developing the

framework.

First, there is an ex-ante individual rationality assumption which states that each

bidder�s expected payo¤from participation in the cartel is at least as great as the expected

payo¤ from non-cooperative play.12 An emphasis must be placed on the term �expected"

as there is no guarantee that the bidder�s actual payo¤ from participation will be greater

than or equal to his non-cooperative outcome. Said di¤erently, cases may arise where a

bidder would have generated a higher surplus had he simply acted on his own accord and

without the help of the cartel. On average, however, the payo¤ results will favor collusive

behavior to non-collusive behavior. Indeed, if this ex-ante rationality constraint did not

hold, there would be no incentive to join the cartel in the �rst place.

Second, each of the three risk-neutral bidders in the cartel independently draws a pri-

vate value vi from a probability distribution Fi with �nite support Vi. Let V � V1�V2�V3.
Therefore, fi(vi) is the probability that bidder i�s value is vi. It is assumed that cartel

members are made aware of their respective values only after they have committed to

participation in the cartel (in accordance with the ex-ante individual rationality con-

straint). It is also assumed that the seller knows the distributions from which bidders

draw their values but not the values themselves. The seller is considered to be "non-

strategic," meaning he sets the reserve price equal to the lower bound of the support of

the bidders�value distributions.13

Third, each bidder may choose his bid bi from the entire feasible bid set, denoted

11Even in environments with more than three bidders, the assumption of an all-inclusive cartel is
common in the literature, particularly because the study of non-all-inclusive cartels at �rst-price auctions
is made di¢ cult by the lack of analytic bid functions.
12Generally speaking, there are three classes of rationality constraints: (i) ex-ante, or before each

bidder knows his value or any other bidders� value, (ii) interim, where each bidder knows his own
value but has no information on the others� values, and (iii) ex-post, where all values are known in
hindsight. This paper only considers ex-ante individual rationality, de�ned to be "an assumption that
cartel members must commit to participation in the cartel prior to learning their values and that the
failure of either bidder to join results in the complete dissolution of the cartel. (Lopomo, Marx, & Sun
(2009) pg. 6)
13The results discussed later in the paper, when appropriately adjusted, continue to hold if the auc-

tioneer sets a higher �xed reserve price.
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B. The set of feasible bids is assumed to be discrete but with a vanishingly small bid
increment. (For an example of a hypothetical feasible bid set, please see Table 1 in

Appendix C, Section 6.3).

Fourth, each bidder�s strategy is a best-reply to the other bidder�s strategy given

their beliefs about the other bidders. In the case of a tie, it is assumed that the object

is randomly allocated to one of the equally-high bidders. The winning bidder keeps the

entire payo¤ from the auction to himself; no surplus is shared among bidders ex-post.

Finally, let ui (b1; b2; b3; vi) be bidder i�s surplus in a �rst-price auction, given bidder

i�s value vi and bid vector (b1; b2; b3). Thus, the expected payo¤ function is as follows:

u1 (b1; b2; b3; v1) �

8>>>>>><>>>>>>:

v1 � b1; if b1 > b2; b3
0; if b1 < maxfb2; b3g

(v1 � b1)=2;
if b1 = b2 > b3
or b1 = b3 > b2

(v1 � b1) =3; if b1 = b2 = b3

u2 (b1; b2; b3; v2) �

8>>>>>><>>>>>>:

v2 � b2; if b2 > b1; b3
0; if b2 < maxfb1; b3g

(v2 � b2)=2;
if b2 = b1 > b3
or b2 = b3 > b1

(v2 � b2) =3; if b1 = b2 = b3

u3 (b1; b2; b3; v3) �

8>>>>>><>>>>>>:

v3 � b3; if b3 > b1; b2
0; if b3 < maxfb1; b2g

(v3 � b3)=2;
if b3 = b1 > b2
or b3 = b2 > b1

(v3 � b3) =3; if b1 = b2 = b3
As indicated in the above function, expected surplus is equal to the di¤erence between

a bidder�s value and his bid for a good, multiplied by his probability of winning (based

on the bids submitted by the other two cartel members). The highest expected payo¤

(vi � bi) occurs when a bidder submits the single highest bid. Conversely, the lowest
expected payo¤ (0) occurs when a bidder submits a bid that is lower than at least one

of the other cartel member�s bids.14

14Note that in the case of a two-way [or three-way] tie, the division by 2 [3] is an indication that each
high-valuing bidder has a probability of 12 [

1
3 ] of winning the good and gaining the associated surplus

(since it is randomly allocated in such instances). The respective fractions do not signify that the surplus
is evenly shared between the highest bidders.
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The pre-auction collusion mechanism operates in the following way: Each ring mem-

ber sends his respective valuation to the �center,� a central incentiveless mechanism

agent (Myerson, 1983). All bidders take this collusive mechanism as given. Based on

these value reports, the center (i) makes a bid recommendation for each member and

(ii) collects their required payments.15 These required payments are used as a means of

sharing potential spoils, ex-ante, among cartel members in the case that the ring wins

the good at the target auction. Intuitively, the higher-valuing bidders pay into the center

and the lower-valuing members receive money from the center.16 It is necessary that the

center�s budget be balanced in expectation. That is, the payments �owing into and out

of the center are constrained to sum to zero. Lastly, the central payments are considered

sunk costs for each member, meaning they are made prior to the auction and do not

factor into his strategy once the bidding process begins.

Cartel members observe only their own bid recommendations and required payments;

they are not privy to the other bidders�valuations, payments, or suggested bids. Ad-

ditionally, it is assumed that each bidder cannot make any inferences about the other

bidders�valuations based on his own required payment, although possible inferences may

be made by a bidder regarding his rivals�recommended bids based on the recommenda-

tion he receives from the center.

In the environment considered, there are two dimensions to the incentive-compatible

collusive mechanism: truth-telling and obedience. The �rst component suggests that it

must be incentive-compatible for each cartel member to report his value truthfully. The

incorporation of required payments to the center is successful in achieving this truthful

revelation of values. The second constraint requires that there exists an incentive for

each cartel member to follow the bid recommendations from the center and not deviate

from the agreed upon path. It is assumed that the cartel can compel its members to

make their required payments, but that it cannot prevent members from participating

in the o¢ cial auction. To reiterate, this framework is classi�ed as a bid coordination

mechanism.

During the legitimate auction, each ring member�s strategy is a report to the ring (as a

function of his value) and a bid (as a function of his value and the ring�s recommendation

15Interestingly, in the case of a bidding ring of North American stamp dealers in the 1990s, the central
incentiveless agent took the form of a New York taxicab driver employed by the cartel. This real-world
designated auction agent operated in the same manner as the mechanism described above (Asker, 2009b).
16For example, the bidder with the highest report could be asked to pay the di¤erence between his

report and the second-highest report. This payment would then be distributed among lower-valuing
members. As a result, the higher-valuing member gets to keep the good (and a portion of the surplus),
but the total cartel surplus is more evenly distributed among ring members, thereby rewarding all
participants in the collusive scheme.
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and required transfer). If the plan is successful, the cartel member with the highest value

for the good will win it and pay a price that is less than what the equilibrium price would

have been in an otherwise competitive setting. This consequently generates a surplus for

the individual bidder and the cartel as a whole.

3.3 BCM Optimization Problem

3.3.1 Basic Linear Program

This section will investigate the e¤ectiveness of a cartel using a bid coordination

mechanism in extracting surplus from the seller; this is the central focus of the paper.

The analytical framework used to test the hypothesis concentrates on an underlying

mechanism design problem at work. It returns to the collusive model discussed in Section

3.2.2 and considers the class of all incentive-compatible and individually-rational direct

revelation mechanisms.

Any incentive-compatible and individually-rational direct revelation mechanism spec-

i�es for each vector of reports (v1; v2;v3) 2 V; (i) a probability distribution over all feasible
bid vectors p (� j v1; v2; v3) 2 4B�B�B, where 4B�B�B represents the probability simplex

over bid vectors; and (ii) monetary transfers mi(v1; v2; v3) for i 2 f1; 2; 3g. The prob-
ability distribution p speci�es the center�s bid recommendations to the three bidders.

The payments m1;m2; and m3 are the transfer payments from the bidders to the center

and may be positive or negative. These payments are constrained to sum to zero in

expectation in the ex-ante budget balance condition (3) below. Therefore, the vector

(p;m1;m2;m3) de�nes the cartel mechanism.

The center�s problem of maximizing expected cartel surplus (thereby creating the

optimal BCM) can be written as follows17: maximize the total expected surplus to the

three bidders,

max
p;m1;m2;m3

X
i2f1;2;3g;(v1;v2;v3)2V;b1;b2;b32B

p(b1; b2; b3 j v1; v2; v3)ui(b1; b2; b3; vi)f1(v1)f2(v2)f3(v3);

(1)

subject to p representing a probability distribution, 8(v1; v2; v3) 2 V ;

p (� j v1; v2; v3) 2 4B�B�B; (2)

17The notation parallels that of Myerson (1985).
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ex-ante budget balance,X
i2f1;2;3g;(v1;v2;v3)2V

mi (v1; v2; v3) f1(v1)f2(v2)f3(v3) = 0; (3)

and incentive compatibility, 8i 2 f1; 2; 3g; 8vi; v0i 2 Vi; 8�i : B ! B;

U�i (p; �i; v
0
i j vi)� Ui (p j vi) � 0; (4)

where Ui (p j vi) is bidder i�s expected surplus under truthtelling and obedience,

U1 (p j v1) �
P

(v2;v3)2V2�V3;b1;b2;b32B
p(b1; b2; b3 j v1; v2; v3)u1(b1; b2; b3; v1)f2(v2)f3(v3)

�
P

(v2;v3)2V2�V3
m1 (v1; v2; v3) f2(v2)f3(v3);

(5)
U2 (p j v2) �

P
(v1;v3)2V1�V3;b1;b2;b32B

p(b1; b2; b3 j v1; v2; v3)u2(b1; b2; b3; v2)f1(v1)f3(v3)

�
P

(v1;v3)2V1�V3
m2 (v1; v2; v3) f1(v1)f3(v3);

(6)
U3 (p j v3) �

P
(v1;v2)2V1�V2;b1;b2;b32B

p(b1; b2; b3 j v1; v2; v3)u3(b1; b2; b3; v3)f1(v1)f2(v2)

�
P

(v1;v2)2V1�V2
m3 (v1; v2; v3) f1(v1)f2(v2);

(7)

and U�i (p; �i; v
0
i j vi) is bidder i�s expected surplus when bidder i�s value is vi; it reports

v0i; and it bids according to a deviation function �i (bi) that depends on the center�s

recommendation bi,

U�1 (p; �1; v
0
1 j v1) �

X
v22V2;v32V3;b1;b2;b32B

p(b1; b2; b3 j v01; v2; v3)u1(�1(b1); b2; b3; v1)f2(v2)f3(v3)

�
X

v22V2;v32V3

m1 (v
0
1; v2; v3) f2(v2)f3(v3): (8)

and

U�2 (p; �2; v
0
2 j v2) �

X
v12V1;v32V3;b1;b2;b32B

p(b1; b2; b3 j v1; v02; v3)u2(b1; �2(b2); b3; v2)f1(v1)f3(v3)

�
X

v12V1;v32V3

m2 (v1; v
0
2; v3) f1(v1)f3(v3): (9)
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and

U�3 (p; �3; v
0
3 j v3) �

X
v12V1;v22V2;b1;b2;b32B

p(b1; b2; b3 j v1; v2; v03)u3(b1; b2; �3(b3); v3)f1(v1)f2(v2)

�
X

v12V1;v22V2

m3 (v1; v2; v
0
3) f1(v1)f2(v2): (10)

Due to its complexity, the incentive compatibility constraint (4) requires further at-

tention. The notation indicates that the expected utility from deviating (U�i ) minus the

expected surplus from complying (Ui) must be less than or equal to zero. Said di¤erently,

the constraint necessitates that a bidder�s expected payo¤ from complying be at least as

great as his expected payo¤ from deviating.

As stated earlier, this constraint incorporates both a truth-telling and obedience com-

ponent. Incentive compatibility for truth-telling implies that ring members have no in-

centive to misreport their values to the center. This constraint requires that a bidder

not bene�t from a simple misreporting of its value (denoted v0i). Incentive compatibility

for obedience implies that no bidder has an incentive to deviate from the bid recom-

mendation it receives from the center (regardless of whether their report was truthful or

not).

Because bidders must receive their recommended bids from the center prior to sub-

mitting their bids at the auction, bidders can potentially make use of inferences from the

recommendation regarding the bidding behavior of its rival to adjust their bids. For this

reason, allow the deviation function �i in (4) to be a function of the bid recommendation

bidder i receives from the center. Incentive compatibility requires that given any strategy

for reporting, either truthful or not, there is no deviation function �i mapping the bidder

i�s recommended bid from the center to its actual bid that improves upon �i(bi) = bi.

Although the above formulation accounts for possible inferences made by a bidder

regarding his rivals�recommended bids based on the recommendation he receives, the

formulation does not explicitly allow a bidder to make inferences regarding its rivals

based on the transfer payment required by the center. One might think that a bidder�s

required payment could be informative as to the rivals�reports because m1;m2 and m3

are functions of the vector of reports.

In light of this, it is possible to de�ne bidder 1�s expected payment given its own

report as

M1(v1) �
X

v22V2;v32V3

m1 (v1; v2; v3) f2(v2)f3(v3);
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and similarly for bidders 2 and 3.

A critical component of this new formula is that the payment is now only a function

of bidder i�s own value report, whereas before it was a function of all three bidder�s valua-

tions. Because only bidder i�s expected payment given his own report enters the problem

above, one can show that any level of total surplus for the cartel that can be achieved

with payments mi(v1; v2; v3) and allowing for possible inferences by the bidders about

their rivals can also be achieved with payments Mi(vi) that, because they depend only

on vi, do not allow such inferences. Simply put, the transition from transfer payments

mi to expected payments Mi eliminates the possibility for a bidder to make inferences

regarding his rivals based on the transfer payment required by the center.

In e¤ect, allowing the inferences only introduces additional incentive compatibility

constraints, so allowing such inferences is never optimal. More formally, this result

follows from Myerson (1982, Proposition 2), which implies that the formulation ignoring

possible inferences from the required transfer payments is without loss of generality. In

what follows in Section 3.3.2, the set of constraints are simpli�ed by replacing the transfer

function mi(v1; v2; v3) with the expected payment function Mi(vi).

3.3.2 Re�ned Linear Program

One di¢ culty with the program de�ned in (1)�(10) is that the set of all possible

deviation functions �i considered in the incentive compatibility constraint (4) is large

(exponential to the number of feasible bids). In order to formulate the problem as a

tractable linear program, a new optimization problem must be introduced that involves

the function Ji(vi; v0i; bi), which gives bidder i�s expected surplus if it has type vi, reports

v0i, receives recommendation bi from the center, and bids optimally; this is multiplied by

Pr(bi j v0i), which is the probability of receiving recommendation bi given i�s report v0i.
The rewritten incentive compatibility constraint holds for all values vi and reports v0i;

rather than for all values, reports, and bid deviation functions as in (4). The possibility

of deviations from recommended bids is incorporated in the function Ji(vi; v0i; bi).

The rewritten incentive compatibility constraint (15) states that bidder i�s expected

payo¤from reporting truthfully and following the recommendation of the center is greater

than or equal to Ji(vi; v0i; bi) minus its expected transfer payment from reporting v
0
i. The

value of Ji(vi; v0i; bi) is constrained in (16)�(18) to be at least as great as the expected

payo¤that bidder i with value vi could get from submitting any bid, conditional on having

reported v0i and received bid recommendation bi from the center, thereby eliminating

"bad" deviations (in the sense that such deviations would reduce the bidder�s expected

payo¤). Thus, it is possible to conserve on constraints by considering only deviations
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from obedience that are optimal given a bidder�s value, submitted report, and observed

recommendation.

The rewritten objective function, probability constraints, and ex-ante budget balance

condition are analogous to those in (1)�(10). The di¤erence comes in the incentive

compatibility constraint as described above.

Lemma 1 The center�s problem can be written as follows:

max
�;M1;M2;M3;J1;J2;J3

3X
i=1

X
(v1;v2;v3)2V;b1;b2;b32B

�(b1; b2; b3; v1; v2; v3)ui (b1; b2; b3; vi) f1(v1)f2(v2)f3(v3)

(11)

subject to � representing a conditional probability distribution, 8(v1; v2; v3) 2 V ; 8(b1; b2; b3) 2
B � B � B;

�(b1; b2; b3; v1; v2; v3) � 0; (12)

and 8(v1; v2; v3) 2 V ; X
b1;b2;b32B

�(b1; b2; b3; v1; v2; v3) = 1; (13)

ex-ante budget balance,X
(v1;v2;v3)2V

(M1(v1)f1(v1) +M2(v2)f2(v2) +M3(v3)f3(v3)) = 0; (14)

incentive compatibility, 8v1 2 V1; 8v01 2 V1; (and similarly for 8v2 2 V2; 8v02 2 V2; and
8v3 2 V3; 8v03 2 V3),X

v22V2;v32V3;b1;b2;b32B

�(b1; b2; b3; v1; v2; v3)u1(b1; b2; b3; v1)f2(v2)f3(v3)�M1 (v1)

�
X
b12B

J1(v1; v
0
1; b1)�M1(v

0
1) ; (15)

and the de�nition of J , 8v1 2 V1; 8v01 2 V1; 8b1 2 B; 8b01 2 B;

J1 (v1; v
0
1; b1) �

X
v22V2;v32V3;b2;b3;2B

�(b1; b2; b3; v
0
1; v2; v3)u1 (b

0
1; b2; b3; v1) f2 (v2) f3 (v3) ; (16)

8v2 2 V2; v02 2 V2; b2 2 B; b02 2 B;

J2 (v2; v
0
2; b2) �

X
v12V1;v32V3;b1;b32B

�(b1; b2; b3; v1; v
0
2; v3)u2 (b1; b

0
2; b3; v2) f1 (v1) f3 (v3) : (17)
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8v3 2 V3; v03 2 V3; b3 2 B; b03 2 B;

J3 (v3; v
0
3; b3) �

X
v12V1;v22V2;b1;b22B

�(b1; b2; b3; v1; v2; v
0
3)u3 (b1; b2; b

0
3; v3) f1 (v1) f2 (v2) : (18)

Proof. See Appendix B (Section 6.2.2).

Using Lemma 1, it is possible to apply linear programming techniques to analyze the

optimal bid coordination collusive mechanism in the �rst-price auction. However, the

linear program may be made even more tractable through a process of reformulation and

further simpli�cation for the speci�c case of three bidders and two types. This will be

completed later in Section 4.3.1.

4 Analytical Results

4.1 Non-cooperative Benchmark with Three Bidders

In order to properly gauge the e¤ectiveness of any collusive mechanism operating in

this model, the non-cooperative equilibriummust �rst be determined for the same auction

format. The following proposition describes the non-cooperative equilibrium surplus for

a �rst-price auction in an environment of three independent bidders with two possible

valuations, l (low) or h (high).

Proposition 1 Assume three bidders, each having value l with probability f (l) and value
h with probability f (h) = 1 � f (l), where 0 < l < h. The non-cooperative equilibrium

of the �rst-price auction game is as follows: a bidder with value l bids l; a bidder with

value h bids according to the following cumulative distribution:

F (b) =

8>><>>:
0; if b < l
f(l)
f(h)
(
q

h�l
h�bi � 1); if b 2 [l; b

�]

1; otherwise,

where b� � h� f (l)2 (h� l):

Proof. See Appendix B (Section 6.2.1).

Using Proposition 1, the non-cooperative equilibrium can be characterized as follows.

Corollary 1 In the environment of Proposition 1, the non-cooperative equilibrium out-

come is e¢ cient, expected overall bidder surplus is 3 (h� l) f (h) f (l)2 ; and expected
seller revenue is f (l) (1 + f (h)) l + f (h)2 h:
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For a numeric example, consider the case of three symmetric bidders, each having a

value of 40 or 80 with equal probability. Thus, in the notation above, l = 40; h = 80;

f(l) = f(h) = 1
2
. That is, the bidders will either have an absolutely low valuation

(l = 40) or an absolutely high valuation (h = 80) with no other feasible value increments

in-between (note: for the remainder of the paper, 40 and 80 will be the default values

for l and h , respectively).

In the non-cooperative equilibrium, a bidder with value l bids l and a bidder with h

will mix his bids according to the cumulative distribution laid out in Proposition 1. Thus,

the non-cooperative equilibrium bid, b� � 80� (1
2
)2(80 � 40), is 70 and total expected

bidder surplus with continuous bids is 3(80 � 40)(1
2
)(1
2
)2 = 15, leaving each individual

bidder with (15
3
) = 5. This provides a lower-bound basis by which the pro�tability of

collusive behavior can be compared.

4.2 Result for a Cartel with Three Bidders Using a BSM

Using the non-cooperative outcome from the previous section as a benchmark to

measure against, collusive scenarios will now be investigated.

Recall that Marshall & Marx (2007) determined that an all-inclusive cartel using a

BCM at a second-price or ascending-bid auction can extract all of the surplus from the

seller due to its ability to e¤ectively control the bids of its members. The cartel�s surplus

is therefore equal to the highest value among the bidders and the seller receives zero (or

the reserve price in the case of a positive reserve price). While this result may make

sense intuitively, it is possible to strengthen the �nding by empirically calculating the

expected bidder surplus for an environment with an all-inclusive cartel using a BSM at

a �rst-price auction.

To that end, consider again the case of three bidders, each drawing from the value

distribution f40; 80g with equal probability on each. A bid submission mechanism would
have the highest-valuing ring member bid zero and the other two not bid at all (since it

can successfully prevent its members from participating in the legitimate auction). This

pure strategy enables the cartel to extract the entire surplus from the seller. The total

expected surplus to the cartel would thus follow the formula:

80� [Pr(highest of 3 is 80)] + 40� [Pr(highest of 3 is 40)]
or

80� (7
8
) + 40� (1

8
) = 70 + 5 = 75.

Divided evenly, expected surplus to an individual cartel member would be 25. To see

where the probabilities come from, note that the highest of 3 is 40 only if all three bidders

23



have value 40, which has probability Pr(all values are 40) = (1
2
) � (1

2
) � (1

2
) = 1

8
. The

probability of at least one bidder drawing a value of 80 is Pr(one value is 80)+Pr(two

values are 80 )+Pr(three values are 80)= [(1
2
)] + [(1

2
) � (1

2
)] + [(1

2
) � (1

2
) � (1

2
)] = (4

8
) +

(2
8
) + (1

8
) = 7

8
.

4.3 Result for a Cartel with Three Bidders Using a BCM

4.3.1 Optimization Problem Revisited

The previous two sections established a set of duel feasible solutions for expected bid-

der surplus, with a lower bound set by the non-cooperative equilibrium surplus and an

upper bound set by the BSM collusive outcome. This section returns to the re�ned linear

program formulated in Section 3.3.2 and constructs a constrained maximization problem

that can be solved numerically. The output generated from linear programming compu-

tations will place the outcome for a BCM cartel in the context of the aforementioned

bounds.

Bidders are assumed to be symmetric and each bidder has two possible values, l and

h, with h > l > 0. Notationally, this means that V1 = V2 = V3 and that for any value
v 2 Vi and bids b1; b2; b3 2 B, there exists f1(v) = f2 (v) = f3 (v) and u1(b;�b;~b; v) =

u1(b;~b;�b; v) = u2

�
�b; b;~b; v

�
= u2

�
�b;~b; b; v

�
= u3

�
~b; b;�b; v

�
= u3

�
~b;�b; b; v

�
. There-

fore, the subscripts on fi and ui are suppressed in this section, letting u(b;�b;~b; v) =

u1(b;�b;~b; v) = u1(b;~b;�b; v).

To take advantage of the assumption of symmetry, it is helpful to simplify the linear

program for the optimal collusive mechanism given in (11)�(17). In particular, as later

shown in Lemma 2, the formulation may be re�ned in the following way: let the notation

v, �v and ~v denote the three bidders�values and b, �b and ~b their bids, and let bv denote
a bidder�s report (possibly di¤erent from its value) and bb a bidder�s bid (possibly di¤er-
ent from its recommendation from the center).18 The center�s reformulated problem of

maximizing expected cartel surplus is now written:

max
�;M;J

X
v;�v;~v2fl;hg

X
b;�b;~b2B

�
u(b;�b;~b; v) + u(�b; b;~b; �v) + u(~b; b;�b; ~v)

�
�(b;�b;~b; v; �v; ~v)f(v)f(�v)f(~v)

(19)

subject to � representing a conditional probability distribution, 8v; �v; ~v 2 fl; hg ; 8b;�b;~b 2
B;

�(b;�b;~b; v; �v; ~v) � 0; (20)

18Note that bv was formerly denoted v0 and bb was formerly denoted b0.
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and 8v; �v; ~v 2 fl; hg, X
b;�b;~b2B

�(b;�b;~b; v; �v; ~v) = 1; (21)

ex-ante budget balance, X
v2fl;hg

M(v)f(v) = 0; (22)

incentive compatibility, 8v; bv 2 fl; hg ;
P

�v;~v2fl;hg

P
b;�b;~b2B

0B@ �(b;�b;~b; v; �v; ~v) + �(b;~b;�b; v; ~v; �v)

+�(�b; b;~b; �v; v; ~v) + �(�b;~b; b; �v; ~v; v)

+�(~b; b;�b; ~v; v; �v) + �(~b;�b; b; ~v; �v; v)

1CAu(b;�b;~b; v)f(�v)f(~v)�M(v)
�

P
b2B
J(v; bv; b)�M(bv);

(23)

and the de�nition of J; 8v; bv 2 fl; hg ; 8b;bb 2 B;
J(v; bv; b) � X

�v;~v2fl;hg

X
b;�b;~b2B

0B@ �(b;�b;~b; bv; �v; ~v) + �(b;~b;�b; bv; ~v; �v)
+�(�b; b;~b; �v; bv; ~v) + �(�b;~b; b; �v; ~v; bv)
+�(~b; b;�b; ~v; bv; �v) + �(~b;�b; b; ~v; �v; bv)

1CAu(bb;�b;~b; v)f(�v)f(~v):
(24)

Lemma 2 below establishes that it is su¢ cient to work with the linear program (19)�

(24).

Lemma 2 The value of the objective function at the optimum is the same in (19)�(24)

and in (11)�(17).

Proof. See Appendix B (Section 6.2.3).

In what follows, the bid increment is de�ned to be � � b��l
2B

for a given positive

integer B. The set of feasible bids can be expressed as

BB � fbj j bj = l +�j for j 2 f0; 1; : : : ; nBgg;

in which n is a su¢ ciently large integer. Therefore, b0 = l and b2B = b�, and the interval

[l; b�] contains 2B + 1 feasible bids. As the integer B approaches in�nity, the bidding

increment � approaches zero. Assume the lowest feasible bid to be l, which can be

enforced by the seller setting a reservation price l. Such an assumption is without loss of

generality as the bid increment shrinks to zero, as demonstrated by the following lemma,

which states that for any given arbitrarily small bid increment �; it is not incentive

compatible for the collusive mechanism to recommend any bid below l � 2�:
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Lemma 3 A lower bound on the recommended bids in an incentive compatible BCM is

l � 2�.

Proof. See Appendix B (Section 6.2.4).

The constrained maximization problem as structured in (19)�(24) may be solved

numerically by applying linear programming techniques to analyze the optimal collusive

mechanism in a �rst-price auction.19 With the results from the linear optimization model,

one may attempt to characterize the optimal solution for a BCM cartel. Thus, it will

become possible to compare the expected bidder surplus and expected seller revenue in

the optimal BCM with that of the optimal BSM and non-cooperative equilibrium, as

found in Section 4.2 and 4.1, respectively. In particular, it should become clear whether

or not the convergence phenomenon in a two-bidder environment (shown by Figure 3 in

Appendix A) will hold for the case of three symmetric bidders.

4.3.2 Key Finding

The best way to illustrate the paper�s main result is through the use of a sample

hypothetical scenario with three symmetric bidders. In what follows, the optimal BCM

is solved using linear programming. By varying the bid increments, it is also possible to

numerically demonstrate the speed of convergence.

Assume three symmetric bidders, each with value 40 or 80 with equal probability.

Thus, in the notation above, l = 40; h = 80; f(l) = f(h) = 1
2
. With continuous bids,

in the non-cooperative equilibrium a bidder with value l bids l and a bidder with value

h bids according to the distribution characterized in Proposition 1 (Section 4.1). Recall

from Corollary 1 that the non-cooperative expected bidder surplus with continuous bids

is 20.

The output generated from the linear program (19)�(24) con�rms the hypothesis that

pro�table collusion is not possible for a three-bidder cartel using a bid coordination mech-

anism operating at a �rst-price sealed-bid auction when the feasible bid set is su¢ ciently

large. This main result is given in Proposition 2 below.

Proposition 2 Assuming three symmetric bidders and two possible values, in the limit as
the bid increment converges to zero, the bidder surplus from the optimal BCM converges

to the bidder surplus under non-cooperative bidding.

Proposition 2 implies that when bidders are symmetric, a �rst-price auction is robust

to collusion using a BCM. Said di¤erently, if the bid increment is su¢ ciently small, at
19For an example of the OPL and Matlab coding used for this program, please see Appendix D, Section

6.4.
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least for environments with three bidders and two possible values, pro�table collusion is

not possible - a cartel can do no better than to bid non-cooperatively. This �nding is

best expressed by the graph found in Figure 1 below.20

Figure 1: Three Bidder BCM Cartel Equilibrium
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The optimal collusive bidder surplus (�OptSol BCM�) and the non-cooperative equilibrium

surplus in the continuous bid case (�NonCoop�) as a function of B, which is inversely related

to the bid increment. The graph shows the lower bound of the non-cooperative equilibrium

surplus as well as the surplus from the optimal BCM based on the linear programming output.

Figure 1 demonstrates that the optimal collusive surplus approaches the non-cooperative

surplus as the bid increment approaches zero; this is the same result as the two-bidder

scenario found in Lopomo, Marx & Sun (2009). One can see that a BCM cartel is more

successful at extracting surplus from the seller when bids are coarse. Intuitively, this is

due to the fact that compliance is more pro�table than deviation from the center�s bid

recommendations. However, cheating becomes more attractive for individual bidders as

the feasible bid set increases and bid increments shrink. As B approaches in�nity and

increments are su¢ ciently low (approaching zero), the central mechanism is forced to

recommend the non-cooperative bid ("just bid as you would have, anyway") and cartel

surplus is therefore the equivalent to that of the non-collusive equilibrium payo¤.

The research output from this investigation is signi�cant in that it proves the validity

of the theoretical framework when it is expanded to the case of three bidders. The

20Source data for Figure 1 displayed in Chart 2 of Appendix A, Section 6.1.
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�ndings demonstrate that the model successfully holds for an environment with n = 3

bidders. It follows logically that it will likewise work for all n > 3 as well. Of equal

importance, the data generated from the linear program enable a direct comparison of

various surplus scenarios between games with two and three bidders; this will be carried

out in Section 4.4.

4.4 Comparison of Two vs. Three-Bidder Surplus Scenarios

Chart 1 provides a numerical comparison of equilibrium surplus outcomes for the case

of two bidders and three bidders.

Chart 1: Equilibrium Outcomes
Two Bidder Auction Format
BSM BCM NonCoop BSMBCM

Expected Bidder Surplus (each) 35 10 10 25
Expected Seller Revenue 0 50 50 50
Expected Total Surplus 70 70 70 0

Total Cartel Surplus (all) 70 20  50

Three Bidder Auction Format
BSM BCM NonCoop BSMBCM

Expected Bidder Surplus (each) 25 5 5 20
Expected Seller Revenue 0 60 60 60
Expected Total Surplus 75 75 75 0

Total Cartel Surplus (all) 75 15  60

It is easiest to begin analysis by pointing out several obvious observations. First,

total cartel surplus plus expected seller revenue must sum to 70 for n = 2 and 75 for

n = 3. Second, in equilibrium, the expected surplus for a BCM cartel is equal to that

of expected non-cooperative payo¤. It is also lower than the expected surplus for a

BSM cartel in both two and three-bidder scenarios because the BSM cartel successfully

extracts the entire surplus in each case. This is because it is a pure strategy for BSM

members to bid up to the reserve price and never higher. Thus, expected seller revenue

for a BSM cartel scenario is always zero.21

21Note: there are two ways of interpreting seller �surplus�. If the reserve price is zero, the seller has
zero value for the good and so all revenue can be interpreted as their surplus. If the seller�s value is
su¢ ciently low relative to the values of the bidders, he does not want to set the reserve price lower than
the lower bound of the distribution of the bidder�s values (i.e. 39.999) �this ensures that the good is
sold. In this case, seller revenue is at least 40 and any winning bid that is higher than 40 results in
additional surplus to the seller.
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Focusing more intently on the two types of cartel mechanisms, Chart 2 a¢ rms that

the expected surplus both for the entire BCM cartel and for each individual BCM cartel

member is greater in a two-bidder versus three-bidder auction format (20 vs. 15 and 10

vs. 5, respectively). That is, the �surplus pie� is not only smaller in the three bidder

case, but each individual better gets a smaller slice as well. This is likely due to the fact

that, since a BCM cartel cannot control the bids of its members, it becomes increasingly

harder to prevent deviation and thus more di¢ cult to extract any surplus from the seller

when additional bidders are introduced. It is likely that this trend would continue as the

cartel grows in size.

Conversely, the incentive to collude using a BSM is stronger when there is a larger

number of bidders. This suggests that the incremental value of incorporating a BSM

over a BCM is greater with more bidders. To understand the reason for this, note that

the expected individual surplus increases by a factor of 3.5 as a result of shifting to a

BSM cartel from a BCM cartel with two members. However, there is a �vefold increase

in expected individual surplus to be gained from shifting to a BSM cartel in a two-

bidder scenario. Thus, both the entire cartel and each individual in the cartel stand

to bene�t more by switching to a BSM framework when the cartel has more members.

While it is more valuable to shift from a BCM to BSM with larger cartels, one caveat

to this �nding is that it also becomes harder to accomplish since the ring has to control

the additional members� bids. This likewise increases the chances of getting caught,

displaying a standard risk vs. return tradeo¤.

A �nal observation taken from the data is that the gains from participating in a BCM

cartel are initially higher for the case of three bidders in relation to the environment with

two bidders. However, these gains decrease more rapidly as the feasible bid set expands

(please see Figure 4 in Appendix A for a graphical representation of this comparison).

The underlying mechanism driving this convergence toward the non-cooperative outcome

is explained in the following section.

4.5 Intuition Behind Convergence Phenomenon

The convergence phenomenon discussed in Section 4.3.2 (and well-illustrated by Fig-

ure 1) is hard to explain by way of intuitive reasoning. Here again, a simple example

will be used to demonstrate the underlying mechanism driving the paper�s main result.

A few important considerations need to be made at this juncture.

First, that the BCM cartel�s outcome coincides with the non-cooperative equilibrium

when bid increments are su¢ ciently small is related to the central mechanism and not
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to deviation per se. Recall that, since a bid coordination mechanism cannot prevent

members from participating in the target auction, the center is therefore presented with

the task of adjusting its bid recommendations based on reported values so as to prevent

any deviation from the suggested bid vector. In order for this to happen, each bidder

must be indi¤erent between all bid recommendations with positive probability.

In a game-theoretic context, bidders randomize their mixed-strategies in the following

way. A type l bidder will always bid l and a type h bidder will mix on bids above l

according to the cumulative distribution function characterized in Proposition 1.22 For

this reason, a second important consideration is that only cases in which there is at least

one high-valuing member are worthy of additional attention. These cases are signi�cant

because the issue of adverse selection is introduced into the model.

Now consider a simple environment with two symmetric bidders with values 40 or 80

receiving bid recommendations drawn from the feasible bid set BB � f40; 55; 70g. This
particular bid set is shown in the �rst column of Table 1 in Appendix C, Section 6.3.

The values and resulting bid vectors for a non-cooperative equilibrium game of complete

information,23 along with an explanation for such bidding strategy is given below.

Non-Cooperative Equilibrium of Complete Information Game
Values Bids Expected Surplus Comparison Intuition
40, 40 → 40, 40 1/2*(8040) > 0 Never bid higher than value
80, 40 → 55, 40 1*(8055) > 1/2*(8040)
40, 80 → 40, 55 1*(8055) > 1/2*(8040)
80, 80 → 70, 70 1/2*(8070) > 0 Any surplus better than none

A similar chart for a BCM cartel�s equilibrium outcome is below. In this case, the

bids are recommendations from the center based on the set of value reports. They are

designed so as to maximize total cartel surplus and prevent deviation by individual ring

members.

BCM Cartel Recommendations with Bid Set BB � f40; 55; 70g
Values Bids Expected Surplus Comparison Intuition
40, 40 → 40, 40 1/2*(8040) > 0 Never bid higher than value
80, 40 → 55, 40 1*(8055) > 1/2*(8040)
40, 80 → 40, 55 1*(8055) > 1/2*(8040)
80, 80 → 55,55 1/2*(8055) > 1*(8070) Comply > Deviate

22Numerically, if a bidder�s value is 40, he will bid 40 but if his value is 80, he will randomize his bid
on [40, b*].
23"Complete" meaning each bidder is aware of the other bidder�s value for the good (i.e. public

valuations).
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Notice that the only di¤erence between the non-cooperative and collusive equilibrium

for this feasible bid set occurs when there are two high-valuing bidders. The cartel can

instruct its members to both bid lower than they otherwise would have (thus capturing

some surplus) and be con�dent that they will comply with such recommendations, since

their expected payo¤ from doing so is higher than it would be if they deviated to the

higher feasible bid (70).

Now introduce a hypothetical feasible bid (56), keeping in mind the cartel�s

strategy outlined above. Given this new feasible bid set BB � f40; 55;56; 70g, the
cartel�s recommendations remain the same as before in cases where there is at least one

low-valuing member. However, the center can no longer recommend a bid of (55) when

there are two high-valuing members since there would be incentive for each member to

deviate and bid (56), thereby increasing his expected payo¤. This result is shown below.

BCM Cartel Recommendations with Bid Set BB � f40; 55; 56; 70g
Values Bids Expected Surplus Comparison Intuition
40, 40 → 40, 40 1/2*(8040) > 0 Never bid higher than value
80, 40 → 55, 40 1*(8055) > 1/2*(8040)
40, 80 → 40, 55 1*(8055) > 1/2*(8040)
80, 80 → 56, 56 1*(8056) > 1/2*(8055) *Deviate > Comply*

From this straightforward example, one can see that when the feasible bid set expands

(and bid increments get smaller) it becomes less costly for cartel members to deviate to

bids that are higher than the center�s recommendation. The center must adjust its

recommendations accordingly so as to prevent deviation which, in turn, erodes the total

expected surplus. Similar logic indicates the same result when this hypothetical exercise

is expanded to the case of three bidders.

5 Conclusion

5.1 Main Result

This paper shows that pro�table collusion is not possible at a �rst-price auction

when the collusive mechanism can only suggest non-binding bid recommendations to

cartel members. The speci�c auction environment considered contains three symmetric

bidders with two possible values and discrete bids. The theoretical framework resembles

that of the one used by Lopomo, Marx & Sun (2009), with the notable introduction

of an additional bidder. Analytic results indicate that as the bid increment approaches

zero, bidder surplus from the optimal bid coordination mechanism approaches that from
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non-cooperative bidding. This is due to the fact that any cartel using a BCM which

recommends bids that are less than the non-cooperative bids is subject to cheating by its

members. While discrete bids may create an environment in which bidders can pro�tably

collude at a �rst-price auction using a BCM, the bene�t from such collusion vanishes as

the bid increments become su¢ ciently small. Therefore, a �rst-price auction is robust to

collusion using a BCM.

This result stands in stark contrast to equilibrium outcomes involving alternative

auction formats and collusive mechanisms. Marshall & Marx (2007) show that a cartel

using a BCM can achieve the �rst-best collusive outcome for both second-price and

open-ascending auction frameworks. McAfee & McMillan (1992) prove a similar result

for collusive rings who assume bid submission mechanisms in which the cartel can directly

control the members�bids at the auction. In all of these scenarios, the cartel successfully

extracts the entire surplus from the seller, leaving the seller with expected revenue of

zero. However, the optimal BCM cartel at a �rst-price auction can do no better than

the non-cooperative equilibrium and ultimately shares surplus with the seller. Thus,

this research supports the recommendation that sellers concerned about bidder collusion

should use a �rst-price auction format.

5.2 Discussion

5.2.1 Real-World Implications

Auction design is widely regarded as one of the most successful areas of application of

economic theory to real-world settings (Alexandrova, 2009). Klemperer (2002) notes that

auction theory has been fruitfully applied to �elds ranging from political economy and

�nance to law and labor economics and even industrial organization. More speci�cally,

studies of the internal machinery of bidding rings can be bene�cial for gaining a broader

understanding of antitrust analysis (Asker, 2009b). One might think that the conditions

for this particular research are so intricate and speci�c that their results cannot be

properly generalized for more relaxed and practical environments. However, the game

theoretic outcome of this paper has many implications for present and future policy

matters.

For instance, the result may inform policymakers within the Federal Communications

Commission, who have historically relied upon economic experiments to guide auction

design related to the privatization of licenses for electromagnetic spectrum (Connolly &

Kwerel, 2007). The FCC recently utilized economic theory and empirical research in

their decision about the 700MHz auction framework. Since this research lends additional
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credibility to the notion that �rst-price sealed-bid auctions are the most robust framework

to collusion, perhaps the FCC will take this �nding into consideration for future auction

designs.

Such informed application may be similarly bene�cial for other government-led ac-

tivities, such as cap-and-trade regulation, selling mobile-phone licenses, and privatizing

companies. In the private sector, the theory and outcome of this research is especially

useful for markets prone to collusive behavior, such as the construction, real estate, lum-

ber, antiques, utility procurement, and milk industries (Pesendorfer, 2000). Yet it is

important to keep in mind that good auction design is not a �one size �ts all�and must

rather be �sensitive to the details of the context.�24 Thus, while this paper�s theoretical

�ndings contain numerous real-world implications, they must be applied appropriately in

order to be e¤ective.

5.2.2 Suggestions for Future Research

This paper examined surplus scenarios for a two-bidder and three-bidder auction

format. The research paves the way for future analysis into the e¤ects of cartel size on

pro�tability. For instance, one might seek to answer the question, �To what extent are

cartels with smaller number of members more e¤ective at extracting surplus from the

seller?�This research provides only two data points to support the argument; further

exploration into larger cartel sizes could con�rm if this result is, indeed, a trend.

Empirical work by Selten (1973), Kwoka (1979), Bresnahan & Reiss (1991) and recent

experimental work by Huck et al (2004) suggest that competitiveness is monotonic in the

number of participants, although the researchers disagree as to what number of players

is su¢ cient to prevent collusive outcomes. Kovacic et al (2007) analyze tacit and explicit

collusion in the Vitamins industry where collusion via market segmentation and price

�xing was widespread during the 1990s. Their research examines price data for 30 vitamin

products among cartels with two, three, and four conspirators over the course of three

periods: prior to, during, and after a period of admitted explicit collusion.25 Empirical

results indicate that in the post-plea period vitamin products with two conspirators

continue as if the explicit conspiracy never stopped, while products with three or four

conspirators quickly return to pre-conspiracy pricing (Please see Figure 5 in Appendix

A, Section 6.1 for a graphical view of this �nding). Thus, in the vitamins example, prices

after the end of explicit collusion are inversely related to the size of the plea-period

24Klemperer (2002) pg. 184.
25The research also included a vitamin product that had a one-�rm cartel, though the results for this

monopolistic producer were less clear.
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cartel, which suggests that the number of �rms in an industry may a¤ect the potential

for pro�table and e¤ective tacit collusion as a coordinated e¤ect. Similar research could

combine Kovacic et al�s (2007) empirical approach along with the theoretical implications

from this paper to investigate collusive outcomes for cases of bid rigging with varying

numbers of participants (or cartel sizes).

Another study coalescing theory and empirical work may compare the �ndings from

this research with Asker�s (2009b) analysis of the bidding behavior of a North American

cartel of stamp dealers during the 1990s. This real-world bidding ring operated in a

surprisingly similar environment and fashion to the theoretical framework constructed

in this paper. Thus, the data from over 1700 auctions in which the stamp cartel was

active might provide a good starting point for testing the rigor of this work�s model when

applied to more realistic settings.

The innovative linear programming approach employed in this paper is potentially

useful in developing answers to a number of questions that remain open in technical

literature. For example, one may attempt to characterize or construct the optimal collu-

sive mechanism for auction formats and assumptions aside from those considered in this

research, such as open-ascending auctions or cartels that are not all-inclusive.

This research introduced an additional bidder to the model developed by Lopomo,

Marx, & Sun (2009). In addition to further increasing the number of bidders, the au-

thors�original framework may be adjusted and extended in numerous other ways. Such

extensions could incorporate repeated interactions or allow for more general settings

such as asymmetric bidders or strategic auctioneers.26 Assumptions such as risk-neutral

bidders, individual rationality, and the ex-ante budget balance constraint could also be

modi�ed and retested. Lastly, multiple-cartel and/or multiple-object scenarios present

additional research opportunities for questions that remain open in the realm of auction

theory. Furthermore, the novel techniques used in this paper may be fruitfully applied

to a variety of mechanism design problems beyond the scope of auction theory.

26Numerical calculations from this paper suggest that the results likely extend to more general sym-
metric environments and at least some asymmetric environments.
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6 Supplemental Material

6.1 Appendix A: Figures & Charts

Figure 2: Comparison of Non-Cooperative and Collusive Outcomes27

Under the optimal reserve price for a seller facing non-cooperative bidders, the surplus in

all cases would be inside the e¢ cient frontier and even further inside for the case of the optimal

reserve price for a seller facing colluding bidders. But even with reserve prices of either type,

it is still the case that the optimal BCM and BSM at a second-price auction and the optimal

BSM at a �rst-price auction reduces the seller�s surplus to zero. In contrast, the optimal BCM

at a �rst-price auction can do no better than the non-cooperative equilibrium, which shares

surplus with the seller.

27Figure from Lopomo, Marx & Sun (2009).
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Chart 2: Three Bidder Surplus Output (Source Data for Figure 1)
b OptSol BCM NonCoop BSM b OptSol BCM NonCoop BSM
2 18.7332 15 25 16 15.1286 15 25
3 17.4817 15 25 17 15.1140 15 25
4 16.7287 15 25 18 15.1018 15 25
5 16.1793 15 25 19 15.0914 15 25
6 15.8503 15 25 20 15.0826 15 25
7 15.6358 15 25 21 15.0749 15 25
8 15.4952 15 25 22 15.0683 15 25
9 15.3944 15 25 23 15.0625 15 25

10 15.3228 15 25 24 15.0575 15 25
11 15.2678 15 25 25 15.0530 15 25
12 15.2264 15 25 26 15.0490 15 25
13 15.1934 15 25 27 15.0454 15 25
14 15.1674 15 25 28 15.0423 15 25
15 15.1460 15 25 29 15.0394 15 25
16 15.1286 15 25 30 15.0368 15 25

Figure 3: Two Bidder BCM Cartel Equilibrium
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The optimal collusive bidder surplus (�OptSol BCM�) and the non-cooperative equilibrium

surplus in the continuous bid case (�NonCoop�) as a function of B, which is inversely related to

the bid increment. Figure 3 shows the lower bound of the non-cooperative equilibrium surplus,

as well as the surplus from the optimal BCM, based on the linear programming output. The

graph demonstrates that the optimal collusive surplus approaches the non-cooperative surplus

as the bid increment approaches zero.
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Figure 4: Graphical Comparison of Outcomes (Source Data on Right)
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b OptSol (2) NC (2)
2 20.8732 20
5 20.2427 20
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Three Bidder Case
b OptSol (3) NC (3)
2 18.7332 15
5 16.1793 15

10 15.3228 15
20 15.0826 15

Figure 5: Average % Change in Price Relative to
the Plea-Period Maxima by Number in Cartel28

The �gure shows a dramatic di¤erence between the post-plea prices of products with one

conspirator or a two-�rm cartel versus products with three or four-�rm cartels. Two-�rm cartels

are able to maintain prices signi�cantly above pre-plea levels whereas there is considerable price

erosion relative to explicitly collusive levels for three and four-�rm cartels.

28Figure from Kovacic et. al (2007).
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6.2 Appendix B: Proofs

6.2.1 Proof of Proposition 1

It is clear that a bidder with value l can do not better than to bid l. If bidder i has

value h; its expected payo¤ from bid bi 2 [l; b�] is

�i = (1� f(l))2
Z bi

l

(h� bi)dF 2(b�i) + 2(1� f(l))f(l)
Z bi

l

(h� bi)dF (b�i) + f(l)2(h� bi)

= f (l)2 (h� l) ;

which is constant for all bi 2 [l; b�]. A bid below l has expected payo¤ of zero, and a bid
bi > b� has expected payo¤ of h � bi < h � b� = f(l)2(h � l). So the bidding strategy
given in the proposition is a best reply. Q.E.D.

6.2.2 Proof of Lemma 1

First, consider a feasible solution (p;m1;m2;m3) of linear program (1)�(10). We

construct a solution (�;M1;M2;M3; J1; J2; J3) to the linear program (11)�(17) and then

show that it is feasible with the same objective function value. Let � (b1; b2; b3; v1; v2; v3) =

p (b1; b2; b3 j v1; v2; v3) ; let M1(v1) =
P

(v2;v3)2V2�V3
m1 (v1; v2; v3) f2(v2)f3(v3); and let

J1 (v1; v2; v3; b1) = max
b012B

X
v22V2;v32V3;b2;b3;2B

�(b1; b2; b3; v1; v2; v3)u1 (b
0
1; b2; b3; v1) f2 (v2) f3 (v3) ;

with analogous de�nitions for M2(v2); M3(v3); J2 (v1; v2; v3; b2) and J3 (v1; v2; v3; b3). It

is straightforward to show that constraints (13), (14), (16) and (17) are satis�ed. Fur-

thermore, consider the deviation function ��1(b1) de�ned by

J1 (v1; v2; v3; b1) =
X

v22V2;v32V3;b2;b3;2B

p(b1; b2; b3 j v1; v2; v3)u1 (��1(b1); b2; b3; v1) f2 (v2) f3 (v3) ;

with an analogous de�nition for J2 (v1; v2; v3; b2) and J3 (v1; v2; v3; b3). Constraint (4)

implies that,

U1 (p j v1) � U�1 (p; ��1; v2; v3 j v1) =
X
b12B

J1 (v1; v2; v3; b1)�M1(v1; v2) (25)

and similarly for U2 and U3. Therefore, (15) is satis�ed. It can be veri�ed that the

corresponding objective values are the same.
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Second, consider a feasible solution (�;M1;M2;M3; J1; J2; J3) to (11)�(17). Let-

ting p (b1; b2; b3 j v1; v2; v3) = � (b1; b2; b3; v1; v2; v3) and m1 (v1; v2; v3) = M1 (v1) ; then

(p;m1;m2;m3) is a feasible solution to (1)�(10) and has the same objective function

value. It is obvious that constraints (2) and (3) are satis�ed. To see that the incentive

compatibility constraints are also satis�ed, note that for any v1 2 V1; v2 2 V2; v3 2 V3;
b1 2 B; and �1(b1) 2 B, (16) and (17) imply

J1 (v1; v2; v3; b1) =
X

v22V2;v32V3;b2;b3;2B

p(b1; b2; b3 j v2; v3)u1 (�1(b1); b2; b3; v1) f2 (v2) f3 (v3) ;

and analogously for bidder 2. Furthermore, (15) implies (4). Q.E.D.

6.2.3 Proof of Lemma 2

For any feasible solution (�;M1;M2;M3; J1; J2; J3) to the linear program (11)�(17), we

can construct a feasible solution (~�; J;M) to the linear program (19)�(24) with the same

objective function value as follows: ~�(b;�b;~b; v; �v; ~v) = 1
6
(�(b;�b;~b; v; �v; ~v)+�(b;~b;�b; v; ~v; �v)+

�(�b; b;~b; �v; v; ~v)+�(~b; b;�b; ~v; v; �v)+�(�b;~b; b; �v; ~v; v)+�(~b;�b; b; ~v; �v; v)); M =M1+M2+M3;

and J = J1 + J2 + J3. Similarly, for any feasible solution (~�;M; J) to the linear program

(19)�(24), we can construct a feasible solution (�;M1;M2;M3; J1; J2; J3) to (11)�(17) with

the same objective function value as follows:

�(b;�b;~b; v; �v; ~v) = �(b;~b;�b; v; ~v; �v) = �(�b; b;~b; �v; v; ~v)

= �(~b; b;�b; ~v; v; �v) = �(�b;~b; b; �v; ~v; v) = �(~b;�b; b; ~v; �v; v)

=
1

6

 
~�(b;�b;~b; v; �v; ~v) + ~�(b;~b;�b; v; ~v; �v) + ~�(�b; b;~b; �v; v; ~v)

+~�(~b; b;�b; ~v; v; �v) + ~�(�b;~b; b; �v; ~v; v) + ~�(~b;�b; b; ~v; �v; v)

!
;

M1 =M2 =M3 =
M
3
; and J1 = J2 = J3 = J

3
. Q.E.D.

6.2.4 Proof of Lemma 3

Let blow be the lowest bid recommended with positive probability in the optimal BCM.

Thus, a bid of blow can only win the object through a tie. Assume a bidder with type l has

probability plow to be tied at a bid of blow; and therefore receive surplus (l � blow) plow=2.
Suppose blow = l � t� < l � 2� for some t > 2. Whenever the bidder receives the

recommended bid blow = l�t� from the center, by bidding l�(t� 1)� instead, the bidder
wins with probability at least plow, which generates surplus (t� 1)�plow, which is higher
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than t�plow=2 = (l � blow) plow=2, which is the surplus from following the recommended

bid blow. Similar logic indicates that a type h bidder also has no incentive to bid below

l � 2�. Q.E.D.

6.3 Appendix C: Sample Feasible Bid Set

Table 1: Index of Feasible Bids

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

J

0 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00

1 55.00 47.50 45.00 43.75 43.00 42.50 42.14 41.88 41.67 41.50 41.36 41.25 41.15 41.07 41.00 40.94 40.88 40.83 40.79 40.75 40.71 40.68 40.65 40.63 40.60 40.58 40.56 40.54 40.52 40.50

2 70.00 55.00 50.00 47.50 46.00 45.00 44.29 43.75 43.33 43.00 42.73 42.50 42.31 42.14 42.00 41.88 41.76 41.67 41.58 41.50 41.43 41.36 41.30 41.25 41.20 41.15 41.11 41.07 41.03 41.00

3 62.50 55.00 51.25 49.00 47.50 46.43 45.63 45.00 44.50 44.09 43.75 43.46 43.21 43.00 42.81 42.65 42.50 42.37 42.25 42.14 42.05 41.96 41.88 41.80 41.73 41.67 41.61 41.55 41.50

4 70.00 60.00 55.00 52.00 50.00 48.57 47.50 46.67 46.00 45.45 45.00 44.62 44.29 44.00 43.75 43.53 43.33 43.16 43.00 42.86 42.73 42.61 42.50 42.40 42.31 42.22 42.14 42.07 42.00

5 65.00 58.75 55.00 52.50 50.71 49.38 48.33 47.50 46.82 46.25 45.77 45.36 45.00 44.69 44.41 44.17 43.95 43.75 43.57 43.41 43.26 43.13 43.00 42.88 42.78 42.68 42.59 42.50

6 70.00 62.50 58.00 55.00 52.86 51.25 50.00 49.00 48.18 47.50 46.92 46.43 46.00 45.63 45.29 45.00 44.74 44.50 44.29 44.09 43.91 43.75 43.60 43.46 43.33 43.21 43.10 43.00

7 66.25 61.00 57.50 55.00 53.13 51.67 50.50 49.55 48.75 48.08 47.50 47.00 46.56 46.18 45.83 45.53 45.25 45.00 44.77 44.57 44.38 44.20 44.04 43.89 43.75 43.62 43.50

8 70.00 64.00 60.00 57.14 55.00 53.33 52.00 50.91 50.00 49.23 48.57 48.00 47.50 47.06 46.67 46.32 46.00 45.71 45.45 45.22 45.00 44.80 44.62 44.44 44.29 44.14 44.00

9 67.00 62.50 59.29 56.88 55.00 53.50 52.27 51.25 50.38 49.64 49.00 48.44 47.94 47.50 47.11 46.75 46.43 46.14 45.87 45.63 45.40 45.19 45.00 44.82 44.66 44.50

10 70.00 65.00 61.43 58.75 56.67 55.00 53.64 52.50 51.54 50.71 50.00 49.38 48.82 48.33 47.89 47.50 47.14 46.82 46.52 46.25 46.00 45.77 45.56 45.36 45.17 45.00

11 67.50 63.57 60.63 58.33 56.50 55.00 53.75 52.69 51.79 51.00 50.31 49.71 49.17 48.68 48.25 47.86 47.50 47.17 46.88 46.60 46.35 46.11 45.89 45.69 45.50

12 70.00 65.71 62.50 60.00 58.00 56.36 55.00 53.85 52.86 52.00 51.25 50.59 50.00 49.47 49.00 48.57 48.18 47.83 47.50 47.20 46.92 46.67 46.43 46.21 46.00

13 67.86 64.38 61.67 59.50 57.73 56.25 55.00 53.93 53.00 52.19 51.47 50.83 50.26 49.75 49.29 48.86 48.48 48.13 47.80 47.50 47.22 46.96 46.72 46.50

14 70.00 66.25 63.33 61.00 59.09 57.50 56.15 55.00 54.00 53.13 52.35 51.67 51.05 50.50 50.00 49.55 49.13 48.75 48.40 48.08 47.78 47.50 47.24 47.00

15 68.13 65.00 62.50 60.45 58.75 57.31 56.07 55.00 54.06 53.24 52.50 51.84 51.25 50.71 50.23 49.78 49.38 49.00 48.65 48.33 48.04 47.76 47.50

16 70.00 66.67 64.00 61.82 60.00 58.46 57.14 56.00 55.00 54.12 53.33 52.63 52.00 51.43 50.91 50.43 50.00 49.60 49.23 48.89 48.57 48.28 48.00

17 68.33 65.50 63.18 61.25 59.62 58.21 57.00 55.94 55.00 54.17 53.42 52.75 52.14 51.59 51.09 50.63 50.20 49.81 49.44 49.11 48.79 48.50

18 70.00 67.00 64.55 62.50 60.77 59.29 58.00 56.88 55.88 55.00 54.21 53.50 52.86 52.27 51.74 51.25 50.80 50.38 50.00 49.64 49.31 49.00

19 68.50 65.91 63.75 61.92 60.36 59.00 57.81 56.76 55.83 55.00 54.25 53.57 52.95 52.39 51.88 51.40 50.96 50.56 50.18 49.83 49.50

20 70.00 67.27 65.00 63.08 61.43 60.00 58.75 57.65 56.67 55.79 55.00 54.29 53.64 53.04 52.50 52.00 51.54 51.11 50.71 50.34 50.00

21 68.64 66.25 64.23 62.50 61.00 59.69 58.53 57.50 56.58 55.75 55.00 54.32 53.70 53.13 52.60 52.12 51.67 51.25 50.86 50.50

22 70.00 67.50 65.38 63.57 62.00 60.63 59.41 58.33 57.37 56.50 55.71 55.00 54.35 53.75 53.20 52.69 52.22 51.79 51.38 51.00

23 68.75 66.54 64.64 63.00 61.56 60.29 59.17 58.16 57.25 56.43 55.68 55.00 54.38 53.80 53.27 52.78 52.32 51.90 51.50

24 70.00 67.69 65.71 64.00 62.50 61.18 60.00 58.95 58.00 57.14 56.36 55.65 55.00 54.40 53.85 53.33 52.86 52.41 52.00

25 68.85 66.79 65.00 63.44 62.06 60.83 59.74 58.75 57.86 57.05 56.30 55.63 55.00 54.42 53.89 53.39 52.93 52.50

26 70.00 67.86 66.00 64.38 62.94 61.67 60.53 59.50 58.57 57.73 56.96 56.25 55.60 55.00 54.44 53.93 53.45 53.00

27 68.93 67.00 65.31 63.82 62.50 61.32 60.25 59.29 58.41 57.61 56.88 56.20 55.58 55.00 54.46 53.97 53.50

28 70.00 68.00 66.25 64.71 63.33 62.11 61.00 60.00 59.09 58.26 57.50 56.80 56.15 55.56 55.00 54.48 54.00

29 69.00 67.19 65.59 64.17 62.89 61.75 60.71 59.77 58.91 58.13 57.40 56.73 56.11 55.54 55.00 54.50

30 70.00 68.13 66.47 65.00 63.68 62.50 61.43 60.45 59.57 58.75 58.00 57.31 56.67 56.07 55.52 55.00

31 69.06 67.35 65.83 64.47 63.25 62.14 61.14 60.22 59.38 58.60 57.88 57.22 56.61 56.03 55.50

32 70.00 68.24 66.67 65.26 64.00 62.86 61.82 60.87 60.00 59.20 58.46 57.78 57.14 56.55 56.00

33 69.12 67.50 66.05 64.75 63.57 62.50 61.52 60.63 59.80 59.04 58.33 57.68 57.07 56.50

34 70.00 68.33 66.84 65.50 64.29 63.18 62.17 61.25 60.40 59.62 58.89 58.21 57.59 57.00

35 69.17 67.63 66.25 65.00 63.86 62.83 61.88 61.00 60.19 59.44 58.75 58.10 57.50

36 70.00 68.42 67.00 65.71 64.55 63.48 62.50 61.60 60.77 60.00 59.29 58.62 58.00

37 69.21 67.75 66.43 65.23 64.13 63.13 62.20 61.35 60.56 59.82 59.14 58.50

38 70.00 68.50 67.14 65.91 64.78 63.75 62.80 61.92 61.11 60.36 59.66 59.00

39 69.25 67.86 66.59 65.43 64.38 63.40 62.50 61.67 60.89 60.17 59.50

40 70.00 68.57 67.27 66.09 65.00 64.00 63.08 62.22 61.43 60.69 60.00

41 69.29 67.95 66.74 65.63 64.60 63.65 62.78 61.96 61.21 60.50

42 70.00 68.64 67.39 66.25 65.20 64.23 63.33 62.50 61.72 61.00

43 69.32 68.04 66.88 65.80 64.81 63.89 63.04 62.24 61.50

44 70.00 68.70 67.50 66.40 65.38 64.44 63.57 62.76 62.00

45 69.35 68.13 67.00 65.96 65.00 64.11 63.28 62.50

46 70.00 68.75 67.60 66.54 65.56 64.64 63.79 63.00

47 69.38 68.20 67.12 66.11 65.18 64.31 63.50

48 70.00 68.80 67.69 66.67 65.71 64.83 64.00

49 69.40 68.27 67.22 66.25 65.34 64.50

50 70.00 68.85 67.78 66.79 65.86 65.00

51 69.42 68.33 67.32 66.38 65.50

52 70.00 68.89 67.86 66.90 66.00

53 69.44 68.39 67.41 66.50

54 70.00 68.93 67.93 67.00

55 69.46 68.45 67.50

56 70.00 68.97 68.00

57 69.48 68.50

58 70.00 69.00

59 69.50

60 70.00

βB = Feasible Bid Set (by column)

Table 1 lists out the feasible bids for each BB. Each cell represents a feasible bid b that is a

function of B and J . The chart a¢ rms that the non-cooperative equilibrium bid (b2B = b� =

70) is within the feasible bid set for all B. This forms the upper support limit MaxJ = 2B.

The lower bound for each bid set is set by the reserve price (b0 = l = 40) and the interval

[l; b�] contains 2B + 1 feasible bids. One can see that as B expands and bid increments

decrease (moving rightward on the feasible bids chart), the highest feasible bid less than the

upper support (70) approaches 70.
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6.4 Appendix D: Sample Computer Coding

Matlab Coding - Generates data �le that
works with J_sym_u_primal.mod in OPL
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J_sym_u_primal.mod in OPL
Generates the curver OptSol in Figure 1
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Updated C++ Coding
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