A C++ Encoded Hull-White I nterest Rate Tree-Builder

John H. Li*
Duke University
Durham, NC
April 15, 2002

! John Li graduated from Trinity College, Duke University Class of 2002 with and BS degree and High Distinction
honorsin Economics. He also holds aminor in Computer Science. Heis employed by Deutsche Bank and will be
working in the Corporate Derivatives group of the Global Markets Division. He will reside in London and New Y ork
City.

Acknowledgement

| would like to gratefully thank my independent study advisor, Dr. Bjorn Eraker, for
recommending this research topic and providing me excdlent guidance during the sudy. With his
enthusasm and greet efforts to explain things clearly and smply, he helped to make the esoteric parts of
finance understandable for me during my financid engineering independent study. Throughout my
thesiswriting period, he provided encouragement, sound advice, good teaching and many idess.

| wish to acknowledge Deutsche Bank’ s Corporate Derivatives desk for providing me with up-
to-date term structures and market prices for specific interest rate derivatives at my request. |
particularly wish to express gppreciation to my future manager and head of the desk, Rg) Bhattacharrya,
for his enthusiagtic supervision during this project.

| am indebted to my uncle and Johnson Graduate School of Management professor, Dr.
Charles Leg, for his continued support and assstance in the preparation of this manuscript. Gratitudeis
a so extended to Brian Bevan and John Mayer for their support.

Lagtly and most importantly, | wish to thank my parents, Dr. Pei-Luen Li and Ling Li. | am
forever indebted to them for their understanding, endless patience and encouragement when it was most

required. To them | dedicate thisthess.

Abstract

The Hull-White mode is a single-factor, no arbitrage approach to modeling the term structure of
interest rates. 1t modd s the term Structure by describing the evolution of the short rate, or the
indantaneous rate of interest. Implementing this model resultsin atrinomia pricing tree that can be used
to price complex interest rate derivatives such as options on swaps and bonds. The difficulty of this
mode liesin its relative complexity and multi-stage implementation. The mode's advantage over amilar
moddsisits caculation speed.

This paper does not develop a new method but rather explains the author’s origina
implementation of the dgorithm behind the Hull-White interest rate mode using C++ programming
code. The paper will first explain the generdized Hull-White modd. 1t will then explain the congtruction
of the Hull-White tree by corrdating each step in the modd's two-stage tree-building procedure with the
C++ program architecture. The paper will then run the Hull-White model using current market data to
price aone-year bond option on aten-year zero-coupon bond and briefly explain the discrepanciesin
the instrument's market price and calculated price. The paper will also describe some of the limitations
of the program and discuss possible future improvements.

Introduction

Interest rate derivatives are financid instruments whose payoffs are a function of the term
gructure of interest rates. Like foreign exchange and equity derivatives, interest rate derivetives are
extremely important in today's economy for both risk management and speculative purposes. Asa
result, many new financial products have been crested to meet the needs of end users such as
corporations, banks, money managers and insurance companies. The chdlengeliesin finding an
accurate procedure for pricing and hedging these products.

Pricing interest rate products is more complicated than pricing foreign exchange or equity
derivetive for severa reasons. A primary reason is because for the valuation of many interest rate
products, it is necessary to develop amodd describing the behavior of today's entire term structure of
interest rates’. Asaresult, a no-arbitrage term structure model must be created. The no-arbitrage
property ensures tha the value generated by the term structure mode is exactly consistent with the
market's bond prices implied by the zero-coupon yied curve. There are generdly two different
gopproaches to building no-arbitrage yidd curve models: describing the evolution of the forward rate and
describing the evolution of the short-term interest rate®. Each approach hasiits strengths and
wesknesses.

Thefirst approach describes the evolution of the instantaneous forward rate and was first
developed by Hesath, Jarrow, and Morton. The Heath- Jarrow-Morton (HIM) model considersthe
current term structure with a user specification of the volatility of forward rates to build a tree to model
the behavior of the instantaneous forward rate. "The HIM tree of forward ratesis the fundamenta unit
representing the evolution of interest ratesin a given period of time*." Brace, Gatarek and Musidla
(1997) extended this modd into the LIBOR Market Modd (LMM) that alows one to apply the mode
to observable non-ingtantaneous forward rates, such as the 3-month LIBOR. The approach behind
both models results in an easly understandable tree implementation that permits as complex of a

volatility structure as desired. "The HIM-LMM models provide approaches that give the user complete

2 Hull, J., Options, Futures and Other Derivatives, Prentice Hall, 2000. pg 530.
2Hull, J. and A. White, "The General Hull-White Model and Super Calibration," Financial Analysts Journal, Vol. 57,
No. 6 (Nov/Dec 2001), pg 37.

freedom in choosing the volatility term structure®.” The weskness of the approach is that the trees
created cannot be represented as recombining trees, calculations are based on a atistical process.
HIM-LMM modds are thus difficult to implement by any other means other than Monte-Carlo
smulaiorf. This makes the accurate pricing of interest rate derivatives both time and computationaly
inefficient.

The second gpproach to modeling the yidd curve isto take the initid term structure as given and
describe how the short-term interest rate, the rate that applies over the next short interval of time, can
evolve’. Models of the short rate are implemented in the form of a recombining tree similar to the stock
price tree first developed by Cox, Ross and Rubingtein (1979) and do not need to be atisticaly
caculated®. Asaresult, interest rate trees implemented using this approach are both robust and
computationdly fast; most modes used for routine interest rate derivatives pricing are based on this
approach. The method's weeknessisits rdative complexity and lack of flexibility in the user
Specification of the volatility environment. Example models of the short-term interest rate include the Ho
and Lee modd aswell asthe Hull and White modd. This sudy examines the implementation of the
sngle-factor Hull-White modd.

The Hull-White Model
The single-factor, no-arbitrage Hull-White mode is a modd where the function of the
instantaneous interest rate (short rate), r, follows the following stochadtic differentia equation:
dy = (?(t)-ay)dt + sdz @
wherey = f(r) is some function of the short rate, ?(t) is afunction of time chosen so that the modd
provides an exact fit to today's zero-coupon yield curve, a isthe mean reverson rate, dt isasmdl

changein time, s isthe annua standard deviation of the short rate and dz is a Wiener process’. A

*"Heath-Jarrow-Morton Model," http://www.mathworks.com/access/hel pdesk/ hel p/tool box/finderiv/using8.shtml,
The MathWorks Inc., 2001.

® Hull Options, pg 618.

® Hull “The General Hull-White” pg 38.

"Hull, Options, pg. 596.

8 Hull, “The General Hull-White,” pg. 39.

®“CurveTrader Online Help,” http://www.powerfinance.com/help. Leap of Faith Research, Inc., 1998.

trinomid tree is used to congtruct a discrete time and space Markov gpproximation of the state variable
y.

The parameters a and s make up the voldility parameter (Sate factor) that is chosen by the user
to calibrate the modd to the market prices of aset of actively traded interest-rate derivatives'®. The
modd assumesthat the short rate is normaly distributed and subject to mean reversion, the well
documented phenomenon where interest rates gppear to drift to along-run average leve over time. The
model also assumes there are no market frictions, taxes nor transaction costs. It is assumed that assets
are perfectly divisible and trading takes place at discrete time steps™.

For this study the author identifies the short rate as the Sate variable:

y=r

A downside to setting the State variable equa to the short rate is the possibility of negative interest retes.
However, in practice this probability issmall. Furthermore, when y = r and a ? O, the model reduces
to the andyticdly tractable modd:

dr = (?(t)-ar)dt + sdz 2
as shown and proven in Hull and White (1990). The modd is andyticaly tractable because it alows for
the pricing & timet of a zero-coupon bond maturing at time T in terms of the initid term Sructureand r
atimet®. Spedificdly, Hull and White proved:

P(t,T) = At,T)e BtDr® 3
where:
B Ty=1 """ @)
a
In A, T)=1In POT) B(t 7)Jin Pot)_ 1 s 2(e“"‘T - € ""‘)Z(ez""I - 1) (5)
’ Pot) 7 Tt 433

0 Hull, “The General Hull-White,” pg 39.

" Leippold, M. and Z. Wiener, "The Term Structure of Interest Rates |1: The Hull-White Trinomial Tree of Interest
Rates, 1999, pg 1.

2 Hull, J. and A. White, "Using Hull-White Interest Rate Trees," Journal of Derivatives, Vol. 3, No. 3, (Spring 1996),
pp. 28, 30.

In practice, bond prices are usudly computed in terms of R(t), the discrete ?t-period at time't rather

thanr. Hull and White convert equation (3) to:

P(t,T) = Alt, T)e B¢DRO 6)

where:
A POT) BtT) , POt+Dt)
In At,T)=1In P01) BltrD) In =) ()
%(1- e 2)B(t,T)[B{,T)- B{t,t+Dt)]

~ —_ B(tT)

B = g o) ©
An dternative would be to st:

y = In(r)
This prevents the chance of negative interest rates, but has no anaytic tractability™.
The Hull-White modd can be viewed as an extenson of the Ho and Lee model with mean
reversion rate of a; when a = 0, the modd reducesto the Ho-Lee model. Furthermore, when written
as.

dy :aggﬂ- y9dt +sdz
ea [7]

the Hull-White modd can be characterized as an extension of the Vasicek mode with a time-dependent

reverson leved of a® at rate a.
a

A trinomid interest rate tree is a discrete representation of the stochastic process for the short
rate’. The C++ implementation of the Hull-White model roughly follows the two-stage procedure for
congtructing trinomid trees. Each stage will be outlined.

B Hull, Options, pg. 587.
¥ Hull, Options, pg. 574.
> Hull, Options, pg. 578.

Theoretical Implementation- First Stage
The Hull-White interest rate tree is a discrete-time representation of the stochastic process for
the short rate. Each step on the tree represents apoint in time, ti. Thetime step on thetreeis ?t=t;. ;-
ti. Each node on the interest rate tree a timet; with arelative tree pogtion j is denoted as node (i,]).
j=3

=2
node(1,1)

1

j=0

node(3-3 j=3
t t t }, 10033

Figurel

It is assumed that the ?t-period interest rate a time t, R(t), follows the same process as the short rate, r:
dR = (?(t)-aR)dt + sdz ©))

The god of thefirgt stage is to congtruct a tree such that the central node at each time step,
node (i,0), has avaue of zero™. Thisisachievable by defining anew varisble R* obtained from R by
setting both setting ?(t) and theinitid value of Requal to zero'’. R* follows the process:

dR* = -aR*dt + sdz (20)

where the expected value of R* (t +Dt)- R*(t)= - aR* (t)dt ; itsvariance s equal to s22t,

Setting ?(t) to zero and theinitid value of R* is zero resultsin a process thet is mean reverting to
zero. If R* darts at zero the unconditional expected vaue of R* at dl future timesis zero (Hull 4).
Define ?R as the interest rate spacing between the nodes on the treg, fit to represent the volatility of R,
computed to the Hull-White recommended specifications for error minimization:

DR =s /3Dt

8 Hull, “Using Hull-White,” pg. 28.
Y Hull, “Using Hull-White,” pg. 28.
8 Hull, Options, pg. 581.

The upward, middle and downward branching probabilities for each node are then set to match the
expected value and the standard deviation of the changein R* for the process in equation (10)*°.
Solving this system of equiations leads to the following probabilities.

_ 1+a2j2Dt2_ aJDt

?
‘6 2
2 .
?ng_azsztz
2:2 2 H
5, 1,800 +aDt
6 2

The modd incorporates mean reverson by setting alimit variables | .« equa to the smdlest integer
greater than % and jmin=0- jmex |f X @ any nodeis greater than j e or lessthan j min, the branching
a

will switch to adownward or upward branching pattern, respectively.

Pu Pu Pu
Pm Pm Pm
Pd Pd Pd
Standard Upward Downward
Figure2

The probabilities for an upward-branching method are:

2:2 2 H
?u:£+a) °Dt= + ajDt
6 2
?m=-=-a’j’Dt*- 2ajDt

9 Hull, “Using Hull-White,” pg. 27.

_ 7, 2°°D +33Dx
6 2

?4

The probabilities for a downward-branching method are;

a%j’Dt? - 3ajDt
2

'?:Z+
6

“u
2, = - % a2j°Dt? + 23 Dt

a%j?Dt? - ajDt
2

1
24z =+
"%

Hull-White (1990) proved this equation prevents any of the probabilities of any node from being
negative. The end product of thefirst stage is arecombining tree with atime step of ?t and vertical
gpacing of ?R that is symmetrical around O.

Implementation- 1st Stage
Thisfirg stage is created by iterating through the tree twice- once to congtruct and connect

nodes and once to add each node's respective probabilities. The end result is atree represented asa

vector of nodes.

4 j=2
1 5 =1 ©
2
0 2 6 Vector i=0 &
Position . pY
3 7 =1 &
.9
8 =2 >
0 1 2 Depth
Figure 3
\Vector Position Qg 1 2 3 4 5 g 1 8
Depth a 1 1 4 2 2 4 2
Relative Position a 1 d 4 32 4 g -1 -2
Tablel

10

Each node is represented in C++ as a sruct containing the following data:

struct myNode

{
i nt nodeNunber ; /1 node's nunerical position on the vector
i nt dept h; /'l equals the depth of the node
i nt relativePosition; [// equals the relative position of the node
float rate; /1 equals the delta(t) rate for the node
fl oat presentVal ue; /1l equals the node's Arrow Debreu price
fl oat al pha; /1l equals g(t)
float pu; /1l probability of branching up
float pm /1 probability of branching mddle
float pd; /1l probability of branching down
myNode * up; /1 the node connected via the highest branch
myNode * mi ddl e; /1 the node connected via the m ddl e branch
myNode * down; /1 the node connected via the | owest branch

The program’ sfirdt iteration uses the user-inputted term structure. The program will build a tree whose

depth, D, matches the depth of the term structure inputted and assumes that each interest rate given is

for timeD*?t. Thetime step, ?t, isauser input. For simplicity, the root nodeis hard coded:

void Hul | Tree: : connect Nodes(tvector<float> structure)

{

/! initializing the root node
maxdepth = 0;

nyTree[0] - >depth = O0;

nmyTree[0] ->rel ativePosition = 0;
nmyTree[0] - >present Val ue = 1. 0000

if (structure.size() > 1)

{

nyTree[0] - >up = nmyTree[1];
nmyTree[0] ->m ddl e = nyTree[2];
nmyTr ee[0] - >down = nmyTree[3];
nyTree[1] - >depth = 1;
nyTree[2] ->depth = 1;
nyTree[3] ->depth = 1;

myTree[1] ->rel ati vePosition
nmyTree[2] ->rel ati vePosition
nmyTree[3] ->rel ati vePosition

0,

=

For robustness, the caling one of two functions creates dl other depths. expand, which expands the

number of nodes verticaly, and maintain, which maintains the number of nodes during the next time

step. A portion of maintain is shown below:

int Hull Tree::maintain(int |astNodeNunber, int nodeslnDepth, int tenpDepth)

11

i nt begi nni ngNode = | ast NodeNumnber - nodesl| nDept h+1

/1l prevent the top node from expandi ng

myTr ee[begi nni ngNode] - >up = myTree[begi nni ngNode + nodesl nDept h] ;
myTr ee[begi nni ngNode] - >ni ddl e myTr ee[begi nni ngNode + nodesl nDepth + 1];
myTr ee[begi nni ngNode] - >down myTr ee[begi nni ngNode + nodesl nDepth + 2];

/1 expand the m ddl e nodes accordingly

for (int i = 1; i <= nodeslnDepth - 2; i++)
{
myTr ee[begi nni ngNode + i]->up = nmyTree[begi nni ngNode + i +
nodesl nDepth - 1];
myTr ee[begi nni ngNode + i]->niddle = nmyTree[begi nni ngNode + i +
nodesl nDept h] ;
myTr ee[begi nni ngNode + i]->down = nmyTree[begi nni ngNode + i +
nodesl nDepth + 1];
}
myTree[| ast NodeNunber] - >up = nmyTree[| ast NodeNunmber + nodesl nDepth -
2];
myTree[| ast NodeNunber] ->m ddl e = nmyTree[| ast NodeNunmber + nodesl nDepth -
11;

myTree[| ast NodeNunber] - >down myTree[| ast NodeNunber + nodesl nDept h];

/1 adding relativePosition
int divider = (nodeslnbDepth - 1) / 2;
for (int a = 0; a < nodeslnDepth; a++)

{
}

return nodesl nDept h;

}

myTr ee[begi nni ngNode + nodeslnDepth + a]->relativePosition = divider - a;

The function, connectNodes, chooses to ether expand or maintain the width of the tree by comparing
theinterest rate of node(i,j) t0 jmin AN j ey limits

/'l tenpNode is the bottom nost node of the nodes in depth d
if (100 * tenpNode->relativePosition * deltaR > jMax || 100 * tenpNode-
>relativePosition * deltaR < jMn)

{
}

el se expand(| ast NodeNunber, nodesl nDepth, count);

mai nt ai n(| ast NodeNunber, nodesl nDepth, count);

Adding branching probabilities requires a second iteration through the vector of nodes, thistime

adding the up, middle and down probabilities to each node based on the above formulas.

void Hull Tree: :udm myNode * node)
{

if (node->relativePosition * deltaR > j Max)

{

node->pu = (7.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePositi on * node->rel ativePosition * deltaT *
deltaT)-(3 * nmeanReversion * node->rel ativePosition*deltaT))/2);

node- >pm = (0. 00000- (1. 00000/ 3. 00000)) - (neanReversion *
nmeanRever sion * node->rel ativePosition * node->rel ativePosition * deltaT *
deltaT)+(2 * nmeanReversion * node->rel ativePosition*deltaT);

node->pd = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePositi on * node->rel ativePosition * deltaT *
del taT) - (neanReversi on * node->rel ativePosition*deltaT))/2);

}

else if (node->relativePosition * deltaR < jMn)
{
}
el se
{
node->pu = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del taT) - (neanReversi on * node->rel ativePosition*deltaT))/2);
node- >pm = (2. 00000/ 3. 00000) - (neanReversion * nmeanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del taT);
node->pd = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del t aT) +(neanReversi on * node->rel ati vePosition*deltaT))/2);

}
}

The end product is atree represented as a vector of nodes, with each node containing pointers to other
nodes within the vector and probabilities attached to the pointers.

'Vector Position C 1 2 3 4 5 6 7 8

R* 0.000% 1.73299 0.000% -1.7329¢ 3.464% 1.732% 0.000% -1.73294 -3.464%

? 4y 0.16667 0.121667| 0.166667 0.221667| 0.086667| 0.121667 0.166667| 0.221667|0.286667

? m 0.66667 0.656667| 0.666667] 0.56667| 0.626667| 0.656667 0.666667| .0656667| 0.62666

? 4 0.16667 0.221667| 0.166667 0.121667| 0.286667| 0.221667 0.166667| 0.121667| 0.08664

Up (Vector Position) 1 4 5 6

Middle 2 5 6 7

Down 3 6 7 8

Depth C 1 1 1 2 2 2 2

Relative Position 0 1 0 -1 2 1 0 -1 -2
Table2

Theoretical Implementation- 2nd Stage
The end product of the first stage tree is atree that represents the process (10):
drR* = -aR*dt + sdz

13

The second stage in the tree congtruction is to convert the generic leve tree into atree whose interest
rates are caibrated to theinitid term structure. "Within the cdlibrated tree the prices of the zero bonds
that mature at each tree time-period coincide with those implied by the yield curve currently observed in
the market™." Thisis accomplished by defining g:

9(t) = R(t) —R* (1) (11)

where:
dg =[a(t)- ag(t)dt

Since g(t) isafunction ?(t) and the function ?(t) is sdlected so that the modd fits the term structure, the
de facto processis to adjust the nodes in the tree so that it correctly prices discount bonds of al
maturities’.

In order for the interest rate tree to be exactly consstent to the initial term structure, g for each

time-step must be calculated iteratively. Given atree of node(i,j) where (OEi £n;- m £i £m),
define the following:
R*(i,j): vaueof R* a node(i,j)
R(,j): vdue of R a node(i,j)
o(t) = g = R(i,j) —R*(i.))
R(0,0) isequd to the term Structure rate for 1*?t. Asaresult, if ?t = 1, R(0,0) isthe one year rate on
theyidd curve and R(i ,j) isthe one yeer rate for year i+1 on the interest rate tree.

Hull and White define Q(i,j|h,k) as an Arrow-Debreu (AD) price, the present value at
node(h,k) of a security that pays off $1 at node(i,j) and zero at any other node®. Q(ij|h,k) isequa to
the probability of reaching i,j from h,k, discounted at R(h,k). If h=i-1:

QGifli-LK) = p(i, j i - 1 k)e aeratted
Q(i,j|0,0) can be denoted as Q; as denotes as the root AD price for nodei j):

% eippold, "The Term Structure of,” pg. 10.
2 Hull, “The General Hull-White,” pg. 42.
Z Hull, “The General Hull-White,” pg. 42.

14

Q =a QG jli-LkQ.,,

R X G- 12
- é p(l, i || _ :Lk)e (% 1k + G- tl-l)Qi—l’k (12)
k

Q; isdetermined for every nodej at step i®®. Only after computing the Arrow-Debreu prices for
node(i,j) one can begin to cdibrate the interest rate tree to the term Structure.

Cdlibration of the interest rate tree is accomplished by matching the price of a discount bond of
length t;..1, P(i+ 1), to the summation of dl of the Arrow-Debreu prices of nodes at timet;, each Arrow-
Debreu price discounted at each node's R(i,j) rate. For example, if ?t =0.5, the summation of the
vauesfor Q(1,1), Q(1,0) and Q(1,-1) discounted a (R*1,1 + 1), (R* 10+ g1) and (R* 11 + Qy),
respectively, would be cdibrated to the price of a (2*.5) = 1 year discount bond.

Denote P(i+ 1) asthe price a node(0,0) of adiscount bond that pays $1 at timeti.;. P(i+1) is
computed using the term structure:

P.=¢ (Yia)tisn)
i

wherey;. ; istheinterest rate on the current term structure for ti.;. P(i+1) is matched to the summation
of the present vaue of Q(i,j) prices. Denote V(i,j) asthe present value of Q(i,j), each value discounted
to each node's R = R*(t) + g(t) rate:

V=€ (% +0 (817 t)

Hull and White cdculate the present vaue as

o
P, =a Q\V,
i
0 8-, (13)
— é. Q”e (Xu gl)(tH-l tl)
i
The formula can be rearranged to solve for g;:
g = (14)

Denote the Arrow Debreu price a node(0,0) = 1. Based on (14), R(0,0) can be cdculated. The next
iteration uses R(0,0) to price Q(1,1), Q(1,0), and Q(1,-1). Only after Q(1,1), Q(1,0) and Q(1,-1) are

ZHull ,“The General Hull-White,” pg. 42-43

15

determined can R(1,1), R(1,0) and R(1,-1) be cdculated through cdibration techniques. Thisiterative
techniqueisused until i = n total steps and the interest rate tree is complete.

Implementation- 2nd Stage

The completion of thefirst stageis an interest rate tree centered around zero. The second stage
isimplemented by iterating through the vector of nodes one depth a atime. The function that
orchedtrates the iterative processis function addRates. During theiteration of each depth within
addRates, atemporary vector, depthVector, containing al nodes a timet is crested.

void Hull Tree: : addRat es(tvector<float> structure)

{
int tempDepth = 1;

for (int a =1; a < nyTree.size(); a++)

{

/1 we're put all nodes of the sanme depth on a vector
if (myTree[a] ->depth == tenpDepth)

{
dept hVect or. push_back(nyTree[a]);

}

el se

{
t empDept h++;

Each node within depthVector hasits Arrow-Debreu prices caculated using each predecessor node's
Rratesasan input. Because C++ pointers are one-directional—nodes that node(a,b) pointsto asits
highest, middle and lowest branch nodes do not have pointers back to node (a,b)—a search agorithm
is created to find the predecessors of each node in depthV ector and return these predecessor nodes

through a temporary vector, tempVector.

tvect or <nyNode*> Hul | Tree: : fi ndConnect ors(myNode * node)
{
tvect or <nyNode *> tenpVector
for (int count = 0; count < nmyTree.size(); count++)
{
if (myTree[count]->up == node || myTree[count]->m ddl e == node
| | myTree[count] ->down == node)
{
myNode * tenpNode = nyTree[count];
t enpVect or. push_back(t enpNode) ;

}

16

}

return tenpVector,;

}

Given tempVector, the Arrow-Debreu price for the current node[a] in depthVector is caculated.

float Hull Tree::addPresent Val ue(nyNode * node, tvector<myNode *> dept hVector
tvector<float> structure)
{
fl oat al pha= 0. 00000;
/1 going through those connecting nodes, finding Q for depthVector]a]
for (int b = 0; b < tenpVector.size(); b++)
{
if (tempVector[b]->up == depthVector[a])
{
dept hVector[a] - >present Val ue = tenpVector[b]->pu *
exp(0.00000 - (tenpVector[b]->rate)*deltaT) * tenpVector[b]->presentVal ue +
dept hVect or[a] - >pr esent Val ue;
}
else if (tenpVector[b]->m ddle == depthVector[a])
{
dept hVector[a] - >present Val ue = tenpVector[b]->pm *
exp(0.00000 - (tenpVector[b]->rate)*deltaT) * tenpVector[Db]->presentVal ue +
dept hVect or[a] - >pr esent Val ue;
}
else if (tenpVector[b]->down == depthVector[a])
{
dept hVector[a] - >present Val ue = tenpVector[b]->pd *
exp(0.00000 - (tenpVector[b]->rate)*deltaT) * tenpVector[Db]->presentVal ue +
dept hVect or[a] - >pr esent Val ue;

}

This processis run for each node in depthVector. Using depthVector's Arrow-Debreu prices, g; is
determined.

g =0
for (int ¢ = 0; c < depthVector.size(); c++)
{
g = g + depthVector[c]->presentValue * exp(0.00000 - (deltaR *
deltaT * depthVector[c]->relativePosition));

}

g = log(9);

g =g - log(bondPrices[depthVector[O0]->depth]);
g =g/ deltaT;

return g;

17

Thisvdueisreturned to the central node of timet;, node(i,0) in addRates. The central node's R* (i,0)
vaueis zero; its new cdibrated interest rate, R(i,0), isset to g. Theremaning nodesat t; have ther

R(,j) vaues cdculated using function addRemainingRates.

voi d Hul | Tree: : addRenmi ni ngRat es(myNode * tenpNode, tvector<myNode *>
dept hVect or)

{

for (int a = 0; a < depthVector.size(); a++)
{
dept hVector[a]->rate = depthVector[a]->relativePosition * deltaR +
t enpNode- >r at e;

}
}

depthVector gets erased after each node in the vector hasits R(i,j) values caculated. The vector gets
recrested for the next time period, beginning the iteration for time i+ 1. Thisiterative process continues

until thetreeis cdibrated. The C++ implementation of both stagesisillugtrated in Appendix A.

Pricing Analysis

The Hull-White tree generated dlows for the pricing of numerous interest rate derivatives.
Many of such ingruments have their values derived from the U.S. Treasury term Structure, shown below
for April 10, 2002:

Term Structure
Maturity Yidd (%)
3 month 1.7
6 month 1.97
2 year 3.44
S year 4.6
10 year 5.25
30 year 5.71

Table3

18

Current Previous %

~—a 55

A0

4.5

4.0

2.5

30

2.4

2.0

| 1] 1.3
M2V A 107 a0

0.04

0.0o

I 1 L -0.0d
3M2Y 5Y 10 0%

Figure4

One such derivative is a European put option on a zero-coupon bond. A common instrument using a
portfolio of such optionsis an interest rate cap, an option that provides a payoff whenever a specified
interest rate exceeds a certain level®. The specific derivative priced is aone-year put option on azero-
coupon bond that will expirein ten years. The notiond priceis$1000. The dtrike priceis a the money;
the current price of the bond is$592.74. Itisassumedthat a=1and s = 0.01.

Congder the congtruction of an eight-step, one-year tree. Thetimestepis?t=1/8=0.125
yearsand therate step, ?r = s /3Dt =0.0061237. Jmin @0d] e Values are calcul ated as the smallest
integer greater than 0.184 / a?t = 15. Inputting &, s, ?t and the term rates for 1/8, 2/8, 3/8...8/8 year
into the C++ tree generator resultsin a completed interest rate tree with ?t-period rate, R, at each
node. Ratesfor maturities between given interest ratesin Table 3 are calculated using linear
interpolation. Table 4 presents the completed tree and corresponding g = R—R* rates; appendix B
displays the program’ s true output in full detail.

Branching Probabilities ?trate, R
j| ?up ?middle ?down| i=0Q i=1 i=2 i=3 i=4 i=5 i=§ i=7
7| 0.1267 0.6590, 0.2142 0.0761
6| 0.1320 0.6610[0.2070 0.0675 0.0700
5 0.1374 0.6628) 0.1999 0.0589 0.0614 0.0638
4 0.1429] 0.6642 0.1929 0.0503 0.0528 0.0557 0.0577
3 0.1486] 0.6653| 0.1861 0.0416 0.0442 0.0467] 0.0491 0.0516
2| 01545 0.6660 0.1795 0.0331) 0.0355 0.0381) 0.0405 0.043(7 0.0455

% Hull, Options, pg. 665.

19

1 0.1605] 0.6665 0.1730 0.0247 0.0270 0.0294 0.0320 0.0344 0.0369 0.0393
0 0.1667] 0.6667 0.1667| 0.0162 0.0185 0.0209 0.0233 0.0258 0.0283 0.0304 0.0332
-1§ 0.1730 0.6665| 0.1605 0.0124 0.0149 0.0171 0.0197 0.0222 0.024¢ 0.0271
-2/ 0.1795] 0.6660| 0.1545 0.008¢ 0.011¢ 0.013g 0.0160 0.0185 0.0210
-3 0.1861] 0.6653] 0.1486 0.0049 0.0075 0.0099 0.0124 0.0148
-4 0.1929] 0.6642] 0.1429 0.0013 0.0038 0.0063 0.0087
-5 0.1999 0.6628/ 0.1374 0.0000 0.0001 0.0026
-6 0.2070, 0.6610[0.1320 0.0007 0.0000
-7 0.2142] 0.6590] 0.1267, 0.0000

g 0.0162 0.0185 0.0209 0.0237 0.0258 0.0283 0.030§ 0.0332

Table4

Figure 5 isagraphical representation of the tree without branching lines between nodes.

Nodes
0.08 >
0.07 *
S
0.06 L 2 *
*
0.05 ¢ T e :
] L 2
= ® P * o
*) ¢ ~ L d
0.03 « * -
* ¢ 3
0.02 — P -
L 2 * * '3 *
0.01 * 5+
* 'S *
0 * o o+ 8
0 2 4 6 8
Time Steps
Figure5

Next, the bond payoff, P(t,T), a each termind node (t; = 8) must be cdculated. Thisisdone
andyticaly through equations (3) through (8). Table 5 presents a spreadsheet which caculates the
P(t,T) vaues andyticdly.

User Inputs Leaf Node Caculations
t 1 Leaf Node Rates P(t,T)
T 10 0.0761 0.4764
deltaT 0.125 0.0700 0.4941
a 0.1 0.0638 0.5125
sgma 0.01 0.0577 0.5316
0.0516 0.5514

20

Term Structure Calculations 0.0455 0.5720
P(0,t) 0.9757| 0.0393 0.5933
P(0,T) 0.5927 0.0332 0.6154
P(O,t+deltal) 0.9714 0.0271 0.6383
ddtaR 0.0061 0.0210 0.6621,
0.0148 0.6867
Cdlculations 0.0087 0.7123
B(t,T) 5.9343 0.0026 0.7388
Bhat(t,T) 5.9715 0.0000 0.7503
B(t,t+deltat) 0.1242 0.0000 0.7503
Ahat(t,T) 0.7503

Table5

User-inputted vaues areitdicized. Appendix C shows the cdculation of each formula usng Microsoft
Excd cdl references.

Cdculating the value of the put option whose strike price is the current bond price, $592.74, is
accomplished by cdculating the option payoff, 1000* MAX(0.59274 - P(t,T), 0), where MAX takes
the higher value of 0.59274-P(t,T) or zero. Table 6 provides these payoffs.

Leaf Node Calculations
Strike Price (x1000)| Leaf Node Rateg P(t,T)| Put Option Pricg
0.592739659 0.0760759 0.476392195 116.3474633
0.0699522 0.494135092 98.60456681
0.0638285 0.512538811 80.20084794
0.0577048 0.531627964 61.11169533
0.0515811 0.551428079 41.31158047]
0.0454573 0.571965976 20.77368251
0.0393339 0.593268453 Qg
0.0332099 0.615364325 Q
0.0270862 0.638283142 Qg
0.0209624 0.662055951] Qg
0.0148387 0.686713764 Qg
0.00871499 0.712290029 Qg
0.00259126 0.738818865 Qg
g 0.750339983 Q
g 0.750339983 Qg

Table6

21

Each option price must then be discounted back through the tree. The processworksin
reverse: from end nodes(i,j), the value a node(i-1,k) is computed as the discounted sum of dl of its
branching nodes vaues. Specificdly,

Standard Branching: (P upVikrr TP migeeVix TP dmNnVi,k-l)e_(Ri_l’k)(ti_)
b . _(Ri-lk)(ti_ti»l)

Downward Branching: (P wVik TP gV 1t P oV, ,k_z)e :

Up\Na'd BrmChl ng: (P UpVI k + P m|dde ik+1 + P downvi ,k+2)e_(R-1Vk M)

Table 7 iteratesfrom i = 7 backwards to i = 0 and discounts at each time step using the rates and
trangtion probabilitiesin Table 4.

Put Option Price

j|l i=0 i=1 i=2 i=3 i=4 i=§5 i=6§ i =7
7 116.3475
6 96.3210 98.6046
5 76.4811 78.310 80.2008
4 56.7367 58.1487 59.6071 61.1117
3 37.4190 38.1860 39.1054 40.1843 41.3116
2 20.8372 20.5673 20.3003 20.0950 20.1095 20.7737
1 9.7704 8981 80483 6.9027 5.4161 3.3187 0.0000
04.0198 3.3904 27176 20045 12660 05517 0.0000 0.0000
-1 0.8364 0.5363 0.2819 0.0951] 0.0000 0.0000 0.0000
-2 0.0619 0.0170 0.0000 0.0000 0.0000 0.0000
-3 0.0000 0.0000 0.0000 0.0000 0.0000
-4 0.0000 0.0000 0.0000 0.0000
-5 0.000d 0.0000 0.0000
-6 0.0000 0.0000
-7 0.0000
Table7

The price of the put option is calculated to be $4.0198, or 0.402% of the bond's notiona value.

Comparison
The market’s ask price for the bond option is $4.39, or 0.439% of the bond's notiona. Thisis
a$0.37 increase over the tree-calculated option price. There are severa explanationsfor this

difference, listed in decreasing hypothesized sgnificance:

lliquidity premium- While puts and calls on bonds are quite common, many are bundled into
portfolios to create easily hedged interest rate caps and floors. One-year options for zero
coupon bonds are seldom traded aone in the over-the-counter market and as aresult, there
may be an extrailliquidity premium added to the price of the option. When asked how often
options off the Treasury curve are traded, the analyst covering the desk replied that she prices
bond options of duration of this length once ayear.

Pricing inaccuracy- The interest rate derivatives andyst covering short-term options did not
have amodd immediately avallable that was capable of pricing this particular option. Asa
result, she entered the yield curve into a European swaption model to generate the price of the
bond option. It isunclear what possible differencesin assumptions or caculations the andyst
used to generate the market price.

Differencesin volatility assumptions- The Hull-White moded contains asingle factor, voldility,
that can be modified to fit the market price of the derivative. Determining the volatility
parameters a and s isknown as modd calibration and is out of the scope of the article. In this
example, aand s are assumed to be .1 and .01, respectively. These numbers were chosen
because they match the volatility parameters of examples priced by Hull, Leippold and Wiener.
It isunknown if the volatility parameters chosen result in aminima or near minima goodness-of-
fit measure®™. Likewise, the market mode priced was without cdibration; it is unknown what
volatility assumptions should be used.

Time step inaccuracy- The interest rate tree generated in the exercise has only eight stepsand is
consdered arough gpproximeation of the option price because each time step is equivaent to
over 45 days. When caculated using 20 time steps (7 = 18.25 days) the price of the bond
option increases to $4.16 (gppendix D). It is shown that continuing to increase the resolution of
the tree will continue narrow the difference between the market price and calculated price®®.
Linear interpolation of interest rates- For this exercise linear interpolation of the term Structure is
used. Thisviolates the no-arbitrage assumption described in the beginning of the article asthe

term dructure used in the tree is no longer exactly consistent with the market yield curve.

% Hull, Options, pg. 593.
% Hull, Options, pg. 589.

23

Limitations of the modd- The sngle-factor Hull-White modd islimited in its flexibility in
managing volatility. "The modd can be made to provide afit to volatilities observed in the
market, but the user has no control over the volatilities at subsequent times”’." A solution isto
generate a modd whose volatility is dependent on time. Hull and White (1996) creste such a
modd:

d(f(r)) = (2(t)+u-af(r))dt +s,dz,

where u has an initid vaue of zero and follows the process
du=-budt+s,d,

The C++ tree-congructor is flexible enough to be easily modified to accommodate this festure
and create three-dimensiond trees. However, it was felt that amode with time-dependent
volatility was not suitable for this article because its pricing would require intense cdibration.
Furthermore, making volatility time-dependent may lead many to believe that volatility asa
function of time, implying that there can be assumptions on whet the factor isin the future. This

IS an incorrect assumption.

It can only be concluded that the calculated price serves as an approximation of the true price of the

bond option.

The C++ tree-builder itsdf can be improved. Firstly, the code should be able to handle and

automatically interpolate inputted two, three, five, 10, and 30-year treasury rates. Thisfunction is

currently done by hand. Later developmentsinclude having a built in bond-pricer and afunction that

automaticaly caculates user-inputted payoff functions. These functions are currently elther hand-

cdculated or run on afairly inflexible spreadsheet. These developments could be done by converting

the source file into a Microsoft Excel-linkable dynamic link library or add-on. These functions would

meake this program comparable to the highly marketed Pricingtools.com-crested Hull-White tree

congtructor. Long-run developmentsinclude a cdibrating function that connects to a listing of prices of

smilar derivatives on the Internet.

Hull, Options, pg. 601.

24

Summary
In this article the Single factor Hull-White term Structure modd is explained. No new theoretica
aspects are added to the modd; rather, an advanced C++-encoded agorithm implementing its tree-
building procedure is described. The program's vital functions are shown to roughly match the two-
stage congtruction process first developed by Hull. When executed, the program is shown to be a
flexible tree-generator capable of modeing the short-term interest rate and pricing interest rate
derivatives. An example bond option isthen priced twice using the current term structure, once using
eight time-steps and once at twenty time-steps. Findly, time is devoted to discussing the possible
reasons for the discrepancies between the market price and the mode-generated price of the option.

25

References
“CurveTrader Online Help,” http:/Amww.powerfinance.convhelp. Leap of Faith Research, Inc., 1998.
"Hesth- Jarrow-Morton Moddl," http://www.mathworks.com/access/hel pdesk/
hel p/tool box/finderiv/usng8.shtml, The MathWorks Inc., 2001.
Hull, J., Options, Futures and Other Derivetives, Prentice Hall, 2000.

Hull, J. and A. White, "The Generd Hull-White Modd and Super Cdibration," Financid Anaysts
Journal, Vol. 57, No. 6 (Nov/Dec 2001), pp. 34-43.

Hull, J and A. White, "Using Hull-White Interest Rate Trees," Journd of Derivatives, Val. 3, No. 3,
(Spring 1996), pp. 26-36.

Leippold, M. and Z. Wiener, "The Term Structure of Interest Rates 11: The Hull-White Trinomid Tree
of Interest Rates, 1999, 1-17.

26

Appendix A- Hullwhite.Cpp

A R E R
/1 Witten by John L

/] 3/18/2002

A R E R

#incl ude <i ostreanr
#i ncl ude <string>
#include "tvector.h"
#i ncl ude "mat h. h"
#include "fstream h"
#include "hulltree. h"

fl oat nmeanRever si on;

float deltaT;

float deltaR

fl oat jMax;

float jMn;

tvector<float> ternStructure

voi d getl nputs()

{
fl oat sigmg;
fl oat tenpFl oat;
string tempfile

i fstreaminputFile;

cout << "Enter File: ";

cin >> tenpfile; /1l what's the file
i nputFil e.open(tenpfile.c_str()); // open it

i nput Fil e >> neanRever si on;
i nputFile >> sigm;
i nputFile >> deltaT,

/1 defining termstructure
while (inputFile >> tenpFl oat)
{
ternStructure. push_back(tenpFl oat);
}
/1 figuring out deltaR
deltaR = sigm * sqrt(3 * deltaT);
[l figuring out jMn and j Max
j Max ceil(0.184 / (meanReversion * deltaT));
jMn 0 - j Max;

}

int main()

{

27

Hul | Tree nyHul | Tree;

get I nputs();

myHul | Tree. bui l dTree(ternStructure, neanReversion, deltaT, deltaR,
jMn, jMx);

28

Appendix A- Hulltree.H

#i f ndef _HULLTREE H
#define HULLTREE H
[l The hull tree
/1 John Li
#i ncl ude "tvector. h"
#i ncl ude "nmat h. h"
struct myNode
{
i nt nodeNunber ;
i nt dept h; /1 equals depth of the tree
i nt relativePosition; [// equals j (-2,-1,-0, 1, 2) for the node
float rate; /1 equals R for the node
fl oat presentVal ue; /1 equals Q for the node
fl oat al pha; /'l equals value of center node= term struct

fl oat
fl oat
fl oat

pu;
pm
pd;

myNode * up;
nyNode * i ddl e;
myNode * down;

myNode(int & i,
& z, float &y,
NULL)
nodeNunber (i),
dept h(a),

fl oat
* h =

int & a,
fl oat & X,

/1 probability of going up
/1 probability of going in the nmiddle
/1 probability of going down

int & b,
nyNode * f =

float & c,
NULL,

float & d,
nyNode * g =

float & e,
NULL, myNode

rel ati vePosition(b),

rate(c),
present Val ue(d),
al pha(e),

pu(z),

pr(y) .,

pd(x),
up(f),
m ddl e(g),
down(h)

{}

class Hull Tree

publi c:

Hul | Tree();
~Hul | Tree();

voi d

// constructor
/] destructor

udm(myNode * node);

29

voi d addBondPri ces(tvector<fl oat> structure);
t vect or <nyNode *> findConnectors(nyNode * node);

fl oat addPr esent Val ue(nmyNode * node, tvector<myNode *>
dept hVector, tvector<float> structure);
voi d addRenwmi ni ngRat es(nyNode * tenpNode, tvector<nyNode *>
dept hVect or) ;
voi d addRat es(tvector<fl oat> structure);
i nt expand(int | astNodeNunber, int nodeslnDepth, int
t empDept h) ;
i nt mai ntai n(i nt | ast NodeNunber, int nodeslnDepth, int
t empDept h) ;
voi d connect Nodes(tvector<fl oat> structure);
voi d out put Tree();
voi d bui |l dTree(tvector<fl oat> structure, float a, float dT,

float dR, float min, float max);

private:
tvect or<nyNode *> nyTree

/1l same size as structure, saves al pha values per term
tvector<fl oat> al phaStructure;

/'l same size as structure, saves bond prices per term
tvect or <f | oat > bondPri ces;

/1l same size as structure, saves width per term
tvect or<i nt> wi dt h;

myNode * root Node;

fl oat meanRever si on;
fl oat del t aT;
fl oat del t aR
fl oat j M n;
fl oat j Max;
b
#endi f

Appendix A- Hulltree.Cpp

R R e R
/1 Witten by John L

/1 3/19/2002
R R e R

#i nclude "hulltree. h"
#include "tvector.h"
#i ncl ude "mat h. h"

#i ncl ude <string>
#incl ude <fstreanr

// default constructor
Hul | Tree:: Hul | Tree()

{
}

/1 destructor
Hul | Tree:: ~Hul | Tree()

{
}

/[lthis figures out the Pu, Pm and Pd for each node
void Hul I Tree: :udm nyNode * node)
{

if (node->relativePosition * deltaR * 100 > j Max)
{
node->pu = (7.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
deltaT)-(3 * meanReversion * node->rel ativePosition*deltaT))/2);
node- >pm = (0. 00000- (1. 00000/ 3. 00000)) - (neanReversion *
meanReversi on * node->rel ativePosition * node->rel ativePosition * deltaT *
deltaT)+(2 * nmeanReversion * node->rel ativePosition*deltaT);
node->pd = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del taT) - (nmeanReversi on * node->rel ati vePosition*deltaT))/2);

}

else if (node->relativePosition * deltaR * 100 < jMn)
{
node->pu = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del taT) +(meanReversi on * node->rel ativePosition*deltaT))/2);
node- >pm = (0. 00000- (1. 00000/ 3. 00000)) - (neanReversion *
meanReversi on * node->rel ativePosition * node->rel ativePosition * deltaT *
deltaT) - (2 * nmeanReversion * node->rel ativePosition*deltaT);
node->pd = (7.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
deltaT)+(3 * meanReversion * node->rel ativePosition*deltaT))/?2);

31

}

el se
{
node->pu = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePositi on * node->rel ativePosition * deltaT *
del taT) - (neanReversi on * node->rel ativePosition*deltaT))/2);
node- >pm = (2. 00000/ 3. 00000) - (neanReversion * meanReversion *
node->rel ati vePositi on * node->rel ativePosition * deltaT *
del taT);
node->pd = (1.00000/6.00000) + (((neanReversion * meanReversion *
node->rel ati vePosition * node->rel ativePosition * deltaT *
del t aT) +(neanReversi on * node->rel ati vePosition*deltaT))/2);

}

/1 calcul ates bond prices based on the term structure
void Hul | Tree: :addBondPri ces(tvector<float> structure)

{ for (int a = 0; a < structure.size(); a++)
{ float tenp = exp(0.00000 - (structure[a] * (a+l)*deltaT));
bondPri ces. push_back(tenp);
}
}

/1 finds and returns connecting nodes for the calculation of Q
t vect or <nyNode*> Hul | Tree: : fi ndConnect or s(myNode * node)
{

t vect or <nyNode *> tenpVector;

for (int count = 0; count < myTree.size(); count++)

{
if (myTree[count]->up == node || myTree[count]->n ddl e == node
| | nyTree[count] ->down == node)
{
myNode * tenpNode = nyTree[count];
t empVect or. push_back(t enpNode) ;
}
}
return tenpVector,;
}
// adds Q

float Hull Tree:: addPresent Val ue(myNode * node, tvector<myNode *> dept hVector
tvector<float> structure)

{

fl oat al pha= 0.00000;

for (int a = 0; a < depthVector.size(); at++)

32

dept hVect or[a] - >present Val ue = 0;

/1 find connecting nodes to each node of the same depth
tvect or<nyNode *> tenpVector = findConnectors(depthVector[a]);

/1 going through those connecting nodes, finding Q for depthVector]a]
for (int b = 0; b < tenpVector.size(); b++)
{
if (tempVector[b]->up == depthVector[a])
{
dept hVector[a] - >present Val ue = tenmpVector[b]->pu * exp(0.00000 -
((tenmpVector[b]->rate)*deltaT)) * tenpVector[b]->presentValue +
dept hVect or[a] - >pr esent Val ue;
}
else if (tenpVector[b]->m ddl e == depthVector[a])
{
dept hVector[a] - >present Val ue = tenmpVector[b]->pm * exp(0. 00000 -
((tenmpVector[b]->rate)*deltaT)) * tenpVector[b]->presentValue +
dept hVect or[a] - >pr esent Val ue;
}
else if (tenpVector[b]->down == depthVector[a])
{
dept hVector[a] - >present Val ue = tenmpVector[b]->pd * exp(0.00000 -
((tenpVector[b]->rate)*deltaT)) * tenpVector[b]->presentVal ue +
dept hVect or[a] - >pr esent Val ue;
}
}

for (int ¢ = 0; ¢ < depthVector.size(); c++)
{
al pha = al pha + (depthVector[c]->presentVal ue * exp(0.00000 - (deltaR
* deltaT * depthVector[c]->relativePosition)));

}
al pha = | og(al pha);
al pha = al pha - | og(bondPrices[dept hVector[O0]->depth]);

al pha = al pha / deltaT;

return al pha;

}

/1 adds the remaining rates
void Hul | Tree: : addRenmi ni ngRat es(myNode * tenpNode, tvector<myNode *>
dept hVect or)

{

for (int a = 0; a < depthVector.size(); at++)

{

dept hVector[a]->rate = depthVector[a]->rel ativePosition * deltaR +

33

t enpNode- >r at e;

}

// adds the termstructure onto the center nodes
void Hull Tree: : addRat es(tvector<float> structure)

{
myTree[0] ->rate = structure[0];
myTree[0] - >present Val ue = 1;

myNode * tenpNode = nyTree[0];

t vect or <nyNode *> dept hVect or;
int tempDepth = 1;

for (int a =1; a < nyTree.size(); a++)
{
/1 we're put all nodes of the same depth on a vector
if (myTree[a]->depth == tenpDepth)
{
dept hVect or. push_back(nyTree[a]);
}

el se

{
/1l getting the center node
t enpNode = tenpNode->m ddl e;

/1l calling present value with the center node and vector of nodes with
the sanme depth

t enpNode- >rat e = addPresent Val ue(t enpNode, depthVector, structure);

/1 add remaining rates to the nodes in the sane depth as tenpNode
addRenmi ni ngRat es(t enpNode, dept hVector);

t empDept h++;

/1l clear and add the first node of the next depth
dept hVector. cl ear ();
a--;
}
}

/1l getting the center node
t enpNode = tenpNode->m ddl e;

/1l calling present value with the center node and vector of nodes with the
same depth
t enpNode- >rat e = addPresent Val ue(t enpNode, depthVector, structure);

addRenmi ni ngRat es(t enpNode, depthVector);

A

}

int Hull Tree::expand(int |astNodeNunmber, int nodesl nDepth,

{

i nt begi nni ngNode = | ast NodeNunber - nodesl| nDept h+1
int t = 0;

/1l tenp variables, then adding on new bl ank nodes
int aa = 0;
float bb = 0;

for (int ¢ = 0; ¢ < nodeslnDepth + 2; c++)

{
myNode * tenpNode = new

myNode(aa, t enpDept h, aa, bb, bb, bb, bb, bb, bb, NULL, NULL, NULL) ;

myTr ee. push_back(t enpNode) ;
}

while (t < nodesl nDepth)

{
myTr ee[begi nni ngNode+t] - >up

nodesl nDept h] ;

myTr ee[begi nni ngNode+t] - >ni ddl e

nodesl nDepth + 1];

myTr ee[begi nni ngNode+t] - >down

nodesl nDepth + 2];

}

t++;

}

/1 adding relativePosition
int divider = (nodeslnDepth + 1) / 2;
for (int a = 0; a < nodeslnDepth+2; a++)

{

i nt tenpDepth)

myTree[begi nni ngNode + t +
myTree[begi nni ngNode + t +

myTr ee[begi nni ngNode + t +

myTr ee[begi nni ngNode + nodeslnDepth + a]->relativePosition = divider - a;

}

return nodeslnDepth + 2;

int Hull Tree::maintain(int |astNodeNunber, int nodeslnDepth, int tenpDepth)

{

i nt begi nni ngNode = | ast NodeNunber - nodesl| nDept h+1

/1l tenp variables, then adding on new bl ank nodes
int aa = 0;
float bb = 0;

for (int ¢ = 0; ¢ < nodeslnDepth; c++)

{
myNode * tenpNode = new

myNode(aa, t enpDept h, aa, bb, bb, bb, bb, bb, bb, NULL, NULL, NULL) ;

nmyTr ee. push_back(t enpNode) ;
}

/1l prevent the top node from expandi ng

nmyTr ee[begi nni ngNode] - >up myTr ee[begi nni ngNode + nodesl nDept h] ;
myTr ee[begi nni ngNode] - >ni ddl e myTr ee[begi nni ngNode + nodesl nDepth + 1];
myTr ee[begi nni ngNode] - >down nmyTr ee[begi nni ngNode + nodesl nDepth + 2];

/1 expand the m ddl e nodes accordingly

for (int i = 1; i <= nodeslnDepth - 2; i++)
{
myTr ee[begi nni ngNode + i]->up = nmyTree[begi nni ngNode + i +
nodesl nDepth - 1];
myTree[begi nni ngNode + i]->niddle = nmyTree[begi nni ngNode + i +
nodesl nDept h] ;
myTr ee[begi nni ngNode + i]->down = nmyTree[begi nni ngNode + i +
nodesl nDepth + 1];
}
nyTr ee[| ast NodeNumnber] - >up = nyTree[l ast NodeNunmber + nodesl nDepth -
2];
myTree[| ast NodeNunber] ->m ddl e = nmyTree[| ast NodeNunmber + nodesl nDepth -
1];

myTree[| ast NodeNunber] - >down myTree[| ast NodeNunber + nodesl nDept h];
/1 adding relativePosition

int divider = (nodeslnbDepth - 1) / 2;

for (int a = 0; a < nodeslnDepth; a++)

{

nmyTr ee[begi nni ngNode + nodeslnDepth + a]->relativePosition = divider - a;

}

return nodesl nDept h;

/1 goes down the vector of nyNodes and connects the nodes to each other
void Hul | Tree: : connect Nodes(tvector<float> structure)
{

/1 tenporary variabl es

myNode * tenpNode;

/1l tenp variables, originally making a max of 9 nodes
int aa = 0;
float bb = 0;

for (int ¢ =0; ¢c < 9; c++)

{
nmyNode * tenpNode = new nyNode(aa, aa, aa, bb, bb, bb, bb, bb, bb, NULL, NULL, NULL) ;
myTr ee. push_back(t enpNode) ;

}

/1 initializing the root node
myTree[0] - >depth = O;

myTree[0] ->rel ativePosition = 0;
nmyTree[0] - >present Val ue = 1. 00000;

wi dt h. push_back(1);

if (structure.size() > 1)

{

myTree[0] - >up = nmyTree[1];
myTree[0] ->mi ddl e = nyTree[2];
myTree[0] - >down = nmyTree[3];
myTree[1] - >depth = 1;
nmyTree[2] - >depth = 1;
nmyTree[3] - >depth = 1;

myTree[1] ->rel ativePosition = 1;
myTree[2] ->rel ativePosition = 0;
myTree[3] ->rel ativePosition = -1;
wi dt h. push_back(3);

}

if (structure.size() > 2)

{
myTree[1] - >up = nyTree[4];
myTree[1] ->mi ddl e = nyTree[5];
myTree[1] - >down = nyTree[6];
myTree[2] - >up = nmyTree[5];
nmyTree[2]->mi ddl e = nyTree[6];
nmyTree[2] - >down = nyTree[7];
myTree[3] - >up = nyTree[6];
nmyTree[3]->nmi ddle = nyTree[7];
nmyTree[3] - >down = nmyTree[8];
nmyTree[4] - >depth = 2;
myTree[5] - >depth = 2;
nmyTree[6] - >depth = 2;
nmyTree[7] - >depth = 2;
nmyTree[8] - >depth = 2;
nmyTree[4] ->rel ativePosition = 2;
myTree[5] ->rel ativePosition = 1;
myTree[6] ->rel ativePosition = 0;
myTree[7] ->rel ativePosition = -1;
myTree[8] ->rel ativePosition = -2;
wi dt h. push_back(5);

}

if (structure.size() > 3)

{
for (int count = 3; count < structure.size(); count++)
{

t enmpNode=nmyTree[nyTree. si ze()-1];

/1l see if tenpNode->relativePosition * deltaR is greater than jMax or
less than jMn
if (100 * tenpNode->relativePosition * deltaR > jMax || 100 * tenpNode-
>relativePosition * deltaR < jMn)
{
wi dt h. push_back(mai ntai n(myTree. size()-1, width[count-1], count));
}

37

}

/1 if not, then make it even bigger

el se wi dt h. push_back(expand(nyTree.size()-1, width[{count-1], count));

}
}

/1 used for debuggi ng purposes
voi d Hul | Tree: : out put Tree()

{

string filename = "OUTPUT";
of stream out put (fil enane.c_str());

for (int count = 0; count < myTree.size();

{

myTree[count] - >nodeNunber = count;

}

for (int count = 0; count < myTree.size();

{ n n

out put << count << ;
out put << nyTree[count]->depth << " ";

out put << nyTree[count]->relativePosition <<

output << nyTree[count]->rate << ;
output << nyTree[count]->pu << " ";

out put << nyTree[count]->pm << ;
out put << nyTree[count]->pd << endl

/1 builds the tree
void Hull Tree: : buil dTree(tvector<float> structure,
float dR, float min, float max)

{

/1 variables which equal referenced val ues

nmeanRever si on = a;
del taT = dT;
deltaR = dR;
jMn mn;
j Max max;

count ++)

count ++)

connect Nodes(structure); // connect the nodes

for (int count = 0; count < myTree.size();

{
udm(myTree[count]);

}

addBondPri ces(structure);
addRat es(structure);
out put Tree();

float a,

count ++)

float dT,

39

Appendix B

Node # i i R ?2up ?middle ?down
0 0 0 0.016175 0.166667 0.666667 0.166667
1 1 1 0.02465 0.160495 0.66651 0.172995
2 1 0 0.018527 0.166667 0.666667 0.166667
3 1 -1 0.012403 0.172995 0.66651 0.160495
4 2 2 0.033125 0.154479 0.666042 0.179479
5 2 1 0.027001 0.160495 0.66651 0.172995
6 2 0 0.020878 0.166667 0.666667 0.166667
7 2 -1 0.014754 0.172995 0.66651 0.160495
8 2 -2 0.00863 0.179479 0.666042 0.154479
9 3 3 0.041602 0.14862 0.66526 0.18612

10 3 2 0.035479 0.154479 0.666042 0.179479
11 3 1 0.029355 0.160495 0.66651 0.172995
12 3 0 0.023231 0.166667 0.666667 0.166667
13 3 -1 0.017108 0.172995 0.66651 0.160495
14 3 -2 0.010984 0.179479 0.666042 0.154479
15 3 -3 0.00486 0.18612 0.66526 0.14862
16 4 4 0.050333 0.142917 0.664167 0.192917
17 4 3 0.044209 0.14862 0.66526 0.18612
18 4 2 0.038085 0.154479 0.666042 0.179479
19 4 1 0.031961 0.160495 0.66651 0.172995
20 4 0 0.025838 0.166667 0.666667 0.166667
21 4 -1 0.019714 0.172995 0.66651 0.160495
22 4 -2 0.01359 0.179479 0.666042 0.154479
23 4 -3 0.007467 0.18612 0.66526 0.14862
24 4 -4 0.001343 0.192917 0.664167 0.142917
25 5 5 0.058912 0.13737 0.66276 0.19987
26 5 4 0.052789 0.142917 0.664167 0.192917
27 5 3 0.046665 0.14862 0.66526 0.18612
28 5 2 0.040541 0.154479 0.666042 0.179479
29 5 1 0.034418 0.160495 0.66651 0.172995
30 5 0 0.028294 0.166667 0.666667 0.166667
31 5 -1 0.02217 0.172995 0.66651 0.160495
32 5 -2 0.016046 0.179479 0.666042 0.154479
33 5 -3 0.009923 0.18612 0.66526 0.14862
34 5 -4 0.003799 0.192917 0.664167 0.142917
35 5 -5 -0.00232 0.19987 0.66276 0.13737
36 6 6 0.067494 0.131979 0.661042 0.206979
37 6 5 0.06137 0.13737 0.66276 0.19987
38 6 4 0.055246 0.142917 0.664167 0.192917
39 6 3 0.049122 0.14862 0.66526 0.18612
40 6 2 0.042999 0.154479 0.666042 0.179479
41 6 1 0.036875 0.160495 0.66651 0.172995
42 6 0 0.030751 0.166667 0.666667 0.166667
43 6 -1 0.024628 0.172995 0.66651 0.160495
44 6 -2 0.018504 0.179479 0.666042 0.154479
45 6 -3 0.01238 0.18612 0.66526 0.14862
46 6 -4 0.006256 0.192917 0.664167 0.142917

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

NNNNNNNNNNNNNN~NOoOOoO

1 1
o a1

OFRL NWPM~OITO N

0.000133
-0.00599
0.076076
0.069952
0.063829
0.057705
0.051581
0.045457
0.039334
0.03321
0.027086
0.020962
0.014839
0.008715
0.002591
-0.00353
-0.00966

a4

0.19987
0.206979
0.126745
0.131979

0.13737
0.142917

0.14862
0.154479
0.160495
0.166667
0.172995
0.179479

0.18612
0.192917

0.19987
0.206979
0.214245

0.66276
0.661042
0.65901
0.661042
0.66276
0.664167
0.66526
0.666042
0.66651
0.666667
0.66651
0.666042
0.66526
0.664167
0.66276
0.661042
0.65901

0.13737
0.131979
0.214245
0.206979

0.19987
0.192917

0.18612
0.179479
0.172995
0.166667
0.160495
0.154479

0.14862
0.142917

0.13737
0.131979
0.126745

Appendix C

B10 C D E F G
11 User Inputs Leaf Node Calculations
Leaf Node

12 t 1 Rates P(t, T)
13 T 10 0.0761 D27*EXP(0-D25*F13)
14 deltaT 0.125 0.0700| D27* EXP(0-D25* F14)
15 a 0.1 0.0638 $DF27*EXP(0-$D$25*F15)
16 sigma 0.01] 0.0577] D27*EXP(0-D25*F16)
17 0.0516 D27* EXP(0-D25*F17)
18 Term Structure Calculations 0.0455 D27*EXP(0-D25*F18)
19 P(O,t) Term Structure-DONE'E5 0.0393 D27* EXP(0-D25*F19)
20 P(0,T) Term Structure-DONE'E13 0.0332] D27*EXP(0-D25* F20)
21 P(0,t+deltaT) Term Structure-DONE' E6) 0.0271] D27*EXP(0-D25*F21)
22 deltaR D16* SQRT(3* D14) 0.0210| D27*EXP(0-D25* F22)
23 Calculations 0.0148 D27* EXP(0-D25* F23)
24 B(tT) (1-EXPO-(D15*(D13-D12))))/D15 0.0087] D27* EXP(0-D25* F24)
25 Bhat(t,T) D24*D14/D26 0.0026 D27* EXP(0-D25* F25)
26 B(t,t+deltat) ((1-EXP(0-(D15*D14)))/D15) -0.0035 D27*EXP(0-D25* F26)

EXP(LN(D20/D19)

((D24/D26)*LN(D21/D19))-

((D16* D16)/(4* D15))* (1-EXP(0-
27 Ahat(t,T) (2*D15*D12)))* D24*(D24-D26))) -0.0097] D27* EXP(0-D25* F27)

V)

Appendix D

User Inputs Leaf Node Calculations
t 1 Leaf Node Rates P(t,T) Leaf Node Rates P(t,T) Leaf Node Rates P(t,T)
T 10 0.10754 0.39418 0.04945 0.55692 0.00000 0.74739
deltaT 0.05 0.10367 0.40337 0.04557 0.56990 0.00000 0.74739
a 0.1 0.09980 0.41277 0.04170 0.58318 0.00000 0.74739
sigma 0.01 0.09592 0.42239 0.03783 0.59678 0.00000 0.74739
0.09205 0.43224 0.03396 0.61069 0.00000 0.74739
r'erm Structure Cal cul ation: 0.08818 0.44231 0.03008 0.62492 0.00000 0.74739
P(O,t) 0.9757 0.08430 0.45262 0.02621 0.63949 0.00000 0.74739
P(0,T) 05927 0.08043 0.46317 0.02234 0.65439 0.00000 0.74739
P(O,t+deltaT) 0.9740 0.07656 0.47397 0.01846 0.66965 0.00000 0.74739
ddtaR 0.0039 0.07268 0.48501 0.01459 0.68525
Calculations 0.06881 0.49632 0.01072 0.70123
B(t,T) 5.9343 0.06494 0.50789 0.00684 0.71757
Bhat(t,T) 5.9492 0.06107 0.51972 0.00297 0.73430
B(t,t+deltat) 0.0499 0.05719 0.53184 0.00000 0.74739
Ahat(tT) 0.7474 0.05332__0.54423 0.00000 0.74739
Leaf Node Calculations
Strike Price (x1000)| Leaf Node Rates P(t,T) Put Option Pricq
0.592739659 0.107542 0.394178702 198.5609571
0.103669 0.40336644 189.3732193
0.0997957 0.412769067 179.9705919
0.0959228 0.422389868 170.3497908
0.0920498 0.4322351683 160.5044913
0.0881768 0.442309947 150.4297121
0.0843038 0.452619555 140.1201043
0.0804308 0.463169465 129.5701944
0.0765578 0.473965278 118.7743813
0.0726849 0.485012437 107.7272219
0.0688119 0.496317378 96.42228055
0.0649389 0.507885822 84.85383732
0.0610659 0.519723909 73.01575033
0.0571929 0.531837924 60.90173459
0.0533199 0.5442343 48.50535859
0.049447 0.556919287 35.82037224
0.045574 0.569900273 22.83938581
0.041701f 0.583183828 9.555831284
0.037828 0.596777003 Q
0.033955 0.610687015 g
0.030082 0.62492125 g
0.0262091] 0.639486884 g
0.0223361] 0.654392402 Q
0.0184631 0.669645346 g

0.014590
0.010717
0.0068441.
0.0029711

0.717570494
0.73429
0.7473906

