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Abstract 

 

 Real Estate Investment Trusts (REITs) are correlated with the stock and real estate 

markets; both of which exhibit seasonal fluctuations.  In this study, key factors that influence the 

seasonal volatility of Equity REIT (EREIT) returns are analyzed, and EREIT seasonal volatility 

is modeled using a periodic generalized autoregressive conditional heteroskedasticity (P-

GARCH) model.  EREIT returns are found to exhibit more pronounced seasonal volatility 

patterns than the general stock market.  EREITs show increased overall volatility in April, June, 

September, October and December along with a greater sensitivity to news arrival in the summer 

months.  The results provide a more complete description of EREIT volatility patterns that can 

be used as a framework for those involved in trading EREITs or EREIT options.  The study also 

establishes the P-GARCH model as a useful tool for modeling EREIT volatility. 
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1.  Introduction 

 Real Estate Investment Trusts (REITs) are publicly traded investment companies that 

invest in real estate properties and mortgages.  REITs are generally classified into two broad 

categories; Equity REITS (EREITs) invest at least 75% of their total assets in income producing 

real estate properties, and mortgage REITs (MREITs) invest at least 75% of their total assets in 

residential or commercial mortgages.  REITs are a unique asset because of their dependence on 

the stock, bond and real estate markets.  Most previous research has focused on EREITs because 

they make up 85% of all publicly traded REITs.  From 1992 to 2003 EREITs have grown in 

market capitalization from just under $11 billion to over $175 billion, as a result they are 

becoming a more common part of an investors portfolio and are more frequently traded.  It is 

therefore important that their price movements be understood and that a comprehensive picture 

of the return and volatility structure of EREITs be available. 

In this study, key factors that influence the seasonal volatility of EREIT returns are 

analyzed, and EREIT seasonality is modeled using a periodic generalized autoregressive 

conditional heteroskedasticity (P-GARCH) model.  The P-GARCH model accommodates a 

seasonal structure in the volatility of EREITs that brings the residual series closer to normality.  

The results of this study provide a more complete description of EREIT volatility and 

interactions of EREITs with other markets; this could be useful in options trading and for those 

investing in EREITs or adding them to a portfolio.  The study also establishes the P-GARCH 

model as a useful tool for modeling EREIT volatility processes. 

2.  Past Research 

 Past research on EREITs provides insight into the complex interactions between EREITs 

and the stock, real estate and interest rate markets, and the possible sources of EREIT 



 5

seasonality.  Most studies have focused on the influence of stock market and bond market factors 

on EREIT returns.  Peterson and Hsieh (1997) examine EREIT returns using the five-factor 

model of Fama and French (1993).  Fama and French found that the average returns on U.S. 

common stock can be explained by size (price x shares outstanding), book-to-market ratio, the 

term premium of interest rates, the default risk premium of interest rates, and a market factor.  

Peterson and Hsieh argued that because EREIT shares trade on the major stock exchanges just 

like common stocks, this model could also be applied to EREITs.  The two interest rate factors in 

the model are used to capture the portion of EREIT cash flows that stem from bond-type 

products such as the long-term fixed leases often held by EREITs or the mortgages held by the 

underlying real estate properties.  They found that this five-factor model predicts EREIT returns 

in a similar manner to common stock returns, and the three stock market factors in the model 

were particularly significant for EREITs. 

 Chan, Herdershott, and Sanders (1990) used a multi-factor CAPM to model EREIT 

returns.  They used five macroeconomic factors that were pre-specified by Chen, Roll, and Ross 

(1986), including (a) industrial production, (b) expected inflation, (c) unexpected inflation, (d) 

risk structure of interest rates and (e) term structure of interest rates.  The risk and term structure 

of interest rates and unexpected inflation were found to be significant in explaining EREIT 

returns.  However, EREIT returns were approximately 60% less sensitive to these factors than 

stock returns.  This implies that EREIT returns are explained by slightly different factors than 

stock returns. 

 These studies provide evidence that while the performance of EREITs can be explained 

by general factors that influence the performance of stocks and bonds, EREIT returns may be 

less sensitive to these factors.  In addition, other factors, such as activity in the real estate market, 
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likely play a role in EREIT return series.  For example, Young and Geltner et al. (1996) 

examined the relationship between EREIT returns and the National Council of Real Estate 

Investment Fiduciaries (NCREIF) property index, a commonly used indicator of the quarterly 

performance of commercial property in the United States.  They found that lagged values of the 

NCREIF index were significant in explaining EREIT returns.  Gyourko and Keim (1992) found 

that EREITs were correlated with small-cap stocks returns1, with a correlation coefficient of 

ρ=0.82, and EREITs were also positively correlated with the National Association of Realtors’ 

(NAR) existing home price appreciation rate (ρ=0.41). 

 Previous research on seasonality in REIT returns is limited, with no studies on the 

seasonal volatility structure of EREITs.  Friday and Peterson (1997) examined return seasonality 

in EREITs.  They concluded that EREIT returns exhibit the “January effect” that is common in 

stock returns, in which the January returns are significantly higher than other months on average.  

They postulated that the January effect in EREITs and most other stocks is caused primarily by 

pressure to sell toward the end of the year by investors who have seen losses throughout the year.  

This increased selling artificially deflates end of the year prices, only for prices to rebound in 

January. 

While research on the seasonality of EREITs is sparse, evidence for seasonality in the 

stock and real estate markets is well documented.  Chinloy (1999) found that the housing real 

estate market displays pronounced seasonal returns, with returns to housing markets higher in the 

summer months.  Young and Geltner et al. (1996) investigated the NCREIF property index and 

found slight quarterly seasonality in the returns of commercial real estate.  This finding of 

seasonal returns in the NCREIF property index is also supported by Graff (1998). 

                                                 
1 Higher correlation of EREITs with small-cap stocks is most likely due to the small to mid size capitalization of 
most EREITs as stated by Gyourko and Keim (1992). 
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Returns and volatility of stocks and the stock market have been shown to follow several 

seasonal patterns.  Hamilton and Lin (1996) determined that stock market volatility could be 

characterized by the stage of the general business cycle, in which higher volatility is more 

common during economic recessions.  The seasonal volatility of stock returns on a monthly basis 

was analyzed by Beller and Nofsinger (1998).  Using a GARCH-M model with seasonal 

intercepts in the volatility equation, they found that stock volatility is significantly higher in 

January and October, similar results were also found by Glosten et al. (1993). 

Given the seasonal fluctuations found in the returns and/or volatility of stocks and real 

estate, it is likely that EREITs also experience seasonal volatility, given their unique status as 

assets connected to both the real estate and stock markets.  The next two sections of this paper 

will describe the GARCH and Periodic GARCH models, followed by a section describing the 

data, and then the estimation of the models along with an interpretation of results and a 

concluding section. The models and interpretation will focus on addressing the issue of seasonal 

volatility in EREITs using a Periodic GARCH model in order to gain a better understanding of 

the patterns and structure of EREIT volatility and provide a basis for further research. 

3.  GARCH Model Overview 

 The Autoregressive Conditional Heteroskedasticity (ARCH) process was first introduced 

by Engle (1982).  This process addresses the issue of heteroskedasticity and volatility clustering 

frequently found in financial markets by specifying the conditional variance as a function of the 

past squared errors, allowing volatility to evolve over time. 

The ARCH(q) model can be given by 
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where tR  is an observable stationary discrete time stochastic process, 1t−Ω  is the information set 

at time t-1, δ  is a constant, tε  is a random error, and 2
tσ  is the conditional variance of tε . 

This model was later generalized to the form most commonly used today, the Generalized 

ARCH, or GARCH model proposed by Bollerslev (1986).  The GARCH(p,q) variance 

specification is given by 
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This model allows for the conditional variance to be linearly dependent on the past behavior of 

the squared residuals and a moving average of the past conditional variances2.  The lagged 

squared error terms imply that if past errors have been large in absolute value, they are likely to 

be large in the present, leading to volatility clustering. 

 The GARCH model holds several advantages over the ARCH model and many others 

when fitting financial data.  The addition of the lagged conditional variances is important 

because the iβ  coefficient allows for a smooth process, which evolves over a long time period.  

GARCH also lets volatility depend on lagged conditional variances and squared errors that are 

farther in the past without the need for a large number of coefficients.  By comparison, ARCH 

models, which include a limited number of lags in the conditional variance, are classified as 

more short memory models (Elyasiani 1998).  Lamoureux and Lastrapes (1990) provide an 

explanation to the economic theory behind the presence of ARCH effects.  They argue that 

                                                 
2 For a more detailed analysis of ARCH and GARCH models see Hamilton (1994) pp. 655-677 or Greene (2003) pp. 
238-247. 
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ARCH effects can be thought of as the appearance of clustering in trading volume on the micro 

level.  According to Bollerslev et al. (1992), GARCH effects are due to volatility clustering 

which results from macro level variables such as dividend yield, margin requirement, money 

supply, business cycle and information patters.  Two plausible explanations for volatility 

clustering are provided by Engle et al. (1990): the news arrival process and market dynamics in 

response to the news. 

 Previous empirical evidence of GARCH effects in the return series of EREITs is 

provided by Devaney (2001).  He employed a four-factor Arbitrage Pricing Theory (APT) model 

with a GARCH in the mean (GARCH-M) process to model the returns of EREITs as measured 

by the monthly levels of the NAREIT index.  The GARCH-M specification is used to investigate 

the presence of a risk premium that changes over time in the mean equation.  While Devaney did 

not find evidence for a GARCH-M model in EREITs, he did find GARCH effects at the 1% 

confidence level.  The evidence from this study gives reason to explore more GARCH models 

and applications to explain EREIT returns.  

 The GARCH(1,1) model has been shown to sufficiently fit most economic time series 

data (Bollerslev 1987) and it will be used in this study to provide a rich description of the 

volatility process.  The GARCH model will also lead to a method of detecting and measuring the 

presence of seasonal volatility, which will be described in the next section.  Bollerslev et al. 

gives the following description of GARCH models: 

The GARCH specification does not arise directly out of any economic theory, but 
as in the traditional autoregressive and moving average time series analogue, it 
provides a close parsimonious approximation to the form of heteroskedasticity 
typically encountered with economic time series data. (Bollerslev et al., 1988, 
p.119) 
 

4.  P-GARCH models 
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 The P-GARCH model was first introduced by Bollerslev and Ghysels (1996) as a means 

of better characterizing periodic or seasonal patterns in financial market volatility.  This model is 

similar to the GARCH model but now includes seasonally varying autoregressive coefficients.  

The class of P-GARCH(p,q) processes can be defined as 

 2 2 2
( ) ( ) ( )

1 1

q p

t s t is t t i js t t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  (3) 

where s(t) is the stage of the period cycle at time t.  When estimating this model, the conditional 

variance, 2
tσ , must be positive in order for a plausible fit to be obtained.  According to 

Bollerslev and Ghyels, conditions may need to be placed on the ( )s tω , ( )is tα , and ( )js tβ  

parameters for a positive variance to result.  These conditions can be formulated on a case-by-

case basis according to Nelson and Cao (1992) who suggest the condition of restricting the two 

seasonal coefficients to be non-negative, with the seasonal intercept strictly positive. 

The effects of seasonal volatility are generally limited to variation in the intercept 

parameter, ( )s tω , but the P-GARCH model allows for a more versatile structure in which all the 

conditional variance parameters can vary with each season or period.  The autoregressive 

coefficient, ( )is tα , can be interpreted as quantifying the direct impact of news arrival.  This is due 

to the fact that ( )is tα  is the coefficient on the lagged error term.  The error term shows that there 

is not perfect information available and therefore when news arrives, the model will not be able 

to perfectly predict this new information.  The magnitude of the ( )is tα  term then illustrates the 

extent to which the news arrival, or error term, affects the volatility.  A larger ( )is tα  implies a 

greater sensitivity to news arrival. 
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The ( )js tβ  coefficient describes the smooth long-term volatility process development.  

Since ( )js tβ  measures a long-term effect, it is acceptable to restrict the seasonal variation to the 

( )s tω  and ( )is tα  parameters while keeping ( )js t jβ β≡  constant when searching for a relatively 

short term period process such as the monthly seasonal estimations to be made in this study 

(Bollerslev and Ghysels 1996).  The improvement that the P-GARCH and other GARCH family 

specifications provide for a model, if correctly applied, can be seen by not only looking at the 

statistical significance of the seasonal coefficients, but also by looking at selection criteria, 

reduction of serial correlation in the residuals and squared residuals and reduced kurtosis and 

skewness in the model, a sign that the specification brings the series closer to normality (Glosten 

et al. 1993, and Bollerslev and Ghysels 1996). 

5.  Data 

 The EREIT series analyzed in this paper are two of the most comprehensive and 

commonly referred to EREIT indices: the Wilshire REIT index and the National Association of 

Real Estate Investment Trusts (NAREIT) EREIT index.  The principle analyses in this paper will 

use the Wilshire index, the NAREIT index has been included as a means for comparison and to 

ensure that the patterns found in the Wilshire index can be generalized to other EREIT indices. 

The NAREIT EREIT index is a value-weighted index of all publicly traded EREITs, 

which currently totals 150 assets.  Monthly levels of the NAREIT index are available from 

February 1972 to the end of 2002.  However, daily returns of the index were only measured 

starting in 1999, providing 1043 daily observations.  This relatively small time period of daily 

data for the NAREIT index is not ideal for gathering seasonal data because only a small number 

of seasons, or months in this case, are observed.  However, this series still provides some reliable 

results that can be compared with the Wilshire Index results.  The Wilshire REIT index is a 
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value-weighted index consisting of a comprehensive cross-section of all publicly traded EREITs 

that have a book value of at least $100 million (currently 106 EREITs).  Daily data from this 

index is available starting on February 1, 19963.  This gives a very complete data set of 1804 

observations ending December 31, 2002 and covering many months in order to provide a rich 

analysis of any seasonal patterns that might be present. 

Returns, tr , are calculated as the daily percentage change in price, tP , defined by: 

1100*log( / )t t tr P P−= .  The excess returns, tR , are then calculated as the daily return minus the 

daily return on the 3-month T-Bill.  The data are then fit to the their appropriate ARMA model in 

order to remove serial correlation in the residuals and to allow for more reliable GARCH 

estimates.  Both excess return series are found to have an AR(1) structure, which is common 

when working with index data.   Daily data is used as the primary means of analysis because it 

enables a more complete description of the volatility patterns that may be occurring in certain 

months, and daily observations provide a considerably larger data set.  Table 1 contains the 

summary statistics for the daily excess returns. 

Table 1   
Summary statistics on EREIT excess returns 
  Wilshire Index NAREIT index
Observations 1804 1043
Mean 0.0386 0.0046
Std. Dev. 0.731 0.721
Skewness -0.086 0.281
Kurtosis 9.786 7.857
Jarque-Bera statistic 3463.92** 1038.85**
ARCH LM test 216.23** 120.97**
ADF unit root test -37.43** -27.02**
Significance levels are **=1%, and *=5% 

 

                                                 
3 Data for the Wilshire Index is available at http://www.wilshire.com or through the Center for Research in Security 
Prices (CRSP), ticker symbol REI. 
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 Both of these series exhibit excess kurtosis and skewness which leads to the 

rejection of normality with the Jarque-Bera test.  The presence of ARCH effects are seen in the 

residuals by the ARCH LM test, which rejects the null hypothesis of no ARCH effects at the 1% 

level for both series.  The Ljung-Box Q(30) test for serial correlation in the residuals finds no 

correlation in the first 30 lags at the 1% confidence level.  However, the large values of the 

Q(30) test of the squared residuals suggest that volatility clustering is present in the return series.  

It is also important to note that the Augmented Dickey Fuller (ADF) test rejects the existence of 

a unit root in both series, providing evidence that the data series are stationary. 

6. Estimation and Empirical Results 

 All of the models here are estimated using the Log Likelihood Object in EViews v4.1 

which uses the Marquardt Algorithm.  Bollerslev and Ghysels (1996) provide a derivation of the 

log likelihood function for the P-GARCH model which they determine to be the sum of the log 

likelihoods for each of the seasonal cycles.  Due to the extreme non-normality of the residuals 

for both excess return series, the Quasi Maximum Likelihood Estimators are actually estimated.  

This non-normality will not be a problem because Bollerslev and Ghysels (1996) state that the 

results of previous studies indicate that for moderately large sample sizes the Quasi Maximum 

Likelihood Estimators are comparable to the Maximum Likelihood Estimators. 

Model 1: GARCH(1,1) 

 The first model estimated is a GARCH(1,1) model.  This specification is be given by 

 2
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2 2 2
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| ~ (0, )
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The sum of the coefficients in the conditional variance equation, ( )α β+ , must be less than unity 

for the process to be stationary.  This sum also indicates the level of persistence in the volatility 
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shocks.  A sum close to unity is favorable for providing evidence of a persistent volatility 

process (Bollerslev 1986). 

The results of this analysis are reported in table 2.  These results show that all coefficients 

are highly significant and the volatility process is persistent and stationary in both series.  The 

excess kurtosis is also considerably reduced from the original series.  The Q(30) test for the 

squared standardized residuals fails to reject the null hypothesis of no serial correlation of up to 

30th order at the 1% level, indicating that the model has adequately fit the dependence structure 

in the volatility.  However, the Jarque-Bera test still rejects normality at the 1% level, implying 

that there is room for a more dynamic model to improve the specification and normalize the 

standard error series.  When the ARCH LM test is applied to these results, it rejects the null 

hypothesis of no ARCH effects, indicating that the ARCH structure of both series is represented 

by the GARCH(1,1) model.  These results provide strong evidence of ARCH and GARCH 

structures in both series and show that the GARCH(1,1) model can reduce the excess kurtosis. 

Table 2   
Model 1: GARCH(1,1) models   
  Wilshire Index NAREIT Index 
δ 0.059*** 0.010***
ω 0.028*** 0.062***
α 0.213*** 0.186***
β 0.745*** 0.691***
Log Likelihood -1688 -1031
Akaike information criteria (AIC) 2.076 2.064
Schwartz information criteria (SIC) 2.041 2.183
Kurtosis 6.527 6.594
Skewness -0.16 -.058
Jarque-Bera 942.62*** 561.98***
***Significance at the 1% level   
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Model 2: P-GARCH(1,1) with seasonal ( )s tω  

 The next model estimated is the P-GARCH(1,1) specification with α  and β  held 

constant.  This model is represented by 

 2
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2 2 2
( ) 1 1

| ~ (0, )
t t

t t t

t s t t t

R

N
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ε σ
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The seasonal function, ( )s t , is assigned to the months of the year, with 1 ( ) 12s t≤ ≤  where 

month 1 is January.  It was not necessary to apply any restrictions on the parameters for this 

model, as all of the coefficients are positive.  Table 3 shows results from this model, along with 

estimates from the S&P 500, which will be used to detect sources of EREIT volatility patterns. 

Table 3    
Model 2: P-GARCH(1,1) with monthly intercepts   
 Wilshire Index NAREIT index S&P 500 
δ 0.053*** 0.012 0.056**
ω1 (Jan) 0.016** 0.076*** 0.036**
ω2 (Feb) 0.027*** 0.075*** 0.064***
ω3 (Mar) 0.038*** 0.066*** 0.026
ω4 (Apr) 0.054*** 0.150*** 0.058***
ω5 (May) 0.017*** 0.076*** 0.003
ω6 (June) 0.054*** 0.118*** 0.024**
ω7 (July) 0.029*** 0.090*** 0.060***
ω8 (Aug) 0.032*** 0.074*** 0.043*
ω9 (Sep) 0.063*** 0.235*** 0.027
ω10 (Oct) 0.070*** 0.177*** 0.062***
ω11 (Nov) 0.014* 0.047** 0.015
ω12 (Dec) 0.087*** 0.181*** 0.057***
α 0.186*** 0.196*** 0.081***
β 0.731*** 0.572*** 0.895***
Log Likelihood -1665 -1012 -2829
AIC 1.964 1.991 3.158
SIC 1.973 2.122 3.204
Kurtosis 5.487 4.983 4.602
Skewness -0.148 0.157 -0.363
Jarque-Bera 471.43*** 175.24*** 232.31***
Significance levels: ***=1%, **=5%, and *=10%  
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This specification provides statistically significant estimates at the 1% level for nearly all 

intercepts of both series.  A noteworthy improvement of this model is the considerable decrease 

in excess kurtosis and the Jarque-Bera test statistic of both index return series.  For example, the 

kurtosis of the Wilshire Index is reduced from 6.527 in the GARCH(1,1) model to 5.487 in this 

model.  Also, serial correlation is not found at up the 30th order in the squared residuals at the 1% 

confidence level according to the Ljung-Box Q(30) test. 

Both series display consistent patterns of markedly increased volatility in terms of the 

seasonal intercept for the months of April, June, September, October and December.  Note that 

the Wilshire and the NAREIT series have similar volatility patterns in the parameter estimates, 

but the magnitude of the parameters differ.  The larger magnitude in the volatility of the 

NAREIT index is most likely due to the shorter time period modeled.  Several hypotheses can be 

presented for the increase in volatility for these specific months.  The past research on REITs 

already presented shows their connection with variables from several markets, including the 

stock, bond and real estate markets.  It is possible that the seasonal volatility patterns of EREITs 

are simply in line with the seasonal patterns of the overall stock market. 

To test this hypothesis, the same P-GARCH model is applied to the excess returns of the 

S&P 500 over the same sample period as the Wilshire Index (2/1/1996 – 12/31/2002).  These 

results can be seen in table 3.  The S&P 500 presents similar increases in volatility for the 

months of April, October and December, while other months such as February and August are 

also both significant and higher.  This suggests that some of the seasonal volatility of EREITs 

can be attributed to the volatility fluctuations of the general stock market. 

The commonly observed increased volatility in April and December is likely the effect of 

year-end selling for tax purposes and then tax payment time in April.  Glosten et al. (1993) 
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provide several explanations for why market volatility is higher in certain months.  They 

speculate that the fourth quarter, and December in particular, is an important holiday season for 

consumer sales.  Investors then begin to anticipate and predict the key consumer spending 

figures, and this level of uncertainty about the state of the economy creates higher volatility 

levels in the stock market.  Glosten et al. notes that the higher volatility in October is due to the 

inclusion of October 1987 in their sample period.  However, this is not a valid explanation for 

higher October volatility in this study because the sample period is from February 1996 forward. 

As previous research has found EREITs to be correlated with interest rates, it is 

appropriate to investigate possible seasonality in short-term interest rates that could affect EREIT 

volatility patterns.  Interest rate seasonality has been shown to be minor, if it exists at all.  This is 

not surprising because the implicit seasonal policy of the Federal Reserve has been to reduce, 

and possibly eliminate, seasonal fluctuations in interest rates.  Lawler (1979) found that the 3-

month T-Bill rates tend to be lower in February and then reach their peak from July to 

September.  Nonparametric tests of interest rate seasonality were performed by Sharp (1988), in 

which he found evidence for seasonal variation in the short T-Bill rate from 1952-1985.  

Indications that the short interest rate tended to be higher in July through September were also 

found in this study.  However, Barth and Bennett (1975) found no evidence for a systematic 

month-to-month pattern in interest rates.  The presence of seasonal volatility in the short-term 

nominal interest rate was found by Jaditz (2000).  He used monthly intercepts in the variance 

equation to determine that a small degree of seasonal volatility is present in nominal interest 

rates, with February being the most volatile month and December being the most stable.  These 

studies provide evidence for possible seasonality in both the mean and variance of short-term 

interest rates.  However, the overall volatility levels of short T-Bills are very small compared to 
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EREITs and other equities, and the variation from month to month in short T-Bill volatility 

appears to be small, if it does indeed exist, and most likely is not a significant factor in the 

seasonal fluctuations of EREIT volatility.  

These results suggest that some of the seasonality of EREITs may be a result of the 

underlying market volatility, but they also provide evidence that EREITs show signs of a unique 

and more pronounced volatility pattern.  The seasonality in EREITs is very well defined in terms 

of the statistical significance of the ( )s tω  parameters while the S&P 500 displays a less 

pronounced pattern, as evidenced by the fewer number of significant intercept terms.  The more 

definite pattern visible in EREITs could be due to their correlation with the real estate market.  

For example, the volatility increase of EREITs in June might be in response to the start of 

increased activity in real estate as the summer months begin, as shown by Chinloy (1999).  Also, 

the lower levels of volatility seen in the winter months of January, February and March could be 

the result of the decreased winter activity in real estate construction and home sales.  This model 

is a major improvement over the standard GARCH(1,1) model, but the P-GARCH process is still 

being partially restricted by imposing the condition of ( )s tα α≡ .  In the next model, this 

condition will be eliminated and a more dynamic volatility process will be estimated. 

Model 3: P-GARCH(1,1) with seasonal ( )s tω  and ( )s tα  

 By allowing the autoregressive parameter, ( )s tα , to vary, a more flexible and realistic 

model is formed.  This P-GARCH model is given by 
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When this model is estimated with no restrictions placed on the coefficients, the Wilshire Index 

model converges and produces positive variance estimates.  However, several of the intercept 

coefficients for the NAREIT index were negative, resulting in the possibility of an unrealistic 

negative variance.  To correct for this problem, the absolute value of the coefficients are 

estimated, leading to positive values for all significant coefficients (Bester 1999).  This 

procedure is not fully theoretically justified but the results will still be presented here.  Monte 

Carlo tests were run on simulated data to ensure the usefulness of estimating the absolute value 

of the coefficients.  The results from these simulations show that, in general, the models 

converge and tend to produce reliable estimates for some of the coefficients, but there is a 

tendency for many of the coefficients of a 12 period model, such as the one used here, to not be 

statistically different from zero.  For example, 15 of the 25 parameter simulation estimates were, 

on average, not statistically different from 0 at the 5% confidence level.  A detailed summary of 

the results and Monte Carlo procedures from these simulation tests are available in the appendix 

in tables 5 and 6. 

The results from the model 3 P-GARCH(1,1) estimation can be seen below in table 4.  

Nearly all of the coefficients for the Wilshire Index are statistically significant at the 1% and 5% 

levels.  However the NAREIT Index parameters, specifically the ( )s tα  parameters, are not as 

consistent in their significance.  This could be due to the different estimation technique used, or 

the relatively smaller sample size of the NAREIT index which prevents this dynamic P-GARCH 

process from being evident.  There is no evidence of serial correlation in the first 30 lags of the 

squared residuals at the 1% level by the Q(30) test.  This model is able to further reduce the 

excess kurtosis in both models, even though the null hypothesis of normality is still rejected.  

Glosten et al. (1993) note that properly specified GARCH family models should be able to 
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reduce the excess skewness as well as kurtosis.  The skewness of the Wilshire residual series for 

this model show a decrease from both the original GARCH(1,1) model and the P-GARCH(1,1) 

of model 2, signifying that this dynamic P-GARCH model is a more appropriate specification. 

Table 4    
Model 3: P-GARCH(1,1) with seasonal   
intercepts and autoregressive coefficients  
 Wilshire Index NAREIT Index S&P 500 

δ 0.059*** 0.008 0.053**
ω1 (Jan) 0.022*** 0.047*** 0.073**
ω2 (Feb) 0.024*** 0.067*** 0.085**
ω3 (Mar) 0.032*** 0.032 7.94E-06
ω4 (Apr) 0.030*** 0.087* 0.069**
ω5 (May) 0.013*** 0.068*** 0.005
ω6 (June) 0.037** 0.109*** 0.040*
ω7 (July) 0.005 0.029 0.048
ω8 (Aug) 0.003 0.065*** 9.95E-06
ω9 (Sep) 0.009 0.184*** 0.019
ω10 (Oct) 0.036*** 0.098** 0.076***
ω11 (Nov) 0.017* 0.025 0.007
ω12 (Dec) 0.060*** 0.177*** 0.079***
α1 (Jan) 0.005 0.073** 0.032
α2 (Feb) 0.088* 0.039 0.047
α3 (Mar) 0.066** 0.180** 0.108***
α4 (Apr) 0.145*** 0.188*** 0.056*
α5 (May) 0.042** 0.025 0.071***
α6 (June) 0.161** -3.39E-05 0.064**
α7 (July) 0.178*** 0.292*** 0.044*
α8 (Aug) 0.223*** -0.026 0.131***
α9 (Sep) 0.215*** -0.064 0.084*
α10 (Oct) 0.115*** 0.158** 0.062
α11 (Nov) 0.039* 0.136** 0.084***
α12 (Dec) 0.133*** 1.47E-05 0.040*
β 0.813*** 0.711*** 0.902***
Log Likelihood -1647 -1004 -2821
AIC 1.857 1.977 3.162
SIC 1.936 2.101 3.242
Kurtosis 5.04 4.873 4.443
Skewness -0.047 0.224 -0.316
Jarque-Bera 313.51*** 161.29*** 186.33***
Significance levels: ***=1%, **=5%, and *=10%  
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The estimates of β  for both series are different than in the simple P-GARCH model, 

indicating that allowing for the seasonal impact of news arrival changes the smooth evolution of 

the volatility, in an ideal model β  would remain relatively stable.  For two months of the 

Wilshire Index estimates, the sum of ( )s tα β+  exceeds unity, however this does not mean that 

the process is not covariance stationary.  For a P-GARCH(1,1) model the condition that 

( )( ) 1s tα β+ <  for all ( )s tα  is a sufficient but not necessary condition for the process to be 

stationary.  Bollerslev and Ghysels (1996) show that a P-GARCH(1,1) model is stationary if the 

geometric mean of all the ( )s tα β+  terms is less than unity4.  The geometric mean of these terms 

in the Wilshire estimates is 0.928 so the process is indeed covariance stationary.  It should be 

noted that both the Akaike Information Criteria (AIC) and the Schwartz Information Criteria 

(SIC) of the Wilshire Index appear to slightly favor this new model over both models 1 and 2, 

suggesting the importance for a less restrictive model of the periodic structure of EREIT 

volatility.  The AIC and SIC are model selection criteria similar to an adjusted 2R , but they both 

place a larger penalty on the loss of degrees of freedom that occurs when a model is expanded.  

For the AIC and SIC, a smaller number is associated with a better model.  The SIC shows a 

smaller improvement than the AIC; this could be a result of expanding the model because the 

definition of the SIC favors simpler models5. 

A closer look at the results of this model shows the same seasonal patterns in the ( )s tω  

parameter as model 2 and also reveals a new pattern for the autoregressive parameter, ( )s tα .  A 

majority of the following analysis will be limited to the Wilshire Index results, as they are more 

                                                 

4 The geometric mean of the sequence { }12

( ) ( ) 1s t s t
α β

=
+  is defined by 

1
12 12

( )
( ) 1

( )s t
s t

α β
=

 
+ 

 
∏  

5 For a more detailed description of AIC and SIC see Greene (2003) pp. 159-160. 
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reliable and no restrictions are needed for the process to be well defined, and the NAREIT index 

was originally included only as means for comparison.  The autoregressive coefficients are 

consistently larger for the summer months of June, July, August and into September.  This 

indicates that EREITs have a greater sensitivity to news arrival during the summer. 

Once again, a similar model was estimated for the S&P 500 in order to investigate the 

source of the seasonal patterns of EREITs.  The findings of the S&P 500 model are similar to 

those from model 2 and the results can be seen in table 4.  The S&P 500 has slightly larger 

autoregressive coefficients in the summer months, specifically August and September.  However, 

the seasonality in the ( )s tα  parameter is not as pronounced and consistently different from zero as 

in the Wilshire Index, indicating other seasonal factors at work in EREIT returns.  Aside from 

the effects of the general stock market, the values of ( )s tα  may be higher in the Wilshire Index as 

a result of EREITs interaction with the real estate market.  The increased activity of the real 

estate market in the summer months would make it more sensitive to any news arrival that could 

potentially help or hurt this crucial real estate season.  This increased news sensitivity in the real 

estate market could cause the direct impact of news arrival relating to real estate to have a larger 

impact on EREIT volatility, thereby increasing ( )s tα  for these months. 

 To ensure the reliability of using Log Likelihood estimation in Eviews as the estimation 

technique for P-GARCH(1,1) models, Monte Carlo simulations were run on simulated data using 

the same P-GARCH models and procedures as used in models 2 and 3.  All of the Monte Carlo 

simulations were performed using a sample size of 1800, which is comparable to the sample size 

of the Wilshire Index.  However, 3600 observations were actually simulated and the first 1800 

observations discarded to avoid start-up problems (Bollerslev and Ghysels 1996).  The 

appropriate P-GARCH(1,1) models with periodic cycles of lengths 6 and 12 were simulated and 
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then tested using the Log Likelihood estimation procedure in EViews.  The simulation results 

demonstrate that this method produces reliable coefficient estimates for model 2.  The procedure 

for the non-restricted model 3 was reliable for a cycle of length 6 but lost some of its accuracy 

for 12 phases.  However, 17 of the 25 parameters were still estimated to be, on average, 

statistically different from 0 at the 5% confidence level, and these coefficients were also 

relatively close to their true value.  These results provide evidence for the validity of the Log 

Likelihood estimation procedure for these P-GARCH(1,1) models.  The exact simulation results 

have been included in the Appendix in tables 7-9. 

7. Conclusion 

 The estimation of these three models illustrates the presence of a P-GARCH structure 

which allows for greater flexibility in modeling the seasonal volatility patterns of EREITs.  

Model 1 shows that a GARCH(1,1) specification is an appropriate model to explain the volatility 

structure, but does not address the issue of seasonality.  Using model 1 as a benchmark, the two 

P-GARCH models provide a richer dynamic description of the periodic volatility in EREIT 

returns.  Importantly, not only are most of the parameters for all the models significant and 

positive, but also each model reduces the amount of excess kurtosis, thereby bringing the 

residual series closer to normality.  It should also be noted that all models estimated, expect the 

NAREIT index in model 3, are found to fit the P-GARCH specification and have positive 

variance without the need for parameter restrictions. 

 In summary, the study finds that EREITs display seasonal volatility patterns in which 

their overall return volatility is higher during the months of April, June, September, October, and 

December.  The hypotheses investigated here show that some of the EREIT seasonality may be 

attributed to the volatility patterns of the primary stock markets that EREIT shares trade in, such 
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as the S&P 500.  However, the seasonal volatility patterns of EREIT returns are more 

pronounced and persistent than the seasonal patterns of the major stock markets, perhaps a result 

of EREITs connection with the highly seasonal real estate market.  The sensitivity of EREIT 

returns to news arrival is found to be higher during the summer months, possibly as a result of 

the importance of these months in the real estate market. 

 The problems encountered in estimating these models are not major but could be resolved 

or improved in future research.  The restrictions applied when estimating the NAREIT index 

estimates in model 3 are not fully theoretically justified and could be eliminated with a more 

advanced estimation technique, or possibly by analyzing a longer sample range.  Also, the 

inconsistency of the parameter estimates for the NAREIT Index in model 3 could potentially be 

alleviated with a larger and higher quality data set. 

 Overall, the findings are promising for the application of P-GARCH models in 

identifying seasonal volatility patterns of EREITs.  The results also provide a more complete 

description of EREIT volatility patterns that can be used as a framework for those involved in 

trading EREITs or EREIT options.  Potential directions for future research include the 

development of more sophisticated P-GARCH models and a more in-depth interpretation and 

explanation of the seasonal volatility patterns of EREITs. 
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Appendix 

Results from Monte Carlo simulations testing the effectiveness of the method of 

estimating the absolute value of the coefficients when using the Log Likelihood procedure, as 

used for the NAREIT index in model 3.  A total of 3600 observations were simulated and then 

the last 1800 used to obtain estimates for the coefficients in Eviews.  25 simulations were 

performed for each variation of the models.  The numbers presented in the tables below represent 

the actual parameter value used in the simulation, the averaged estimated value of this parameter 

along with the average statistical significance of each parameter, and then the average standard 

error for each parameter. 

        Table 5 
P-GARCH(1,1) Simulated Data and Estimates 
Performed by estimating the absolute value of each parameter 

 True Value 
Simulation Estimates   
(Average) 

Standard Error 
(Average) 

ω1 1.7 2.197*** 0.815
ω2 1 1.250** 0.528
ω3  2.1 2.565** 0.949
ω4  1.5 1.828** 0.690
ω5  0.9 1.012*** 0.336
ω6  2.3 2.821*** 0.861
α1  0.09 0.068 0.041
α2  0.13 0.097** 0.040
α3  0.15 0.141*** 0.043
α4  0.1 0.085* 0.036
α5  0.06 0.056 0.036
α6  0.11 0.065 0.043
β 0.8 0.796*** 0.040
log likelihood  -5025  
AIC  5.589  
SIC  5.629  
MSE  8.824  
Average Significance Levels: *=10%, **=5%, ***=1% 
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        Table 6 
P-GARCH(1,1) Simulated Data and Estimates 
Performed by estimating the absolute value of each parameter 

 True Value 
Simulation Estimates 
(Average) 

Standard Error 
(Average) 

ω1  1.7 2.530* 1.346
ω2  1 1.372 0.890
ω3  2.1 2.244* 1.175
ω4  1.5 1.93** 1.040
ω5  0.9 1.074 0.496
ω6  2.3 2.821** 1.080
ω7  2 2.312* 1.224
ω8  1.8 2.355** 1.193
ω9  1 1.467 0.907
ω10  1.3 1.703** 0.715
ω11  2.2 2.991* 1.231
ω12  2.5 3.485* 1.787
α1  0.09 0.062 0.052
α2  0.13 0.11* 0.062
α3  0.15 0.144** 0.063
α4  0.1 0.089** 0.055
α5  0.06 0.039 0.050
α6  0.11 0.089** 0.068
α7  0.09 0.076 0.060
α8  0.14 0.108 0.057
α9  0.12 0.105** 0.057
α10  0.09 0.064 0.053
α11  0.13 0.088 0.059
α12  0.16 0.134** 0.055
β 0.8 0.794*** 0.040
log likelihood  -5166  
AIC  5.763  
SIC  5.839  
MSE  21.940  
Average Significance Levels: *=10%, **=5%, ***=1% 
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The remaining tables present the results from testing the effectiveness of the Log 

Likelihood estimation with no parameter restrictions.  This method was used for all the models 

except the NAREIT index in model 3.  The same procedure as describe above was used.  

Overall, the procedure provides a very reliable and accurate estimation technique. 

        Table 7 
P-GARCH(1,1) Simulated Data and Estimates 
No parameter restrictions  

 True Value 
Simulation Estimates 
(Average) 

Standard Error 
(Average) 

ω1  1.7 1.777* 0.904
ω2  1 1.081* 0.511
ω3  2.1 2.216** 0.700
ω4  1.5 1.710** 0.745
ω5  0.9 1.115** 0.499
ω6  2.3 2.227*** 0.714
ω7  2 2.373** 0.880
ω8  1.8 2.030** 0.818
ω9  1 1.108* 0.561
ω10  1.3 1.478*** 0.532
ω11  2.2 2.121*** 0.731
ω12  2.5 3.092*** 1.072
α 0.13 0.121*** 0.022
β 0.8 0.802*** 0.034
log likelihood  -5324  
AIC 5.921  
SIC 5.964  
MSE 8.682  
Average Significance Levels: *=10%, **=5%, ***=1% 
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        Table 8 
P-GARCH(1,1) Simulated Data and Estimates 
No parameter restrictions 

 True Value 
Simulation Estimates   
(Average) 

Standard Error 
(Average) 

ω1 1.7 2.005** 0.733
ω2 1 1.162** 0.508
ω3  2.1 2.579** 0.942
ω4  1.5 1.661** 0.644
ω5  0.9 1.008*** 0.337
ω6  2.3 2.422*** 0.761
α1  0.09 0.075 0.040
α2  0.13 0.121*** 0.039
α3  0.15 0.139** 0.042
α4  0.1 0.094* 0.037
α5  0.06 0.047 0.037
α6  0.11 0.109** 0.041
β 0.8 0.798*** 0.038
log likelihood  -5039  
AIC  5.604  
SIC  5.644  
MSE  8.86  
Average Significance Levels: *=10%, **=5%, ***=1% 
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        Table 9 
P-GARCH(1,1) Simulated Data and Estimates 
No parameter restrictions 

 True Value 
Simulation Estimates 
(Average) 

Standard Error 
(Average) 

ω1  1.7 2.176** 1.251
ω2  1 1.336** 0.791
ω3  2.1 2.305** 1.113
ω4  1.5 1.967** 1.023
ω5  0.9 1.085** 0.531
ω6  2.3 2.872*** 1.047
ω7  2 2.131** 1.021
ω8  1.8 1.926** 1.071
ω9  1 1.132** 0.770
ω10  1.3 1.503** 0.705
ω11  2.2 2.501** 1.118
ω12  2.5 3.515** 1.740
α1  0.09 0.079* 0.052
α2  0.13 0.106* 5.145
α3  0.15 0.136** 0.063
α4  0.1 0.076* 0.051
α5  0.06 0.041 0.061
α6  0.11 0.06 0.067
α7  0.09 0.074* 0.065
α8  0.14 0.138** 0.058
α9  0.12 0.118** 0.055
α10  0.09 0.075* 0.053
α11  0.13 0.111* 0.064
α12  0.16 0.137** 0.059
β 0.8 0.797*** 0.037
Log likelihood  -5167  
AIC  5.759  
SIC  5.836  
MSE  19.928  
Average Significance Levels: *=10%, **=5%, ***=1% 
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