

The software described here is not approved for clinical purposes and should not be used for diagnosis or treatment.

Goals Address a large variety of image analysis problems. Generate "a-ha" moments

Outline Introduction Exercises

Introduction Experience levels What kind of problems do you need to solve? Why is open source / freeware / shareware interesting? Can be modified? Cheap? Rage against large corporations?

Plan

- Review the four major tasks
- Filtration
- "improving" an image
- Segmentation
 - solating what is important in an image, a structure or a feature
- Registration
 - placing objects into a common spatial context
- Display
 - showing results to a human observer

Sample applications

- Why is (fill in my favorite application) not included?
- Windows, Mac, *Nix
- Variety of tools, with different advantages

Application 1: ImageJ

- Multi-format image analysis tool
- Java (runs essentially everywhere)
- Open source
- Sponsor: research services branch, NIMH (Wayne Rasband)

ImageJ

- http://rsb.info.nih.gov/ij/
- Audience: everyone
- Why I like it and use it

Application 2: MIPAV

- MIPAV = Medical Imaging Processing, Analysis and Visualization
- Java (runs essentially everywhere)
- Freeware
- Sponsor: Center for Information Technology, NIH (Matthew McAuliffe)
- http://mipav.cit.nih.gov/
- Audience: Biomedical imagers
- Why I like it

Application 3: MRIcron

- 3D Display software
- Lazarus (freepascal): (runs essentially everywhere)
- Open source
- Sponsor: Chris Rorden, University of South Carolina
- http://www.sph.sc.edu/comd/rorden/mricron/
- Audience: Brain researchers
- Why I like it

Communications

- One hand in the air: question
- Two hands crossed in the air: technical problem

Notes

Memory hogs! Quit one program before opening others

Exercise 1: Load and Display

- Loading and displaying 2D images, singly or in series
 - .dcm
- Loading and displaying volumetric image sets
 - Analyze, nifti
- Windowing and leveling

Exercise 2: DICOM

- Working with DICOM images
 - Viewing header information
 - Why important?

Exercise 3: Ins and Outs of ROIs

- Region-of-interest analysis
 - Creating
 - Saving
 - Measurements

Exercise 4: Programming and macros

- Recording your moves
- Saving what you did
- The power of macros
- Other methods to extend programs

Exercise 5: Filtration

- Simple Filtration
 - Gaussian smoothing
 - Median filtering
- Edge detection
- Complex Filtration
 - Anisotropic diffusion filtering
- Why filter?

Exercise 6: Thresholding A part of segmentation Background vs. foreground Many foregrounds! Binary images Multi-Otsu Thresholding Binary operations

Exercise 7: Image Math Addition, Subtraction, Multiplication, Division Min and Max Image calculations

Exercise 7: Putting it together for DWI Calculate ADCs. $S = S_0 \cdot e^{(-b \text{ ADC})}$ ADC = $(\ln(S_0/S))/b$ Radiology standard, ADC measured in 10^{-3} mm²/sec If b = 1000 sec/mm^2 , then $ADC_{radiology} = \ln(S_0/S).$

Exercise 11: Registration to an atlas

Register to atlas or standard data
Example of localization

Exercise 12: 3D Imaging

Reformatting
MIP
Surface rendering

Exercise 13: Beyond 3D imaging

4D imaging

3D imaging over time

5D imaging

Time, channel

Making your computer a PACs node

- K-Pacs, Windows (http://www.k-pacs.de/)
- Osirix, Mac (http://www.osirix-viewer.com/)
- ConQuest, Unix

(http://www.xs4all.nl/~ingenium/dicom.html)

Discussion

- Differences between freeware, shareware and open source
- Capabilities
- Advantages
- Drawbacks

Resources

- Resources
 - Internet Analysis Tools Registry (IATR) :
 - Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) h
 - Idoimaging (Andrew Crabb):

-lclunie.com/papers/PACS2006OpenSource.pd

References

- Erickson BJ, Langer S, Nagy P. The role of open-source software in innovation and standardization in radiology. J Am Coll Radiol, 2005 Nov;2(11):927-31.
- Nagy P. Open source in imaging informatics. J Digit Imaging. 2007 Nov;20 Suppl 1:1-10.
- Marcus DS, Archie KA, Olsen TR, Ramaratnam M. The open-source neuroimaging research enterprise. J Digit Imaging. 2007 Nov;20 Suppl 1:130-8
- Caban JJ, Joshi A, Nagy P. Rapid development of medical imaging tools with open-source libraries. J Digit Imaging. 2007 Nov;20 Suppl 1:83-93. Barboriak DP, Padua AO, York GE, Macfall JR. Creation of DICOM-aware applications using ImageJ. J Digit Imaging. 2005 Jun;18(2):91-9.

Acknowledgements

- ImageJ Wayne Rasband, NIH
- MIPAV Matthew McAuliffe, NIH
- MRICroN Chris Rorden, University of South Carolina
- And the respective open source communities

Acknowledgements

Wells Mangrum, M.D. - Duke