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Abstract

Computational models have been underutilized as tools for formal theory development,

closing off theoretical analysis of complex substantive scenarios that they would well serve. I

argue that this occurs for two reasons, and provide resolutions for each. One, computational

models generally do not employ the language or modes of analysis common to game-theoretic

models, the status quo in the literature. I detail the types of insights typically derived

from game-theoretic models and discuss analogues in computational modeling. Two, there

are not widely established procedures for analysis of deductive computational models. I

present a regularized method for deriving comparative statics from computational models

that provides insights comparable to those arising from game-theoretic analyses. It also

serves as a framework for building theoretically tractable computational models. Together,

these contributions should enhance communication between models of social science and

open up the toolkit of deductive computational modeling for theory-building to a broader

audience.
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Computational modeling is an approach, complementary to game theory, in which one

formally specifies rules of behavior, and then computes the consequences of these rules in

a population of actors, often called agents (De Marchi and Page, 2014; Miller and Page,

2007). Its merits include improvements in our ability to: model large, finite, and heteroge-

neous populations; model complex interdependencies between actors and/or deviations from

strict rationality assumptions; and explore system dynamics and non-equilibrium behavior

(De Marchi and Page, 2014). Given these merits, computational modeling is arguably un-

derutilized as a tool of formal modeling. I propose two reasons for this, and offer possible

resolutions for each.

First, computational models generally do not employ the language or the modes of anal-

ysis common to game-theoretic models. This a problem given game theory’s place as the

status quo in developing formal political theory. I address this by detailing the types of

insights typically derived from game-theoretic models and discussing analogues in deduc-

tive computational modeling. I focus particularly on comparative statics, as these often

generate a model’s testable hypotheses. In game-theoretic models, one derives compara-

tive statics to illustrate the manner in which the equilibrium of the model changes with

exogenous parameters. One can do the same in computational models, even those employ-

ing simulation-based approaches (replacing “equilibrium” with “steady-state”). My hope

is that fostering a common language can spur more productive engagement between these

complementary methodologies.

Second, there are not widely established procedures for deductive computational model

analysis, as there are for game-theoretic models. To address this, I present a regularized,

hierarchical procedure for building computational models and computing their comparative

statics. There are three major benefits from following this approach, which I call sequential

parameter sweeping (SPS). One, the computation of comparative statics provides directly

comparable insights to those arising from a game-theoretical analysis. Two, the procedure I

detail for the computation involves sequentially and hierarchically constructing a model in

a manner designed to make it theoretically tractable. This provides a framework for model
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development and for building on previous work. Three, the procedure relies on techniques

that are commonly known to empirical scholars, including simulation and numerical opti-

mization, opening to them the toolkit of computational modeling for theory-development.

I illustrate this last point with an example of a computational model intended to provide

theoretical expectations for a program evaluation.

Analysis Machines

Broadly speaking, game-theoretic models are used to derive one of three types of insight. The

first arises directly from the equilibrium of the model. The second arises from the strategic

incentives present in equilibrium. The third arises from the comparative statics of the model.

In this section I will discuss each in turn, along with its analogue in computational models.

Before doing so, I offer two scope conditions for my discussion. First, I leave more

detailed positive arguments for the use of computational models to others; see De Marchi and

Page (2014) for a recent example. Second, I limit my attention to deductive computational

models, since game theory is a deductive enterprise and I am attempting to illuminate the

commonalities between game-theoretic and computational modeling.1

Deductive computational models have many of the same characteristics as do game-

theoretic models.2 Specifically, one assumes a set of actors, actions, and outcomes from joint

actions in each. In both cases these assumptions go into an analysis machine, and one turns

its crank to produce insights.3 In game theory that machine is joint utility optimization

and the crank is algebra and analysis. In computational modeling (of the deductive sort)

1In the language of De Marchi and Page (2014) these are “intuition engines” (9), rather than data-driven
“high-fidelity models.” Though I confine discussion to models in which conclusions are drawn from a single set
of assumptions, as in game theory, the method of analysis I propose could be folded into a generative modeling
approach, which seeks systems of assumptions that could account for particular regularities (Epstein, 2006).

2I use the phrase “game-theoretic models” as shorthand for “game-theoretic models solved analytically.”
I class “game-theoretic models solved computationally” with other computational models for reasons given
below. I do not significantly address other types of deductive formal models that are solved analytically
(e.g., Bendor et al. 2010) as these are less common in political science. I also focus on actor-level behavior,
rather than system dynamics, for comparability with game theory.

3Thanks go to Keith Krehbiel for the analogy. See Hunt et al. (2008) for a related argument in biology.
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that machine is a set of behavioral rules dictating actions to be taken in response to stimuli

and the crank is computation (which is really just arithmetic).4 Each is more useful in some

domains, but there is essentially no difference between the goals of the two forms of deductive

modeling.

To make this clearer I will stick to the phrase “computational model” rather than the

more common “agent-based model (ABM).” The former phrase is informative in the same

way “game-theoretic model” is; it describes the machine (or set of possible machines) and

the crank in use. The latter is uninformative: strictly speaking, game-theoretic models are

also based on agents’ behavior, and utility maximization is a valid behavioral rule.5

Insights from Equilibrium/Steady States

Analyzing a game-theoretic model entails proving the existence of an equilibrium of the

model, and often deriving it. Thus, I focus first on the importance of the equilibrium

itself. From one perspective, the enormous literature analyzing simple games, such as those

of cooperation, coordination, and public goods, centers on equilibrium outcomes. From

cooperation games like the prisoner’s dilemma (PD), we learn that we can arrive at socially

worse outcomes if individuals have incentives to deviate from socially better actions. From

coordination games we learn the difficulty of coordinating on an outcome when more than

one could be an equilibrium. From (continuous) public goods games we learn that public

goods may be under-provisioned in equilibrium. What these examples, and many more, have

in common is that they are derived from the point prediction produced by game-theoretic

analysis: the equilibrium strategies played by each actor.

4I do not limit the definition of behavioral rules to those with psychological origins. They may include,
for example, evolutionary mechanisms of selection, replication, and mutation; rational choice; or other rules
that dictate responses to stimuli.

5The term “ABM,” as a synonym for individual-based model, is more useful when intended to contrast
with population- or system-level analysis. This distinction is about unit, rather than method, of analysis,
though; computational models may be used both at the individual and the system level. Given the dearth
of population-level formal theorizing in political science, there is little reason for unit-level distinctions. In
fact, I believe that, rather than usefully delineating differences between the approaches, calling the use of
computers to assess models “agent-based modeling” only serves to artificially separate approaches and make
it easier to discount computational modeling entirely.
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The analogue to this in computational models is analysis of the steady state or limiting

distribution of the model. Because computational models can take many forms, this claim

needs unpacking. Some computational models, e.g., Baron and Herron (2003); Groseclose

(2001), are virtually identical to game-theoretic ones. The behavioral rule they employ is

utility optimization, and the computer simply numerically computes the equilibrium of the

encoded game. In these cases the steady state of the computational model is an equilibrium

that is exactly equivalent to that found in game-theoretic models, and admits identical

insights.

Other computational models, e.g., Bendor et al. (2011); Kollman et al. (1992), may em-

ploy utility functions or similar preference constructs for actors, but do not assume that

actors optimize according to their preferences. Rather, actors in these models utilize other

behavioral rules to choose actions, such as satisficing or hill-climbing. Still other computa-

tional models, e.g., Laver (2005), do not specify formal preferences at all, instead assuming

behavioral rules directly. Computational models of either type do not produce outcomes

exactly equivalent to game-theoretic equilibrium; there is no equivalent requirement in such

models to the game-theoretic notion of no beneficial deviation by any actor. However,

the steady states and limiting distributions of these models are still directly analogous to

game-theoretic equilibrium, allowing these types of computational models to produce similar

insights to game-theoretic ones.

To see how, note that the appropriate language for such computational models is that

of the stochastic process (Laver and Sergenti, 2011).6 Each of these models has a state

vector that specifies the core properties of the system at any time.7 The actions of the

actors, as dictated by their behavioral rules, contribute to a transition rule that takes the

system between its states. In other words, transitions between states in the stochastic

6A deterministic model is a degenerate stochastic process. Stochastic processes are formal mathematical
constructs that can admit analytic solutions, depending on the particular process modeled. In other words,
not all models of stochastic processes need be solved computationally. See Bendor et al. (2010) for an
example.

7The use of a computer forces the number of states to be finite, though potentially effectively infinitely
large.
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process are functions of prior states and present and prior actions. These transitions may be

deterministic or they may be stochastic. A steady state or limiting distribution represents

the state or distribution over states that is invariant under the transition rule. These notions

thus represent the equilibrium of the stochastic process in the truest sense of the word, as

they characterize the distribution of states that, once reached, is henceforth unchanging.

If the stochastic process encoded by a particular computational model is ergodic, then it

converges to its unique limiting distribution from any initial distribution over states. This

unique limiting distribution is just like the unique equilibrium of a game-theoretic model,

and can be interpreted similarly. In both cases the model produces a singular outcome that,

once reached, will henceforth be unchanging. If this outcome depends on the parameters of

the model, then, as I discuss below, we can compute comparative statics to discern how the

outcome changes with the parameters. From this analysis we can draw hypotheses about

the dependence of the equilibrium on the parameters.

If the stochastic process encoded by a computational model is not ergodic it may have

more than one steady state. An example of this would be a system with multiple absorbing

states, as is common in the presence of path dependence (Page, 2006). In such cases we don’t

know in which state the system might end up, though, at least in the presence of multiple

absorbing states, we often know that the system will end up in one of these states. This is

analogous to multiple equilibria in a game theoretic model, and has all the same problems of

multiple equilibria: it is unclear how to interpret outcomes and how to assess comparative

statics. That said, we can address these problems in the same fashion as we do in the presence

of multiple equilibria. We can either eliminate unwanted equilibria via refinements or derive

comparative statics that apply to more than one equilibrium/steady state/limiting distri-

bution, as is done, for example, in monotone comparative statics (Ashworth and Bueno de

Mesquita, 2006).

Regardless of the number of different steady states, however, the central point is that a

steady state or limiting distribution may be interpreted just as is an equilibrium in game
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theory: as the point from which no actor will alter the distribution of actions it is taking.8

Computational modelers seeking to compare the intuition behind their results to that derived

from game-theoretic equilibrium would do well to derive steady states or limiting distribu-

tions from their models. Framing their results accordingly will enhance readers’ ability to

assess the intuitions derived from their models and will reduce confusion stemming from a

lack of comparability. Doing so will also highlight the mathematical rigor of the method:

the steady state or limiting distribution of an ergodic process, for instance, is a well-defined

mathematical object, as is an absorbing state.

Further, deriving steady states or limiting distributions will allow computational models

to engage in deriving theories of institutions, rather than solely institutional analysis (Dier-

meier and Krehbiel, 2003). In other words, it will allow one to address the question, via

comparison of steady states, of which institutions produce normatively better outcomes, as

game-theoretic work has done with respect to institutions such as judicial review (Dragu and

Board, 2015; Fox and Stephenson, 2011).

Insights from Strategic Incentives/Pathwise Properties

Game theory’s focus may be on equilibrium behavior; however, underlying every equilibrium

are the strategic incentives of the actors, and these incentives can be directly of interest to

us. Consider again the PD. The equilibrium of mutual defection is not the only object of

interest; we also learn from the existence of a private incentive to defect from cooperation.

Or consider a public goods game. We care not only about the equilibrium of sub-optimal

provision, but also the incentive to free-ride off others’ contributions. Though these incentives

are often viewed as part and parcel of an equilibrium, they are in many ways more general.

For example, one might have an incentive to defect or free-ride even if one’s behavioral rule

is not optimization, and even if no equilibrium is reached.

To get at the incentives directly in a game-theoretic context, one looks to the derivation

of the equilibrium. Best response functions provide the clearest connection to incentives, as

8This assumes, of course, that actions are part of the state.
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they tell the analyst exactly how an actor optimally responds both to other actors’ actions

and to exogenous parameters. In other words, best response functions express incentives

to take actions given specific contexts.9 For example, the best response of each actor in a

PD to all actions by one’s opponent is to defect, capturing the private incentives that lead

inexorably to the unique equilibrium of mutual defection.

Behavioral rules encode these incentives in much the same way as do best response func-

tions. A behavioral rule dictates how an actor should respond to a particular set of stimuli.

If that response is optimization and the stimuli are other actors’ actions and exogenous

parameters, then the behavioral rule and the best response function are identical.

When responses and stimuli in behavioral rules differ from those in game theory, we can

still derive an analogue to incentives. Here we use the concept of pathwise properties in

stochastic processes. If a steady state is where a stochastic process ends up, the path of a

process is the way it gets there. Pathwise properties are characteristics that all paths betray.

Importantly, one can specify the path (or paths) the system takes when there are many

steady states, or even none at all. For example, Bendor et al. (2011) model retrospective

voting via a stochastic process in which a voter becomes more likely, over a series of elections,

to vote for a party the better that party has performed for that voter in the past, according to

that voter’s interests. Steady-state properties of this model speak to long-run distributions

of voter behavior in the population. Pathwise properties, in contrast, specify the manner

in which the distribution of voters’ behavior changes from election to election, in this case

moving toward the steady state.

Pathwise properties thus connect directly to incentives, in that they express the underly-

ing impulses of actors that drive their behavior over time, and in some cases produce a steady

state. To make this analogy more concrete, consider the simple example of a participation

game with strategic complementarities and a constant cost of participation. Though the

9In the absence of best response functions, one can discuss trade-offs that represent dueling incentives. The
technique of monotone comparative statics particularly highlights this (Ashworth and Bueno de Mesquita,
2006), as it deals with comparisons of marginal gains and losses.

7



equilibrium of such a game is static, the incentives that underlie it produce a best response

function that is increasing in the number of others who are already participating. A simple

behavioral rule in which others’ participation increases one’s own likelihood of participating

encodes similar incentives. The pathwise properties of a stochastic process based on such a

rule will capture these incentives dynamically. For example, beginning from a point of no

participation in the population, along all paths participation of all individuals will weakly in-

crease as people over time respond to others’ choices. Though in this example the incentives

are obviously hardwired into both types of models in a way that does not require solving the

game or deriving pathwise properties to identify, the point remains for more complex situa-

tions: pathwise properties dynamically capture behavioral regularities that mirror incentives

in game theory.

In short, then, computational modelers seeking to compare the intuition behind their

results to that derived from game-theoretic incentives would do well to derive pathwise

properties from their models. Doing so would allow them to compare changes in behavior

over time in their models to the incentives that drive equilibrium behavior in game-theoretic

models.

Insights from Comparative Statics

Equilibrium predictions in game-theoretic models present a high bar for empirical testing.

They are point predictions, after all, and in the social sciences we rarely believe our models

are sufficiently well-determined so as to produce accurate point predictions. Thus, particu-

larly for models in the tradition of EITM—Empirical Implications of Theoretical Models—we

often focus not on the equilibrium of the model, but rather on the manner in which the equi-

librium changes with exogenous parameters. We call this deriving the comparative statics

of the model, because we are comparing different static equilibria that arise with different

values of the parameters.

Various techniques exist for determining the comparative statics of a game-theoretic

model, from simple differentiation of an explicitly solved equilibrium, to implicit differentia-
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tion of an expression that defines an equilibrium, to techniques like monotone comparative

statics which can produce comparative statics without necessarily solving for the equilibrium

first (Ashworth and Bueno de Mesquita, 2006). In all cases the result is the same: a state-

ment of how an endogenously determined outcome of the model changes with an exogenous

parameter.

Comparative statics can also be derived from any computational model that admits a

steady state or limiting distribution.10 They have the exact same meaning as do those in

game-theoretic models, and allow direct comparisons. Computational modelers seeking to

compare the intuition behind their results to that derived from game-theoretic comparative

statics would do well to derive comparative statics from their models. I suggest procedures for

how to do so in the next section. Following these procedures as one builds a computational

model has added benefits as well. One, doing so helps ensure that one’s computational

model is theoretically tractable, meaning that one can derive clear causal linkages between

endogenous variables and exogenous parameters from an analysis of the model. Two, doing

so helps guide researchers looking to build upon previous work by defining the scope of what

can be added without losing sight of causal linkages. Before getting to this, though, I briefly

elaborate on the connections between computation and analysis.

Computation Versus Analysis

I summarize the connections between game-theoretic and computational modeling in Table

1. The key distinction that has been highlighted thus far is the “crank” row. As we’ll see

in more detail in the next section, computation opens up new kinds of models to rigorous

analysis but cannot generate closed-form solutions. This makes certain kinds of analysis,

such as comparative statics, trickier in all but the simplest cases.

Though the “crank” turned in our analysis machine is often correlated with the type

of machine, it need not be. While most examples of formal modeling in political science

10Again, as above, finding comparative statics when there are multiple potential steady states produces
the same problems as does finding them when there are multiple equilibria.
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Type of Model: Game Theory Computational Modeling

Analysis Machine: Joint Utility Optimization Any Set of Behavioral Rules
“Crank”: Mathematical Analysis Computation

Long-run Solution Concept: Equilibrium Steady State/Limiting
Distribution

Incentives Visible in: Best Responses Pathwise Properties
Effect of Parameters via: Comparative Statics Comparative Statics

Table 1: Modeling Connections

are either analytic game-theory or computational modeling of boundedly rational behavior,

as previously noted one could solve models of boundedly rational behavior analytically or

game-theoretic models computationally.

Comparative Statics from Computational Models

There are numerous ways to derive useful results from computational models. The method

I describe here has a specific intent: to provide comparative statics that are comparable

to those derived in game-theoretic models. This method is most useful when employing

computational modeling as a deductive theoretical enterprise, and may be less useful in other

contexts. The foundation of the method is nested, hierarchical modeling: first one develops

and analyzes a simpler model than one wants, then one attempts to add complexity in

manageable stages. This foundation bears similarity to common statistical practice, as well

as the common practice in applied game theory of starting with a well-understood model and

then adding one or more new wrinkles. It also is related to the idea of a nearly decomposable

system Simon and Ando (1961).

The Problem

Before describing the method, it helps to identify the challenges in deriving comparative stat-

ics from computational models. Comparative statics of a game-theoretic model are mathe-

matical statements specifying the manner in which endogenous equilibrium variables change

with variation in exogenous parameters. Most commonly, they are expressed as a set of
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derivatives. Because these are derived analytically, one can deduce the manner in which

interactions of parameters affect the equilibrium. For example, if an equilibrium variable,

x∗(α, β), is a function of its two parameters, then the comparative static dx∗(α,β)
dα

can be a

function of both parameters as well. From this one can discern not only if x∗ is increasing

in α, but also if this relationship depends on the value of β.

Mirroring this flexibility presents a problem for computational modeling. To make this

problem as stark as possible, consider a behavioral rule of joint utility optimization, so that

the computational model computes the game-theoretic equilibrium numerically. How would

one compute the comparative statics of this model?

Let’s start with a single parameter and so a one-dimensional parameter space. Ideally

we want the derivative of the equilibrium at every point in this space. In practice we can

get away with computing it at a finite subset of points as long as they are sufficiently close

together and the equilibrium does not respond too quickly to its parameter. Assume that we

subdivide the parameter space into regions of width ε, where ε is small relative to the rate of

change of the equilibrium in its parameter. If we then compute the value of the equilibrium

at the endpoints of these regions, we can linearly approximate comparative statics at any

point in a straightforward manner: dx∗(α)
dα
≈ x∗(α+ε)−x∗(α−ε)

2ε
.11

If there are instead two parameters, one could subdivide the two-dimensional parameter

space into a grid with squares of area ε2 and compute the derivative in each dimension, at

the cost of an exponential increase in computational time. If this is not a barrier, one could

even compute the cross-partial derivative at each grid point in order to understand the pat-

tern of interaction between the parameters. This requires performing the same differencing

operation used to compute the derivative with respect to the first parameter, but this time

on the derivative itself with respect to the second parameter: ∂2x∗(α,β)
∂α∂β

≈
∂x∗(α,β+ε)

∂α
− ∂x

∗(α,β−ε)
∂α

2ε
.

In theory, this process can be continued up to any number of parameters and any di-

11There are other, higher-order approximations of the derivative one could compute, as well as rules of
thumb for the optimal value of ε to use. But we are just concerned with the existence of a computed
derivative.
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mension of interaction among the parameters. If the computation of the equilibrium is

straightforward, the equilibrium well-behaved, the domain of each parameter bounded, and

the number of parameters small, this may be the way to go. It certainly provides the most

complete comparative statics.

However, if any of these conditions fails to hold, then the exponential increase in compu-

tational time will constrain and this procedure becomes untenable. This is one manifestation

of the “curse of dimensionality” (De Marchi, 2005) and it underlies the common computa-

tional modeling maxim KISS: keep it simple, stupid (Axelrod, 1997). But what if modeling

the interaction you want to model requires more than a couple of parameters?

A commonly proposed solution to this problem is the use of sampling. For example,

Smirnov and Fowler (2007) sample parameter values uniformly across the parameter space

and compute equilibria and their first derivatives at each sampled point. This is a time-

efficient procedure given a slightly larger set of parameters and may be very effective when

the equilibrium of the model is well-behaved.12

But what if the model is not well-behaved, perhaps because it is expected to produce

non-linearities or non-monotonicities, as in many computational models? Then one must

potentially substantially oversample in regions of the parameter space in which the equilib-

rium displays non-linearities or non-monotonicities. This is difficult to do when one does not

start knowing the location of such regions. The same sampling problem holds if parameters

have potentially unknown interactive effects: one must oversample appropriate regions of

the parameter space that capture important parameter combinations. Thus, if the model is

not well-behaved, an approach based on sampling becomes problematic and is not likely to

reproduce the range of insights from analytic comparative statics, though it can be useful as

a first cut and in conjunction with other methods.

12Smirnov and Fowler (2007) assume that “the parameters [of their model] are drawn equally from all parts
of the space and each point in the space has an equal chance of contradicting the claim [of a particularly
signed comparative static]” (17) to argue that one can bound one’s confidence in one’s direct computation
of a comparative static. They compute derivatives along one direction at a time numerically in a manner
similar to that given above.
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The sampling problem gets worse when, rather than computing derivatives at each point,

one instead regresses equilibrium variables on exogenous parameters (e.g., Kim and Bearman

1997). This more common procedure adds regression model misspecification to the sam-

pling problem. If the computational model instantiates a data-generating process (DGP) in

which non-linearities, non-monotonicites, and varying interactive effects are produced, then

a proper specification of the regression model should include these. However, unless one

knows ahead of time the exact nature of all of these complications, the regression model will

have to include everything, making it extremely difficult to interpret. Leaving pieces out,

though, risks bias.13

Sequential Parameter Sweeping

The issue, then, is that any approach that mitigates the problem of having too many param-

eters to fully compute comparative statics risks missing the sort of complexity that led one to

employ a computational model in the first place. As a result, these approaches do not guar-

antee analogous insight to that produced by analytic comparative statics of game-theoretic

models, though they can get close when the equilibrium is well-behaved.

To accommodate the computation of more comparable comparative statics for a wider

range of computational models, I offer an alternative approach: sequential parameter sweep-

ing (SPS). The approach is relatively straightforward and employs a simple idea. To fully

analyze a more complex model, first analyze simpler versions of the model and build up

from there. In other words, utilize a nested, hierarchical model structure. This idea is quite

commonly employed in both empirical and game-theoretic modeling. In empirical modeling,

one often begins with simpler models that contain only key variables before exploring more

complex ones. In game-theoretic modeling, much applied modeling begins either by: (1)

starting with a well-understood model and adding one or more aspects central to a new

13In fairness, if the true DGP is actually mirrored well by the computational model’s DGP, but the
statistical model used to test the theory betrays the same misspecification as the one used in deriving
comparative statics from the computational model, then one is doing nothing worse in one’s computational
model than in one’s empirical model. However, I know no one who would argue that the best way to
accommodate a complex DGP statistically is to misspecify one’s theory!
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theory, such as commonly observed, for example, in models of electoral dynamics built upon

spatial models; or (2) writing down one’s ideal model and then eliminating inessential fac-

tors that lead to intractability. In all cases, this is done in order to better understand the

operation of key parameters without problems of interpretation generated by complications.

The general SPS approach operates similarly. Below I describe SPS informally, using a

simple game-theoretic example to highlight its core assumptions. A second, more complex

computational example follows to illustrate the use of SPS in practice. An online appendix

offers a more formal presentation of the method.14 The flowchart in Figure 1 summarizes

the steps in SPS and may be a useful reference.

SPS Informally

The first thing one does when using SPS to analyze one’s model is to identify and fully

analyze, via the computation of both steady state and comparative statics, a simplified

version of one’s model that can be captured in only 1-3 parameters. This serves as step

“zero” in SPS.

We’ll call the full model one wants to analyze M , and this simplified model M0. A good

M0 does not need to be sufficient to answer one’s research question. In fact, if it were, one

would not need SPS. Rather, M0 should be a model that answers a more basic research

question, one which must be understood fully before turning to more complex questions.

For example, before understanding mobilization under repression, one needs to understand

mobilization in its absence. Before understanding coordination in complex informational

environments, one must understand it in simple environments. Before understanding the

effects of legislative institutions on bargaining, one must understand bargaining dynamics in

the absence of institutions. And so on.

The key is to identify in one’s model a core dynamic that is theoretically distinct on

its own. Then one forms M0 from only the parameters essential in capturing it.15 Though

14The appendix may be found at http://people.duke.edu/~das76/Research/Siegel_Analysis_AJPS_
appendix.pdf.

15Boiling down one’s model to its most essential components is also a good practice in general, even if

14
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Figure 1: Flowchart for SPS
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it is always possible to choose 1-3 parameters from a model and build a simplified model

around them, focusing on theoretically distinct core dynamics helps ensure one’s choice of

simplified model is meaningful, which also aids in the successful application of SPS. In other

words, substantive considerations should drive the choice of M0 when one is not uniquely

determined by the research question.

Analyzing M0 presents no problem by construction. One needs only to compute the

steady state at sufficiently fine-grained points in the 1-3 dimensional parameter space and

then compute derivatives at each point. Simply plotting the steady state with respect to

these parameters (using conditional plots) is often sufficient to discern the signs and behavior

of the comparative statics at each point, and can be a good way to display results. The second

example below illustrates this presentation style.

Let’s see how finding an M0 could work in practice, using a deliberately simple game-

theoretic model as a template. The setting for the example is interpersonal trade. Specifi-

cally, the goal is to capture the level of trade between two people conditional on: (i) personal

endowments and (ii) a context in which the people might already be engaging in cooperative

or non-cooperative activities. Though one could construct a quite complicated model to

capture this setting, its description is intended to suggest a simpler, nested solution in which

a model of interpersonal trade (M) is layered on top of a model of cooperation (M0). Though

this M0 is insufficient to capture a research question revolving around trade as a function of

cooperation, it can capture the logically prior question of when cooperation occurs,16 and so

is a good choice.

I choose a repeated PD to model cooperation. As its solution does not require compu-

tation and will be familiar to many readers, it allows a tighter focus on the issue of model

separability that will aid in understanding how the approach might work for more complex

models.

one ends up elaborating on one’s model later. This process is often necessary in game-theoretic models to
get something tractable. For example, an unparameterized linear utility in a game-theoretic model may be
perfectly sufficient to capture the effect of signaling, while keeping the model tractable.

16The question of cooperation is logically prior because trade is assumed conditional on cooperation.
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A general repeated PD requires five parameters for each actor: four for payoffs and one

for the discount factor. That’s a total of ten parameters for two players, which is a significant

number. Most are not necessary to capture the underlying dynamic, however. I use the PD

from Fearon and Laitin (1996) and elide the in- and out-group complications in their model.

This leads to a simple model M0 that has three parameters which are identical for both

types of actor: one to capture the temptation payoff from defecting against a cooperator,

α, one to capture the sucker’s penalty of cooperating with a defector, β, and one to capture

the discount factor, δ. Its payoff matrix for the stage game is:

C D

C 1,1 −β, α

D α,−β 0,0

.

To analyze this game we’ll posit an equilibrium/steady state maintained by the use

of a grim trigger strategy.17 Given this punishment strategy, mutual cooperation can be

maintained as long as δ ≥ α−1
α−0 .

Having identified an M0, we now turn to the three-step iteration that forms the core

of the SPS approach. The goal of each iteration is to construct and fully analyze one of a

series of nested models indexed by i, Mi, such that Mm = M for some finite m. The goal

of the first step of the iteration is to identify regions of the parameter space that behave

similarly under the action of the model. This step is first applied to M0, and later to any

more complex Mi short of the full model M .

More explicitly, step one of SPS requires that the analyst see if each Mi is separable into

regions of common behavior. I provide a more formal definition of the italicized phrase in the

appendix. Intuitively, though, it means that one can label regions of the parameter space of

M0. Within each labeled region comparative statics with respect to all exogenous parameters

in M0 have roughly the same shape. The phrase “roughly the same shape” is a measure of

numerical tolerance, as discussed in the appendix. It suggests that the qualitative behavior

of the model, if not the point predictions of the model, is common to all sets of parameter

17Equilibria in repeated games are particularly easy to model computationally as they consist of rules
specifying behavior under all circumstances of prior play. This is the very definition of a behavioral rule.
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values that lie within a given labeled region. Further, not only does this common behavior

not change much as the model is made more complex, but comparative statics for exogenous

parameters that arise in more complex models also largely depend only on these labels, and

not on the explicit values of the exogenous parameters in M0.

Let’s return to the interpersonal trade setting to elaborate on this notion. The equilibrium

conditions we found in our analysis of M0 specified two distinct regions of the parameter

space: a cooperative region occurring whenever δ ≥ α−1
α−0 holds and a non-cooperative region

occurring whenever δ < α−1
α−0 holds. Are these regions of common behavior in the manner

just specified?

If they are, then within each region two things are true. One, the comparative statics with

respect to all parameters in M0 should have roughly the same shape within each region. This

is easily verifiable in this case. Variation in α and δ changes the location of the boundary

between these regions, but does not change the value of any endogenous variable (here the

actors’ strategies) within a region. Further, variation in β has no effect on either the location

of the boundary between regions or the value of any endogenous model variable within a

region.

Two, the comparative statics with respect to all parameters not in M0 but in more

complex Mi should roughly depend only on the regions of the parameter space of M0, and

not on the precise parameters that define the regions. Again this is true in this case, though

this time by assumption: we have assumed that interpersonal trade (and so the comparative

statics with respect to all new parameters in M1, defined below) is conditional only on the

presence or absence of cooperation, and not on the parameters (i.e., not on α, β, and δ) that

lead to each form of behavior. Consequently, the cooperative and non-cooperative regions

of the parameter space of M0 represent regions of common behavior in model M0.
18

18We could have gone further than this with respect to β. Since β acts completely independently of α
and δ, we could have specified an even simpler model M0 that did not include β at all and still captured
cooperation, at least under grim trigger. We could then have constructed the more complex model out of
M0 and β by adding β to the payoff matrix, as above. This new model would equally well be separable into
regions of common behavior.
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Step one is the heart of SPS, and separability represents both a weak and a strong

assumption. It’s weak in the sense that it does not require that the equilibrium/steady

state/limiting distribution be identical for all parameter values within a region. It may very

well be, for example, that the level of interpersonal trade in our example is higher within the

cooperative region in equilibrium when α = 2 than when α = 3. In this way it is weaker than

the concept of a basin of attraction, which has the property that all parameter values within

it lead to convergence of the model to some equilibrium/steady state/limiting distribution.

Separability is a strong assumption, though, in that it requires a certain level of indepen-

dence between nested models. Specifically, the parameters of model M0, such as δ, cannot

interact with any parameters in the full model M that are not also in M0 so strongly as

to change the shape of the comparative statics for the latter parameters. More formally,

assume, for instance, that r1 is a parameter in the M1 we will soon formulate for our inter-

personal trade example, and x∗ the equilibrium level of trade. Separability would require

that ∂2x∗

∂δ∂r1
be small in the interiors of each of our two regions.

Due to the strength of this assumption—it is not always possible to label regions of the

parameter space and have the comparative statics for more complex models depend only

on these labels—separability as I have defined it does not always hold. Even when it does,

identifying regions of common behavior can require substantial additional analysis.

That said, it is important to note that one need not rely only on the analysis of one’s own

simplified models to discern separability; one can also use extant theory. For example, one

might build one’s model, as I have done here, on an existing model which prior analysis has

indicated possesses a small number of regions of common behavior. If one is careful to specify

additional parameters that interact in their effects only with the type of region and not with

the parameters that distinguish these regions (i.e., if one builds one’s model hierarchically),

then one can use this approach as well. In this way, the SPS approach becomes very similar to

common model-building tactics in applied game-theoretic and regression analysis, as noted.

If such model construction is infeasible and step one cannot be completed, one must halt

SPS. I discuss the consequences of this below. If one can complete step one, however, then
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one adds in step two a desired, self-contained complication to the model, as long as it is

specified by no more than 1-2 new parameters.

We call this new model M1. Choosing what complication to add first should be driven by

substantive and logical considerations, much as was the choice of M0. If there are remaining

components of M that are still logically prior to others, these should be added first, as should

components that yield the clearest message. If SPS will fail at some point this is particularly

an issue: one may want to apply SPS to part of the model, as I discuss below, and the order

of the added complications will matter for what parts of the model are analyzed by SPS.

But, if none of these are at issue, the order of complications added may not matter at all.

Returning to our example, I assumed that trade was conditional on both cooperation

and personal endowments. Thus, I define model M1 as follows. Each actor, k ∈ {1, 2}, has

an endowment parameter, rk. The state of cooperation or non-cooperation is determined by

a repeated PD that occurs in parallel with the trade decision. The latter depends on the

presence or absence of cooperation and both endowments. Employing a function C(α, β, γ)

which equals 1 under cooperation and 0 under non-cooperation, we thus can specify equi-

librium trade as x∗(C, r1, r2). In this case we have perfect separability, in that ∂2x∗
∂ν∂rk

= 0 for

k ∈ {1, 2} and ν ∈ {α, β, δ} within each region, and our earlier step one holds.

With the more complex model M1 in hand, in step three we analyze it in the same manner

previously described. Now we see the reason for the constraint of 1-2 additional parameters:

adding two parameters effectively creates a three-dimensional parameter space. In under-

taking this analysis, one uses representative values of the parameters of M0 in each region

of common behavior (i.e., each labeled region). Values are chosen for substantive reasons;

their exact values do not significantly matter by construction. This produces comparative

statics for the more complex model M1.

For our example, this means choosing a set of representative values of α, β, and δ for

each of our two regions identified in step one and then computing comparative statics with

respect to r1 and r2 at each of these two sets of representative values.

As specified, our example is now complete: M1 = M . The value of SPS in analyzing this
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example is two-fold. One, rather than having to deal with a five-dimensional parameter space

in our full model, we only needed to analyze two two-dimensional parameter spaces. This is,

of course, much more valuable for a true computational model than for our game-theoretic

one, and we will see this in the example below.

Two, the necessity of applying SPS led us to construct a nested, hierarchical formal model

to address our research question. This allowed the derivation of insight not just from the

full model, but also from the nested cooperative model. This insight was trivial given our

familiarity with the iterated PD, but would not have been for a more novel model.

Though we have now fully computed comparative statics for our example, SPS need

not end after one pass for more complex models. The SPS approach dictates that one

iterates steps one through three, switching Mi for Mi+1, until either one has fully analyzed

one’s desired model M or no regions of common behavior can be identified in step one.

Depending on the flexibility one has in modeling, once can reduce the possibility of the latter

by designing one’s model complications to produce separable regions of common behavior.

This is more likely when one’s theory is itself structured hierarchically, or is comprised of

many independent components.

To see how this might work, again return to our interpersonal trade example. Assume

first that the analyst desires to study several behaviors in and out of a state of underlying

cooperation, but that these behaviors are all independent, apart from their joint reliance

on cooperation. In a case like this, one could continue to add complications to the model,

iterating SPS with each complication. There are two reasons one can do this. First, no

specific complication would alter the separability of M0 into regions of common behavior.

Second, if each model complication were independent of all others, than all models arising

from these complications would remain separable as well.

This example displayed perfect separability between model components, but this is not

necessary to apply SPS, as we will see in the computational example below. In general, as

described in more depth in the appendix, a greater tolerance for numerical approximation

allows more flexibility. The standard given as part of SPS focuses on rough similarities in
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the shapes of comparative statics within each region of common behavior, without a focus

on the boundaries between regions, but this standard could be varied by end-users of the

method based on need.

What one cannot have while performing SPS are comparative statics that depend strongly

not just on rough properties (like cooperation) of regions of common behavior of simpler

models, but also on specific parameter values of those simpler models. So, for example, we

would not have been able to complete step one, above, had interpersonal trade depended

not just on endowments in our M1, but also strongly on the product of endowments and α

and δ. While such a model might be a way to capture a particular type of psychological

incentive for graft, the shape of the comparative statics for all endogenous variables in M1

would depend in this case on the precise values of α and δ, giving us a four-dimensional

parameter space to analyze.

When SPS Fails

We have seen that complex models can be analyzed via SPS, as long as they are developed

deliberately in a hierarchical fashion or admit a hierarchical, nested decomposition. Thus,

if one follows this approach and seeks out separable complications, one can develop a model

that will yield by construction comparative statics providing the same sorts of insights as do

analytic comparative statics arising from game-theoretic models.

Of course, not all models can be built or decomposed in this way. It might simply be the

case that a model requires too many interactions between the parameters to be separable in

the manner the method dictates, as in the variant M1 capturing graft just described. One

solution is to simplify the model to the point where SPS can be used. Even if one does not

in the end go this route, the act of reasoning through whether this simplification is possible

is useful in itself. If nothing else it provides supporting justification for one’s model that will

be important to include to head off claims that the model is unnecessarily complicated.

Should one not be able to simplify the model—and, again, one should be careful making

this claim—then one has a few options. First, one can take SPS as far as it will go, and
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simply stop there. This leaves the full model unanalyzed, but does provide a clear picture

of some simpler model Mk.

Second, one could take SPS almost as far as it will go and then apply multiple, non-

nested extensions. To see how this would work, assume that one can iterate in SPS only

up to some model Mk, leaving a series of other desired complications unanalyzed. In this

case, one could return to model Mk−1 and analyze a series of versions of Mk, each with a

different complication added. This approach trades off an understanding of the interactions

between all these complications for the ability to analyze each of them with respect to the

more basic model Mk−1. This is effectively the approach typically taken in game-theoretic

analysis, across different models’ extensions of some base model, such as alternating-offer

bargaining or spatial competition.

Third, again assuming one can iterate in SPS only up to some model Mk, one could

analyze more complex models via a sampling procedure. As noted above, while this will not

provide analogous comparative statics as would a full SPS approach, it is an improvement

over solely sampling as it provides comparative statics for the simpler model. These may

themselves be substantively interesting, and may yield insight into the behavior of aspects

of the more complex model.

While these avenues exist for partial applications of SPS in order to build causal under-

standing within core aspects of the model, it is possible that deductive modeling is not the

appropriate tool of analysis for irreducibly complex models. With so many necessary, inter-

acting parameters in play, causal understanding is likely to be reduced over that available

in a simpler model. The analyst may very well be better off with a more empirically-driven

predictive model, accepting that some causal arguments are simply beyond our present abil-

ity to analyze. Even here, though, the act of attempting to perform SPS provides insight

into the best tools with which to approach the problem.
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A Computational Example

The interpersonal trade example illustrated SPS and the concept of separability, but as it

did not show how SPS would work in practice for a true computational model, I build and

analyze a simple one here.19

The model’s setting is akin to program evaluation, save prospective rather than retrospec-

tive. I assume that government: (i) faces a heterogeneously dissatisfied population whose

members interdependently consider participating in action against it; (ii) knows the size of

the population and has some assessment of average dissatisfaction; (iii) can uniformly apply

some economic or political intervention, such as infrastructure building or governance im-

provements, designed to reduce dissatisfaction; (iv) lacks information on levels of individual

dissatisfaction (Kuran, 1991) and so cannot target this intervention at the most dissatis-

fied; and (v) is considering a program that would add a costly bureaucratic layer between

government and population to gather information that would allow targeted interventions.

The question is simple: How well would this information-gathering bureaucracy work, and is

the program worth its cost? The answer would not only aid government planning, but also

help us understand the causal mechanisms underlying the results of later empirical program

evaluations, a necessary step in generalizing these to a larger class of potential programs and

substantive settings.

To begin, we must first specify an M0 that is a simplified version of our desired model

and captures a logically prior theoretical question. The simplest such M0 is a model of

interdependent decision-making in the absence of government action. To make use of prior

theoretical results I build M0 out of a simplified version of the model in Siegel (2009),

which has similar properties to Kuran’s 1991 model. In this model, individuals’ decisions to

participate in some costly collective action depend on their private motivations to act and

the level of visible participation of others in the population.

The model has three parameters: the size of the population, N , and the mean (bmean)

19Code in Java for this model is available at http://people.duke.edu/~das76/Research/

SiegelAJPSAnalysis.zip.
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Participation As Function of Standard deviation of Motivations
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Figure 2: Analyzing M0: Variation in bstdev

and standard deviation (bstdev) of the normal distribution representing the population’s mo-

tivations to participate.20

Next, we analyze M0. We have assumed known (and so fixed) values of N and bmean;21

thus, analysis entails only computing comparative statics with respect to bstdev. Figure 2

captures this analysis and allows us to see quickly that there are three different regions of

interest: low, intermediate, and high. I posit that these are regions of common behavior,

and label them as having “weak,” “intermediate,” and “strong” motivations, respectively.

I will need to check this conjecture on more complex models as they will not be assumed

separable, though it is trivially true in the one-parameter M0.

I now propose a more complex model, M1, that adds a one-time government interven-

tion. I model this intervention as a total amount by which to reduce motivations, G, which

gets divided equally across the population in the absence of bureaucracy. In Figure 3, I

display the effect on participation of varying G (on the x-axes), conditional on values of

20As the model is not ergodic, the starting level of participation is also needed as a parameter. However,
conditional on a set of initial conditions, the model evolves deterministically to an absorbing state, and
we can describe the comparative statics of the model with respect to this state. I assume no one begins
participating, as in Siegel (2009).

21Respectively 1000 and 0.6; see Siegel (2009) for justifications.
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Effect of Uniform Intervention on Participation
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Figure 3: Analyzing M1: Variation in G

bstdev (represented by the lines in the bars above each conditional plot). I do this both as

way of analysis of M1 and as a check of my conjecture on the labels in M0. Had I assumed

an independent model addition in M1, this check would not have been necessary. I could

have instead analyzed variation in G only at representative parameters in each of the three

labeled regions.

Figure 3 illustrates several things. One, my conjecture holds under the standard of

“roughly the same shape” employed by SPS. Though participation depends on the interaction

of G and bstdev, violating perfect separability, within each of the three regions the shapes

of the comparative statics with respect to G are roughly the same. Two, the shapes of the

comparative statics vary by region, and suggest a different number of regions of common

behavior in M1 in each of the regions of M0. When motivations are weak, there is only one

region of common behavior in M1, in which there is little effect of interventions. When they

are intermediate, there are two regions: (i) small interventions are effective and increasing
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their level rapidly decreases participation; and (ii) past a cutoff, further increases in level have

little effect. When motivations are strong, there are three regions: (i) small interventions

have little effect; (ii) past a cutoff, increasing their level rapidly decreases participation; and

(iii) past another cutoff, further increases have little effect. Taken together, there are six

regions of the two-dimensional parameter space spanned by bstdev and G to consider.

I make use of these regions to complete the model specification and analysis. The final

complication is the addition of an information-gathering bureaucracy to form model M2 =

M . In line with the illustrative intent of the model, I capture this simply: given a bureaucracy

of strength S ∈ [0, 1], one receives a portion of the total intervention equal to G
N

((1 −

S) + SR), where R is the ratio of that person’s dissatisfaction to the average population

dissatisfaction. Thus, more dissatisfied individuals receive more than an equal share, and

stronger bureaucracies are better able to target the intervention.

In Figure 4, I display the effect of varying S. I consider representative parameter values

that lie in five of the six identified regions of the parameter space, leaving aside the case of

weak motivations in which little participation happens even without interventions. Addi-

tional analysis, not shown, indicates that varying bstdev and G within these regions does not

appreciably change the shape of the comparative statics, so SPS can be applied.

One aspect of the results in Figure 4 is as one would expect. In regions in which increasing

intervention size has little effect on participation, bureaucracy also has little effect and is most

likely not worth its cost. In regions in which interventions do have an effect, bureaucracy

is increasingly effective the stronger it is. A second aspect is perhaps more subtle. In these

latter regions, bureaucracy is more effective when motivations are strong than when they are

weaker. The reason is that stronger bureaucracies are better at the very effective tactic of

tamping down the motivations of very dissatisfied initial actors, and there are more of these

types of individuals when motivations are strong than when they are weaker.

This completes our analysis. As in our trade example, we could further complicate this

model while still using SPS as long we didn’t induce strong dependence of comparative statics

on precise values of model parameters from simpler models. So, for example, we could let the
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Effect of Bureaucratic Strength on Participation for Intermediate Motivations
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Effect of Bureaucratic Strength on Participation for Strong Motivations
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Figure 4: Analyzing M2: Variation in S
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strength of bureaucracy vary further according to any exogenous factor that didn’t interact

with existing model components, but we could not let it vary according to a factor that

was strongly dependent on bstdev and G. The latter scenario might occur in the context of

bureaucrats who become more fearful of popular revolt as bstdev increases, and more likely

to take the money and run as G increases.

Conclusion

Computational modeling is a useful but underutilized approach for formally modeling com-

plex political and social processes. I have addressed this underutilization in two ways. First,

I proposed ways in which analysis of computational models could yield insights analogous

to those derived from game-theoretic models. Second, I detailed a method, sequential pa-

rameter sweeping (SPS), to produce comparative statics in computational models that are

readily comparable to those arising from game-theoretic analysis. One benefit of employing

SPS is it provides for greater comparability between forms of modeling, hopefully leading to

greater dialog between scholars. A second is that it can serve as a method for developing and

analyzing computational models from the ground up, as following it—and stopping further

model complexity when the method becomes no longer feasible—ensures that the model

remains theoretically tractable despite the addition of further complexity.

A third benefit goes beyond the immediate utility of the method to computational mod-

elers and game theorists in conversation with them. As empirical social science seeks to

provide concrete answers to ever more complex problems, it becomes increasingly difficult to

maintain the type of strong theoretical expectations that permit generalizable conclusions

from the local identification of causal mechanisms. As illustrated by the program evalua-

tion example provided above, computational modeling using SPS can be a useful tool for

theoretical development in such situations. This point is accentuated by the fact that the

computational tools necessary for modeling are often already possessed by empirical schol-

ars. Using these tools to derive prior predictions of empirical outcomes can help both to

structure and analyze experiments and to make arguments that empirical conclusions do not
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rest on unmeasured contextual factors, and therefore generalize to other contexts.
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Appendix for
“Analyzing Computational Models”

David A Siegel

Sequential Parameter Sweeping More Formally

I provided an informal description of sequential parameter sweeping (SPS) in the text, mak-

ing use of two examples to illustrate the method. In this appendix I formalize, to the extent

possible, some of its assumptions and arguments. This formalization is useful in applying

SPS to more complex models.

I begin by defining one’s ideal model, M . This model contains all complexity the modeler

believes is necessary to properly instantiate her theory. Since our focus is on the comparative

statics of the steady states of computational models, I formally define M as a mapping taking

a set of parameters, B, to a set of steady state variables, X. Each individual parameter is

βk, and each individual steady state variable is xl.

Next I define a sequence of nested models indexed by i, Mi, with Mm = M for some

finite m. These have a very specific property: each Mi is nested within all Mj with j > i.

Formally, to be nested means, for all j > i: (i) the set of parameters, Bi, in each model

Mi is a strict subset of the set of parameters, Bj, in each Mj; and (ii) the set of steady-

state variables, Xi, in each model Mi is a (not necessarily strict) subset of the set of steady

state variables, Xj, in each Mj. Practically, this means that one forms nested models by

removing one or more parameters and possibly one or more steady-state variables from a

more complex model. This nesting is not typically unique, and should be informed by the

substantive question. In the interpersonal trade example in the text, the PD addressed a

substantively distinct question on its own, and so made sense as a nested component of the

more complex model. In the program evaluation example in the text, collective action absent

government is one question, the effect of government interventions on collective action is a

second, and the effect of bureaucracy on the effect of interventions is a third.
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Finally, I define a separability property that connects the analyses of the Mi. Let Bin,

n = 1 . . . Ni, Ni finite for all i, be disjoint regions of the parameter space of model Mi, such

that the union of the Bin is the parameter space spanned by the set of parameters Bi. In

other words, the Bin partition the parameter space of a model Mi. We say the parameter

space of model Mi is separable into regions of common behavior if three conditions are met.

The first condition is that within each region Bin the functional dependence of each of

the steady state variables in Xi on each of the parameters in Bi must “look the same.”

Here “look the same” refers only to the shape of the comparative statics within each region,

and not to the boundaries between regions or the precise values of each endogenous variable

within regions. That is to say, what is important is that the behavior of the model Mi within

each region, as represented by the manner in which the endogenous variables change with

the exogenous parameters, is similar within the region. One must care about both sign and

rate of change of the comparative statics in assessing this condition, and extant theory is

particularly helpful in justifying adherence to it. The two examples in the text illustrate

what it means to satisfy this condition.

The first condition is, to some extent, deliberately vague: the intent is to capture different

regions of the parameter space within which the causal mechanisms driving the dependence

of each steady state variable on its parameters are common to the region. As this deliberate

vagueness comes up at several points in what follows, it is worth briefly elaborating on its

intent before moving on to the second condition.

The intent of the first condition, and SPS in general, is to understand patterns of behavior,

rather than point predictions. This same intent underlies comparative statics of game-

theoretic models, and SPS is similar to the spirit of one method of deriving them, monotone

comparative statics.1

To pursue this intent, we must define a standard for what constitutes a pattern of be-

havior. One is typically only concerned with the signs of comparative statics in game theory

models. A pattern of behavior according to this standard is a specification, possibly condi-

1Thanks to Ken Shotts for the analogy.
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tional, of the signs of all comparative statics across all subsets of the full parameter space.

SPS uses a somewhat different standard: it requires that not only the sign, but also

the rough shape of the comparative statics must be similar within each region of common

behavior. This standard is stricter than that typically used in game theory in the sense

that it is not just the sign that matters, but it is weaker in that the best one can do in a

computational model, particularly when models exhibit substantial stochasticity, is to specify

a numerical tolerance for what constitutes rough similarity.

The phrase“look the same” arises from this consideration of numerical tolerance. I could

have replaced this with a more formal definition along the lines of “the integrated difference

of the comparative statics taken at two different parameter values within a region of common

behavior must not exceed y across the domain of the region” or “the sign of the comparative

statics should not cross more than y beyond zero from above to be considered positive.”

However, this would have reduced flexibility too much for the end-user of the method, who

should remain free to specify whatever standard of “looking the same” is justified by the

research context in question.

An end-user of the method could vary the standard of numerical tolerance embedded in

SPS in more substantive ways if desired. In some cases, the analyst may find only the sign

of the comparative statics of interest, and possess broad tolerance as to numerical variability

near zero. In others, the analyst may want a more precise depiction of the complete functional

form of the comparative statics, with relatively little error. The former might occur when

one’s model is intended to be suggestive of an underlying behavior, while the latter might

occur when one believes one’s model has substantial ground truth, perhaps because many

parameters have been fitted to data. Somewhere between the two is the standard I have

used in this presentation, which was chosen under the presumption that the shapes of the

comparative statics capture the most important patterns of behavior to the researcher.

However, when considering changing the standards of SPS more substantially, it is im-

portant to note that the standard used does affect the degree to which one can employ SPS

successfully. A stricter standard of “looking the same” will generally imply less ability to
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discover regions of common behavior, and SPS will generally fail more quickly under this

stricter standard. In contrast, a very weak standard that merely focuses on the sign of

the comparative statics rather than their shape would fail less often than the one I have

presented.

I now return to discussing the separability property. To specify its second condition, we

need to link nested models. Recall that the shapes of the comparative statics, rather than

the precise parameter boundaries that specify each Bin, are what truly define each region.

Therefore, define regions B′jn of the parameter space of model Mj, j > i, in the following

manner: In each B′jn, the comparative statics for each parameter in Bi, for every steady

state variable in Xi, share roughly the same functional forms as they do in the corresponding

region Bin of the parameter space of the simpler model Mi. In other words, the comparative

statics whose similar behavior defined the Bin in model Mi also define the B′jn in model Mj

for any j > i. Note that because the more complex model Mj has a higher-dimensional

parameter space than Mi, the B′jn need not be unique, since they are specified only by the

similar behavior of comparative statics with respect to parameters and steady state variables

present in the simpler model Mi.

The second condition is that regions B′jn exist for each model Mj, for all j > i, such

that within each region B′jn the functional dependence of each of the steady state variables

in Xi on each of the parameters in Bi must “look the same,” as in the first condition. Put

another way, our first two conditions on separability of a model Mi imply that as we build

up more complex models from Mi, we must still be able to find regions of the parameter

space for every model in which all comparative statics that were present in Mi continue to

betray roughly the same functional dependence within each region as they did in Mi.

The third and final condition is the most stringent, as it specifies a particular kind of

independence between models. It states that within each of the B′jn that satisfy the second

condition, for each model Mj, for all j > i, the functional dependence of each of the steady

state variables in Xj on each of the parameters in Bj that are not also in Bi must be

approximately independent of the parameters in Bi. As in the first two conditions, this is
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left deliberately vague, for the same reasons as above. That said, approximately independent

admits a relatively easy empirical test: if one’s comparative statics for parameters that only

exist in model Mj vary substantially with parameters that exist also in Mi for j > i, beyond

variation due to being in different regions B′jn, then this condition is violated. A cross-partial

derivative of an endogenous variable with respect to a parameter in Bi and a parameter that

is in Bj but not Bi that is significantly different from zero at a point within the interior of

a region B′jn would indicate a violation of this condition.2 In other words, the comparative

statics with respect to the new parameters added in any more complex model cannot depend

significantly on the parameters in the simpler model Mi, beyond any dependence captured

by presence within a region B′jn of the parameter space of Mj.

Put slightly differently, the third condition specifies that the effects of all parameters that

are in more complex models Mj, j > i, but not in the simpler model, Mi, are approximately

independent of all parameters in Mi, apart from the role of Mi’s parameters in determining

the boundaries of the regions of the parameter space. This way of phrasing connects sepa-

rability to labeling. A nested series of models possesses separability if one can find regions

of the parameter space of each Mi, i < m, that can be labeled; additional parameters in

Mj, j > i, but not in Mi can have label-dependent effects on steady-state variables, but not

significant effects dependent on the particular values of the parameters in Mi beyond this.

Identification of these regions can require both computational characterization of Mi and

extant theory.

With separability defined, we can move to specifying SPS. SPS begins by instantiating a

simplified version of the model, M0, with no more than 3 parameters. The reduced number

of parameters in M0 should allow one to completely specify comparative statics for each

model parameter in all equilibria/steady states/limiting distributions of M0. This can be

done by direct computation. SPS then iterates the three steps below in order to instantiate a

particular sequence of models, Mi, that increase in complexity. This iteration continues until

2Leaving open what counts as “significantly different” from zero maintains the needed flexibility discussed
above.
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either: (i) Mi = M for some i, implying the full model is analyzable with SPS; or (ii) step

one fails for some i, implying only part of the model is analyzable with SPS. In the latter case

one could either: stop at the most complex model analyzable by SPS; analyze the full model

using a sampling procedure, supplementing insights from this analysis with those arising

from the partial SPS approach; use a non-nested modeling approach that implicitly ignores

interactions between model components; or reformulate one’s model in a more hierarchical

fashion so as to make more effective use of SPS. The steps to be iterated are as follows, with

i = 0 in the first pass and M0 assumed fully analyzed.

1. If possible, separate the parameter space of model Mi into regions of common behavior

(see definition above).3

2. If step one yields no such regions, or an unmanageably large number of them, cease

SPS. Otherwise, iterate model Mi toward model M . Call this new, more complex

model Mi+1; it should possess no more than 1-2 additional parameters. This iteration

should be chosen to make step three possible.4

3. Fully characterize all possible equilibria/steady states/limiting distributions of this

more complex Mi+1 and compute comparative statics for each of its new variables and

parameters (i.e., variables and parameters that are in Mi+1 but not Mi). Comparative

statics must be computed within each of the regions identified in step one, at represen-

tative values of the parameters in Mi that distinguish these regions. In other words,

for every labeled region from step one, one must choose a set of representative values

of the parameters in Mi that delineates that region; these representative parameters

3Multiple such partitions may exist. These can be distinguished on the basis of substantive considerations
(e.g., which partition has the clearest substantive meaning), or on which allows SPS to proceed the furthest.

4Ideally the order of adding complexity would not matter. However, should separability fail before model
M is reached, one must decide which aspect of complexity to add first. Again, this decision can be made on
the basis of substantive considerations (e.g., which is the most substantively interesting aspect of complexity),
or on which order allows SPS to proceed the furthest. This decision can also be influenced by what approach
one desires to take with respect to analyzing M . For instance, if one plans to analyze a series of non-nested
models due to the inability of SPS to fully analyze M , then the order should be chosen to enable these
non-nested models to tell the clearest story.
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are then used to compute comparative statics for the new parameters added in step

two. If Mi+1 = M this step completes SPS; if not, let i = i + 1 (i.e., increment the

index i by 1) and return to step one.
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